1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bigmod
import (
"encoding/binary"
"errors"
"math/big"
"math/bits"
)
const (
// _W is the size in bits of our limbs.
_W = bits.UintSize
// _S is the size in bytes of our limbs.
_S = _W / 8
)
// choice represents a constant-time boolean. The value of choice is always
// either 1 or 0. We use an int instead of bool in order to make decisions in
// constant time by turning it into a mask.
type choice uint
func not(c choice) choice { return 1 ^ c }
const yes = choice(1)
const no = choice(0)
// ctMask is all 1s if on is yes, and all 0s otherwise.
func ctMask(on choice) uint { return -uint(on) }
// ctEq returns 1 if x == y, and 0 otherwise. The execution time of this
// function does not depend on its inputs.
func ctEq(x, y uint) choice {
// If x != y, then either x - y or y - x will generate a carry.
_, c1 := bits.Sub(x, y, 0)
_, c2 := bits.Sub(y, x, 0)
return not(choice(c1 | c2))
}
// ctGeq returns 1 if x >= y, and 0 otherwise. The execution time of this
// function does not depend on its inputs.
func ctGeq(x, y uint) choice {
// If x < y, then x - y generates a carry.
_, carry := bits.Sub(x, y, 0)
return not(choice(carry))
}
// Nat represents an arbitrary natural number
//
// Each Nat has an announced length, which is the number of limbs it has stored.
// Operations on this number are allowed to leak this length, but will not leak
// any information about the values contained in those limbs.
type Nat struct {
// limbs is little-endian in base 2^W with W = bits.UintSize.
limbs []uint
}
// preallocTarget is the size in bits of the numbers used to implement the most
// common and most performant RSA key size. It's also enough to cover some of
// the operations of key sizes up to 4096.
const preallocTarget = 2048
const preallocLimbs = (preallocTarget + _W - 1) / _W
// NewNat returns a new nat with a size of zero, just like new(Nat), but with
// the preallocated capacity to hold a number of up to preallocTarget bits.
// NewNat inlines, so the allocation can live on the stack.
func NewNat() *Nat {
limbs := make([]uint, 0, preallocLimbs)
return &Nat{limbs}
}
// expand expands x to n limbs, leaving its value unchanged.
func (x *Nat) expand(n int) *Nat {
if len(x.limbs) > n {
panic("bigmod: internal error: shrinking nat")
}
if cap(x.limbs) < n {
newLimbs := make([]uint, n)
copy(newLimbs, x.limbs)
x.limbs = newLimbs
return x
}
extraLimbs := x.limbs[len(x.limbs):n]
for i := range extraLimbs {
extraLimbs[i] = 0
}
x.limbs = x.limbs[:n]
return x
}
// reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs).
func (x *Nat) reset(n int) *Nat {
if cap(x.limbs) < n {
x.limbs = make([]uint, n)
return x
}
for i := range x.limbs {
x.limbs[i] = 0
}
x.limbs = x.limbs[:n]
return x
}
// set assigns x = y, optionally resizing x to the appropriate size.
func (x *Nat) set(y *Nat) *Nat {
x.reset(len(y.limbs))
copy(x.limbs, y.limbs)
return x
}
// setBig assigns x = n, optionally resizing n to the appropriate size.
//
// The announced length of x is set based on the actual bit size of the input,
// ignoring leading zeroes.
func (x *Nat) setBig(n *big.Int) *Nat {
limbs := n.Bits()
x.reset(len(limbs))
for i := range limbs {
x.limbs[i] = uint(limbs[i])
}
return x
}
// Bytes returns x as a zero-extended big-endian byte slice. The size of the
// slice will match the size of m.
//
// x must have the same size as m and it must be reduced modulo m.
func (x *Nat) Bytes(m *Modulus) []byte {
i := m.Size()
bytes := make([]byte, i)
for _, limb := range x.limbs {
for j := 0; j < _S; j++ {
i--
if i < 0 {
if limb == 0 {
break
}
panic("bigmod: modulus is smaller than nat")
}
bytes[i] = byte(limb)
limb >>= 8
}
}
return bytes
}
// SetBytes assigns x = b, where b is a slice of big-endian bytes.
// SetBytes returns an error if b >= m.
//
// The output will be resized to the size of m and overwritten.
func (x *Nat) SetBytes(b []byte, m *Modulus) (*Nat, error) {
if err := x.setBytes(b, m); err != nil {
return nil, err
}
if x.cmpGeq(m.nat) == yes {
return nil, errors.New("input overflows the modulus")
}
return x, nil
}
// SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes.
// SetOverflowingBytes returns an error if b has a longer bit length than m, but
// reduces overflowing values up to 2^⌈log2(m)⌉ - 1.
