aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.21/src/crypto/internal/nistec/p384.go
blob: b452ec9aea294ee5c3044c200ee9250388583e3c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Code generated by generate.go. DO NOT EDIT.

package nistec

import (
	"crypto/internal/nistec/fiat"
	"crypto/subtle"
	"errors"
	"sync"
)

// p384ElementLength is the length of an element of the base or scalar field,
// which have the same bytes length for all NIST P curves.
const p384ElementLength = 48

// P384Point is a P384 point. The zero value is NOT valid.
type P384Point struct {
	// The point is represented in projective coordinates (X:Y:Z),
	// where x = X/Z and y = Y/Z.
	x, y, z *fiat.P384Element
}

// NewP384Point returns a new P384Point representing the point at infinity point.
func NewP384Point() *P384Point {
	return &P384Point{
		x: new(fiat.P384Element),
		y: new(fiat.P384Element).One(),
		z: new(fiat.P384Element),
	}
}

// SetGenerator sets p to the canonical generator and returns p.
func (p *P384Point) SetGenerator() *P384Point {
	p.x.SetBytes([]byte{0xaa, 0x87, 0xca, 0x22, 0xbe, 0x8b, 0x5, 0x37, 0x8e, 0xb1, 0xc7, 0x1e, 0xf3, 0x20, 0xad, 0x74, 0x6e, 0x1d, 0x3b, 0x62, 0x8b, 0xa7, 0x9b, 0x98, 0x59, 0xf7, 0x41, 0xe0, 0x82, 0x54, 0x2a, 0x38, 0x55, 0x2, 0xf2, 0x5d, 0xbf, 0x55, 0x29, 0x6c, 0x3a, 0x54, 0x5e, 0x38, 0x72, 0x76, 0xa, 0xb7})
	p.y.SetBytes([]byte{0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0xa, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0xe, 0x5f})
	p.z.One()
	return p
}

// Set sets p = q and returns p.
func (p *P384Point) Set(q *P384Point) *P384Point {
	p.x.Set(q.x)
	p.y.Set(q.y)
	p.z.Set(q.z)
	return p
}

// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
// the curve, it returns nil and an error, and the receiver is unchanged.
// Otherwise, it returns p.
func (p *P384Point) SetBytes(b []byte) (*P384Point, error) {
	switch {
	// Point at infinity.
	case len(b) == 1 && b[0] == 0:
		return p.Set(NewP384Point()), nil

	// Uncompressed form.
	case len(b) == 1+2*p384ElementLength && b[0] == 4:
		x, err := new(fiat.P384Element).SetBytes(b[1 : 1+p384ElementLength])
		if err != nil {
			return nil, err
		}
		y, err := new(fiat.P384Element).SetBytes(b[1+p384ElementLength:])
		if err != nil {
			return nil, err
		}
		if err := p384CheckOnCurve(x, y); err != nil {
			return nil, err
		}
		p.x.Set(x)
		p.y.Set(y)
		p.z.One()
		return p, nil

	// Compressed form.
	case len(b) == 1+p384ElementLength && (b[0] == 2 || b[0] == 3):
		x, err := new(fiat.P384Element).SetBytes(b[1:])
		if err != nil {
			return nil, err
		}

		// y² = x³ - 3x + b
		y := p384Polynomial(new(fiat.P384Element), x)
		if !p384Sqrt(y, y) {
			return nil, errors.New("invalid P384 compressed point encoding")
		}

		// Select the positive or negative root, as indicated by the least
		// significant bit, based on the encoding type byte.
		otherRoot := new(fiat.P384Element)
		otherRoot.Sub(otherRoot, y)
		cond := y.Bytes()[p384ElementLength-1]&1 ^ b[0]&1
		y.Select(otherRoot, y, int(cond))

		p.x.Set(x)
		p.y.Set(y)
		p.z.One()
		return p, nil

	default:
		return nil, errors.New("invalid P384 point encoding")
	}
}

var _p384B *fiat.P384Element
var _p384BOnce sync.Once

func p384B() *fiat.P384Element {
	_p384BOnce.Do(func() {
		_p384B, _ = new(fiat.P384Element).SetBytes([]byte{0xb3, 0x31, 0x2f, 0xa7, 0xe2, 0x3e, 0xe7, 0xe4, 0x98, 0x8e, 0x5, 0x6b, 0xe3, 0xf8, 0x2d, 0x19, 0x18, 0x1d, 0x9c, 0x6e, 0xfe, 0x81, 0x41, 0x12, 0x3, 0x14, 0x8, 0x8f, 0x50, 0x13, 0x87, 0x5a, 0xc6, 0x56, 0x39, 0x8d, 0x8a, 0x2e, 0xd1, 0x9d, 0x2a, 0x85, 0xc8, 0xed, 0xd3, 0xec, 0x2a, 0xef})
	})
	return _p384B
}