//
// The output will be resized to the size of m and overwritten.
func (x *Nat) SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error) {
if err := x.setBytes(b, m); err != nil {
return nil, err
}
leading := _W - bitLen(x.limbs[len(x.limbs)-1])
if leading < m.leading {
return nil, errors.New("input overflows the modulus size")
}
x.maybeSubtractModulus(no, m)
return x, nil
}
// bigEndianUint returns the contents of buf interpreted as a
// big-endian encoded uint value.
func bigEndianUint(buf []byte) uint {
if _W == 64 {
return uint(binary.BigEndian.Uint64(buf))
}
return uint(binary.BigEndian.Uint32(buf))
}
func (x *Nat) setBytes(b []byte, m *Modulus) error {
x.resetFor(m)
i, k := len(b), 0
for k < len(x.limbs) && i >= _S {
x.limbs[k] = bigEndianUint(b[i-_S : i])
i -= _S
k++
}
for s := 0; s < _W && k < len(x.limbs) && i > 0; s += 8 {
x.limbs[k] |= uint(b[i-1]) << s
i--
}
if i > 0 {
return errors.New("input overflows the modulus size")
}
return nil
}
// Equal returns 1 if x == y, and 0 otherwise.
//
// Both operands must have the same announced length.
func (x *Nat) Equal(y *Nat) choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
equal := yes
for i := 0; i < size; i++ {
equal &= ctEq(xLimbs[i], yLimbs[i])
}
return equal
}
// IsZero returns 1 if x == 0, and 0 otherwise.
func (x *Nat) IsZero() choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
zero := yes
for i := 0; i < size; i++ {
zero &= ctEq(xLimbs[i], 0)
}
return zero
}
// cmpGeq returns 1 if x >= y, and 0 otherwise.
//
// Both operands must have the same announced length.
func (x *Nat) cmpGeq(y *Nat) choice {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
var c uint
for i := 0; i < size; i++ {
_, c = bits.Sub(xLimbs[i], yLimbs[i], c)
}
// If there was a carry, then subtracting y underflowed, so
// x is not greater than or equal to y.
return not(choice(c))
}
// assign sets x <- y if on == 1, and does nothing otherwise.
//
// Both operands must have the same announced length.
func (x *Nat) assign(on choice, y *Nat) *Nat {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
mask := ctMask(on)
for i := 0; i < size; i++ {
xLimbs[i] ^= mask & (xLimbs[i] ^ yLimbs[i])
}
return x
}
// add computes x += y and returns the carry.
//
// Both operands must have the same announced length.
func (x *Nat) add(y *Nat) (c uint) {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
for i := 0; i < size; i++ {
xLimbs[i], c = bits.Add(xLimbs[i], yLimbs[i], c)
}
return
}
// sub computes x -= y. It returns the borrow of the subtraction.
//
// Both operands must have the same announced length.
func (x *Nat) sub(y *Nat) (c uint) {
// Eliminate bounds checks in the loop.
size := len(x.limbs)
xLimbs := x.limbs[:size]
yLimbs := y.limbs[:size]
for i := 0; i < size; i++ {
xLimbs[i], c = bits.Sub(xLimbs[i], yLimbs[i], c)
}
return
}
// Modulus is used for modular arithmetic, precomputing relevant constants.
//
// Moduli are assumed to be odd numbers. Moduli can also leak the exact
// number of bits needed to store their value, and are stored without padding.
//
// Their actual value is still kept secret.
type Modulus struct {
// The underlying natural number for this modulus.
//
// This will be stored without any padding, and shouldn't alias with any
// other natural number being used.
nat *Nat
leading int // number of leading zeros in the modulus
m0inv uint // -nat.limbs[0]⁻¹ mod _W
rr *Nat // R*R for montgomeryRepresentation
}
// rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs).
func rr(m *Modulus) *Nat {
rr := NewNat().ExpandFor(m)
// R*R is 2^(2 * _W * n). We can safely get 2^(_W * (n - 1)) by setting the
// most significant limb to 1. We then get to R*R by shifting left by _W
// n + 1 times.
n := len(rr.limbs)
rr.limbs[n-1] = 1
for i := n - 1; i < 2*n; i++ {
rr.shiftIn(0, m) // x = x * 2^_W mod m
}
return rr
}
// minusInverseModW computes -x⁻¹ mod _W with x odd.
//
// This operation is used to precompute a constant involved in Montgomery
// multiplication.
func minusInverseModW(x uint) uint {
// Every iteration of this loop doubles the least-significant bits of
// correct inverse in y. The first three bits are already correct (1⁻¹ = 1,
// 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough
// for 64 bits (and wastes only one iteration for 32 bits).
//
// See https://crypto.stackexchange.com/a/47496.
y := x
for i := 0; i < 5; i++ {
y = y * (2 - x*y)
}
return -y
}
// NewModulusFromBig creates a new Modulus from a [big.Int].