// p384Polynomial sets y2 to x³ - 3x + b, and returns y2.
func p384Polynomial(y2, x *fiat.P384Element) *fiat.P384Element {
	y2.Square(x)
	y2.Mul(y2, x)

	threeX := new(fiat.P384Element).Add(x, x)
	threeX.Add(threeX, x)
	y2.Sub(y2, threeX)

	return y2.Add(y2, p384B())
}

func p384CheckOnCurve(x, y *fiat.P384Element) error {
	// y² = x³ - 3x + b
	rhs := p384Polynomial(new(fiat.P384Element), x)
	lhs := new(fiat.P384Element).Square(y)
	if rhs.Equal(lhs) != 1 {
		return errors.New("P384 point not on curve")
	}
	return nil
}

// Bytes returns the uncompressed or infinity encoding of p, as specified in
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
// infinity is shorter than all other encodings.
func (p *P384Point) Bytes() []byte {
	// This function is outlined to make the allocations inline in the caller
	// rather than happen on the heap.
	var out [1 + 2*p384ElementLength]byte
	return p.bytes(&out)
}

func (p *P384Point) bytes(out *[1 + 2*p384ElementLength]byte) []byte {
	if p.z.IsZero() == 1 {
		return append(out[:0], 0)
	}

	zinv := new(fiat.P384Element).Invert(p.z)
	x := new(fiat.P384Element).Mul(p.x, zinv)
	y := new(fiat.P384Element).Mul(p.y, zinv)

	buf := append(out[:0], 4)
	buf = append(buf, x.Bytes()...)
	buf = append(buf, y.Bytes()...)
	return buf
}

// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
func (p *P384Point) BytesX() ([]byte, error) {
	// This function is outlined to make the allocations inline in the caller
	// rather than happen on the heap.
	var out [p384ElementLength]byte
	return p.bytesX(&out)
}

func (p *P384Point) bytesX(out *[p384ElementLength]byte) ([]byte, error) {
	if p.z.IsZero() == 1 {
		return nil, errors.New("P384 point is the point at infinity")
	}

	zinv := new(fiat.P384Element).Invert(p.z)
	x := new(fiat.P384Element).Mul(p.x, zinv)

	return append(out[:0], x.Bytes()...), nil
}

// BytesCompressed returns the compressed or infinity encoding of p, as
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
// point at infinity is shorter than all other encodings.
func (p *P384Point) BytesCompressed() []byte {
	// This function is outlined to make the allocations inline in the caller
	// rather than happen on the heap.
	var out [1 + p384ElementLength]byte
	return p.bytesCompressed(&out)
}

func (p *P384Point) bytesCompressed(out *[1 + p384ElementLength]byte) []byte {
	if p.z.IsZero() == 1 {
		return append(out[:0], 0)
	}

	zinv := new(fiat.P384Element).Invert(p.z)
	x := new(fiat.P384Element).Mul(p.x, zinv)
	y := new(fiat.P384Element).Mul(p.y, zinv)

	// Encode the sign of the y coordinate (indicated by the least significant
	// bit) as the encoding type (2 or 3).
	buf := append(out[:0], 2)
	buf[0] |= y.Bytes()[p384ElementLength-1] & 1
	buf = append(buf, x.Bytes()...)
	return buf
}

// Add sets q = p1 + p2, and returns q. The points may overlap.
func (q *P384Point) Add(p1, p2 *P384Point) *P384Point {
	// Complete addition formula for a = -3 from "Complete addition formulas for
	// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.

	t0 := new(fiat.P384Element).Mul(p1.x, p2.x)  // t0 := X1 * X2
	t1 := new(fiat.P384Element).Mul(p1.y, p2.y)  // t1 := Y1 * Y2
	t2 := new(fiat.P384Element).Mul(p1.z, p2.z)  // t2 := Z1 * Z2
	t3 := new(fiat.P384Element).Add(p1.x, p1.y)  // t3 := X1 + Y1
	t4 := new(fiat.P384Element).Add(p2.x, p2.y)  // t4 := X2 + Y2
	t3.Mul(t3, t4)                               // t3 := t3 * t4
	t4.Add(t0, t1)                               // t4 := t0 + t1
	t3.Sub(t3, t4)                               // t3 := t3 - t4
	t4.Add(p1.y, p1.z)                           // t4 := Y1 + Z1
	x3 := new(fiat.P384Element).Add(p2.y, p2.z)  // X3 := Y2 + Z2
	t4.Mul(t4, x3)                               // t4 := t4 * X3
	x3.Add(t1, t2)                               // X3 := t1 + t2
	t4.Sub(t4, x3)                               // t4 := t4 - X3
	x3.Add(p1.x, p1.z)                           // X3 := X1 + Z1
	y3 := new(fiat.P384Element).Add(p2.x, p2.z)  // Y3 := X2 + Z2
	x3.Mul(x3, y3)                               // X3 := X3 * Y3
	y3.Add(t0, t2)                               // Y3 := t0 + t2
	y3.Sub(x3, y3)                               // Y3 := X3 - Y3
	z3 := new(fiat.P384Element).Mul(p384B(), t2) // Z3 := b * t2
	x3.Sub(y3, z3)                               // X3 := Y3 - Z3
	z3.Add(x3, x3)                               // Z3 := X3 + X3
	x3.Add(x3, z3)                               // X3 := X3 + Z3
	z3.Sub(t1, x3)                               // Z3 := t1 - X3
	x3.Add(t1, x3)                               // X3 := t1 + X3
	y3.Mul(p384B(), y3)                          // Y3 := b * Y3
	t1.Add(t2, t2)                               // t1 := t2 + t2
	t2.Add(t1, t2)                               // t2 := t1 + t2
	y3.Sub(y3, t2)                               // Y3 := Y3 - t2
	y3.Sub(y3, t0)                               // Y3 := Y3 - t0
	t1.Add(y3, y3)                               // t1 := Y3 + Y3
	y3.Add(t1, y3)                               // Y3 := t1 + Y3
	t1.Add(t0, t0)                               // t1 := t0 + t0
	t0.Add(t1, t0)                               // t0 := t1 + t0
	t0.Sub(t0, t2)                               // t0 := t0 - t2
	t1.Mul(t4, y3)                               // t1 := t4 * Y3
	t2.Mul(t0, y3)                               // t2 := t0 * Y3
	y3.Mul(x3, z3)                               // Y3 := X3 * Z3
	y3.Add(y3, t2)                               // Y3 := Y3 + t2
	x3.Mul(t3, x3)                               // X3 := t3 * X3
	x3.Sub(x3, t1)                               // X3 := X3 - t1
	z3.Mul(t4, z3)                               // Z3 := t4 * Z3
	t1.Mul(t3, t0)                               // t1 := t3 * t0
	z3.Add(z3, t1)                               // Z3 := Z3 + t1

	q.x.Set(x3)
	q.y.Set(y3)
	q.z.Set(z3)
	return q
}

// Double sets q = p + p, and returns q. The points may overlap.
func (q *P384Point) Double(p *P384Point) *P384Point {
	// Complete addition formula for a = -3 from "Complete addition formulas for
	// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.

	t0 := new(fiat.P384Element).Square(p.x)      // t0 := X ^ 2
	t1 := new(fiat.P384Element).Square(p.y)      // t1 := Y ^ 2
	t2 := new(fiat.P384Element).Square(p.z)      // t2 := Z ^ 2
	t3 := new(fiat.P384Element).Mul(p.x, p.y)    // t3 := X * Y
	t3.Add(t3, t3)                               // t3 := t3 + t3
	z3 := new(fiat.P384Element).Mul(p.x, p.z)    // Z3 := X * Z
	z3.Add(z3, z3)                               // Z3 := Z3 + Z3
	y3 := new(fiat.P384Element).Mul(p384B(), t2) // Y3 := b * t2
	y3.Sub(y3, z3)                               // Y3 := Y3 - Z3
	x3 := new(fiat.P384Element).Add(y3, y3)      // X3 := Y3 + Y3
	y3.Add(x3, y3)                               // Y3 := X3 + Y3
	x3.Sub(t1, y3)                               // X3 := t1 - Y3
	y3.Add(t1, y3)                               // Y3 := t1 + Y3
	y3.Mul(x3, y3)                               // Y3 := X3 * Y3
	x3.Mul(x3, t3)                               // X3 := X3 * t3
	t3.Add(t2, t2)                               // t3 := t2 + t2
	t2.Add(t2, t3)                               // t2 := t2 + t3
	z3.Mul(p384B(), z3)                          // Z3 := b * Z3
	z3.Sub(z3, t2)                               // Z3 := Z3 - t2
	z3.Sub(z3, t0)                               // Z3 := Z3 - t0
	t3.Add(z3, z3)                               // t3 := Z3 + Z3
	z3.Add(z3, t3)                               // Z3 := Z3 + t3
	t3.Add(t0, t0)                               // t3 := t0 + t0
	t0.Add(t3, t0)                               // t0 := t3 + t0
	t0.Sub(t0, t2)                               // t0 := t0 - t2
	t0.Mul(t0, z3)                               // t0 := t0 * Z3
	y3.Add(y3, t0)                               // Y3 := Y3 + t0
	t0.Mul(p.y, p.z)                             // t0 := Y * Z
	t0.Add(t0, t0)                               // t0 := t0 + t0
	z3.Mul(t0, z3)                               // Z3 := t0 * Z3
	x3.Sub(x3, z3)                               // X3 := X3 - Z3
	z3.Mul(t0, t1)                               // Z3 := t0 * t1
	z3.Add(z3, z3)                               // Z3 := Z3 + Z3
	z3.Add(z3, z3)                               // Z3 := Z3 + Z3

	q.x.Set(x3)
	q.y.Set(y3)
	q.z.Set(z3)
	return q
}

// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *P384Point) Select(p1, p2 *P384Point, cond int) *P384Point {
	q.x.Select(p1.x, p2.x, cond)
	q.y.Select(p1.y, p2.y, cond)
	q.z.Select(p1.z, p2.z, cond)
	return q
}

// A p384Table holds the first 15 multiples of a point at offset -1, so [1]P
// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
// point.
type p384Table [15]*P384Point

// Select selects the n-th multiple of the table base point into p. It works in
// constant time by iterating over every entry of the table. n must be in [0, 15].
func (table *p384Table) Select(p *P384Point, n uint8) {
	if n >= 16 {
		panic("nistec: internal error: p384Table called with out-of-bounds value")
	}
	p.Set(NewP384Point())
	for i := uint8(1); i < 16; i++ {
		cond := subtle.ConstantTimeByteEq(i, n)
		p.Select(table[i-1], p, cond)
	}
}

// ScalarMult sets p = scalar * q, and returns p.
func (p *P384Point) ScalarMult(q *P384Point, scalar []byte) (*P384Point, error) {
	// Compute a p384Table for the base point q. The explicit NewP384Point
	// calls get inlined, letting the allocations live on the stack.
	var table = p384Table{NewP384Point(), NewP384Point(), NewP384Point(),
		NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(),
		NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(),
		NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point()}
	table[0].Set(q)
	for i := 1; i < 15; i += 2 {
		table[i].Double(table[i/2])
		table[i+1].Add(table[i], q)
	}

	// Instead of doing the classic double-and-add chain, we do it with a
	// four-bit window: we double four times, and then add [0-15]P.
	t := NewP384Point()
	p.Set(NewP384Point())
	for i, byte := range scalar {
		// No need to double on the first iteration, as p is the identity at
		// this point, and [N]∞ = ∞.
		if i != 0 {
			p.Double(p)
			p.Double(p)
			p.Double(p)
			p.Double(p)
		}

		windowValue := byte >> 4
		table.Select(t, windowValue)
		p.Add(p, t)

		p.Double(p)
		p.Double(p)
		p.Double(p)
		p.Double(p)

		windowValue = byte & 0b1111
		table.Select(t, windowValue)
		p.Add(p, t)
	}

	return p, nil
}

var p384GeneratorTable *[p384ElementLength * 2]p384Table
var p384GeneratorTableOnce sync.Once

// generatorTable returns a sequence of p384Tables. The first table contains
// multiples of G. Each successive table is the previous table doubled four
// times.
func (p *P384Point) generatorTable() *[p384ElementLength * 2]p384Table {
	p384GeneratorTableOnce.Do(func() {
		p384GeneratorTable = new([p384ElementLength * 2]p384Table)
		base := NewP384Point().SetGenerator()
		for i := 0; i < p384ElementLength*2; i++ {
			p384GeneratorTable[i][0] = NewP384Point().Set(base)
			for j := 1; j < 15; j++ {
				p384GeneratorTable[i][j] = NewP384Point().Add(p384GeneratorTable[i][j-1], base)
			}
			base.Double(base)
			base.Double(base)
			base.Double(base)
			base.Double(base)
		}
	})
	return p384GeneratorTable
}

// ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and
// returns p.
func (p *P384Point) ScalarBaseMult(scalar []byte) (*P384Point, error) {
	if len(scalar) != p384ElementLength {
		return nil, errors.New("invalid scalar length")
	}
	tables := p.generatorTable()

	// This is also a scalar multiplication with a four-bit window like in
	// ScalarMult, but in this case the doublings are precomputed. The value
	// [windowValue]G added at iteration k would normally get doubled
	// (totIterations-k)×4 times, but with a larger precomputation we can
	// instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
	// doublings between iterations.
	t := NewP384Point()
	p.Set(NewP384Point())
	tableIndex := len(tables) - 1
	for _, byte := range scalar {
		windowValue := byte >> 4
		tables[tableIndex].Select(t, windowValue)
		p.Add(p, t)
		tableIndex--

		windowValue = byte & 0b1111
		tables[tableIndex].Select(t, windowValue)
		p.Add(p, t)
		tableIndex--
	}

	return p, nil
}

// p384Sqrt sets e to a square root of x. If x is not a square, p384Sqrt returns
// false and e is unchanged. e and x can overlap.
func p384Sqrt(e, x *fiat.P384Element) (isSquare bool) {
	candidate := new(fiat.P384Element)
	p384SqrtCandidate(candidate, x)
	square := new(fiat.P384Element).Square(candidate)
	if square.Equal(x) != 1 {
		return false
	}
	e.Set(candidate)
	return true
}

// p384SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
func p384SqrtCandidate(z, x *fiat.P384Element) {
	// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
	//
	// The sequence of 14 multiplications and 381 squarings is derived from the
	// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
	//
	//	_10      = 2*1
	//	_11      = 1 + _10
	//	_110     = 2*_11
	//	_111     = 1 + _110
	//	_111000  = _111 << 3
	//	_111111  = _111 + _111000
	//	_1111110 = 2*_111111
	//	_1111111 = 1 + _1111110
	//	x12      = _1111110 << 5 + _111111
	//	x24      = x12 << 12 + x12
	//	x31      = x24 << 7 + _1111111
	//	x32      = 2*x31 + 1
	//	x63      = x32 << 31 + x31
	//	x126     = x63 << 63 + x63
	//	x252     = x126 << 126 + x126
	//	x255     = x252 << 3 + _111
	//	return     ((x255 << 33 + x32) << 64 + 1) << 30
	//
	var t0 = new(fiat.P384Element)
	var t1 = new(fiat.P384Element)
	var t2 = new(fiat.P384Element)

	z.Square(x)
	z.Mul(x, z)
	z.Square(z)
	t0.Mul(x, z)
	z.Square(t0)
	for s := 1; s < 3; s++ {
		z.Square(z)
	}
	t1.Mul(t0, z)
	t2.Square(t1)
	z.Mul(x, t2)
	for s := 0; s < 5; s++ {
		t2.Square(t2)
	}
	t1.Mul(t1, t2)
	t2.Square(t1)
	for s := 1; s < 12; s++ {
		t2.Square(t2)
	}
	t1.Mul(t1, t2)
	for s := 0; s < 7; s++ {
		t1.Square(t1)
	}
	t1.Mul(z, t1)
	z.Square(t1)
	z.Mul(x, z)
	t2.Square(z)
	for s := 1; s < 31; s++ {
		t2.Square(t2)
	}
	t1.Mul(t1, t2)
	t2.Square(t1)
	for s := 1; s < 63; s++ {
		t2.Square(t2)
	}
	t1.Mul(t1, t2)
	t2.Square(t1)
	for s := 1; s < 126; s++ {
		t2.Square(t2)
	}
	t1.Mul(t1, t2)
	for s := 0; s < 3; s++ {
		t1.Square(t1)
	}
	t0.Mul(t0, t1)
	for s := 0; s < 33; s++ {
		t0.Square(t0)
	}
	z.Mul(z, t0)
	for s := 0; s < 64; s++ {
		z.Square(z)
	}
	z.Mul(x, z)
	for s := 0; s < 30; s++ {
		z.Square(z)
	}
}