//
// The Int must be odd. The number of significant bits (and nothing else) is
// leaked through timing side-channels.
func NewModulusFromBig(n *big.Int) (*Modulus, error) {
if b := n.Bits(); len(b) == 0 {
return nil, errors.New("modulus must be >= 0")
} else if b[0]&1 != 1 {
return nil, errors.New("modulus must be odd")
}
m := &Modulus{}
m.nat = NewNat().setBig(n)
m.leading = _W - bitLen(m.nat.limbs[len(m.nat.limbs)-1])
m.m0inv = minusInverseModW(m.nat.limbs[0])
m.rr = rr(m)
return m, nil
}
// bitLen is a version of bits.Len that only leaks the bit length of n, but not
// its value. bits.Len and bits.LeadingZeros use a lookup table for the
// low-order bits on some architectures.
func bitLen(n uint) int {
var len int
// We assume, here and elsewhere, that comparison to zero is constant time
// with respect to different non-zero values.
for n != 0 {
len++
n >>= 1
}
return len
}
// Size returns the size of m in bytes.
func (m *Modulus) Size() int {
return (m.BitLen() + 7) / 8
}
// BitLen returns the size of m in bits.
func (m *Modulus) BitLen() int {
return len(m.nat.limbs)*_W - int(m.leading)
}
// Nat returns m as a Nat. The return value must not be written to.
func (m *Modulus) Nat() *Nat {
return m.nat
}
// shiftIn calculates x = x << _W + y mod m.
//
// This assumes that x is already reduced mod m.
func (x *Nat) shiftIn(y uint, m *Modulus) *Nat {
d := NewNat().resetFor(m)
// Eliminate bounds checks in the loop.
size := len(m.nat.limbs)
xLimbs := x.limbs[:size]
dLimbs := d.limbs[:size]
mLimbs := m.nat.limbs[:size]
// Each iteration of this loop computes x = 2x + b mod m, where b is a bit
// from y. Effectively, it left-shifts x and adds y one bit at a time,
// reducing it every time.
//
// To do the reduction, each iteration computes both 2x + b and 2x + b - m.
// The next iteration (and finally the return line) will use either result
// based on whether 2x + b overflows m.
needSubtraction := no
for i := _W - 1; i >= 0; i-- {
carry := (y >> i) & 1
var borrow uint
mask := ctMask(needSubtraction)
for i := 0; i < size; i++ {
l := xLimbs[i] ^ (mask & (xLimbs[i] ^ dLimbs[i]))
xLimbs[i], carry = bits.Add(l, l, carry)
dLimbs[i], borrow = bits.Sub(xLimbs[i], mLimbs[i], borrow)
}
// Like in maybeSubtractModulus, we need the subtraction if either it
// didn't underflow (meaning 2x + b > m) or if computing 2x + b
// overflowed (meaning 2x + b > 2^_W*n > m).
needSubtraction = not(choice(borrow)) | choice(carry)
}
return x.assign(needSubtraction, d)
}
// Mod calculates out = x mod m.
//
// This works regardless how large the value of x is.
//
// The output will be resized to the size of m and overwritten.
func (out *Nat) Mod(x *Nat, m *Modulus) *Nat {
out.resetFor(m)
// Working our way from the most significant to the least significant limb,
// we can insert each limb at the least significant position, shifting all
// previous limbs left by _W. This way each limb will get shifted by the
// correct number of bits. We can insert at least N - 1 limbs without
// overflowing m. After that, we need to reduce every time we shift.
i := len(x.limbs) - 1
// For the first N - 1 limbs we can skip the actual shifting and position
// them at the shifted position, which starts at min(N - 2, i).
start := len(m.nat.limbs) - 2
if i < start {
start = i
}
for j := start; j >= 0; j-- {
out.limbs[j] = x.limbs[i]
i--
}
// We shift in the remaining limbs, reducing modulo m each time.
for i >= 0 {
out.shiftIn(x.limbs[i], m)
i--
}
return out
}
// ExpandFor ensures x has the right size to work with operations modulo m.
//
// The announced size of x must be smaller than or equal to that of m.
func (x *Nat) ExpandFor(m *Modulus) *Nat {
return x.expand(len(m.nat.limbs))
}
// resetFor ensures out has the right size to work with operations modulo m.
//
// out is zeroed and may start at any size.
func (out *Nat) resetFor(m *Modulus) *Nat {
return out.reset(len(m.nat.limbs))
}
// maybeSubtractModulus computes x -= m if and only if x >= m or if "always" is yes.
//
// It can be used to reduce modulo m a value up to 2m - 1, which is a common
// range for results computed by higher level operations.
//
// always is usually a carry that indicates that the operation that produced x
// overflowed its size, meaning abstractly x > 2^_W*n > m even if x < m.
//
// x and m operands must have the same announced length.
func (x *Nat) maybeSubtractModulus(always choice, m *Modulus) {
t := NewNat().set(x)
underflow := t.sub(m.nat)
// We keep the result if x - m didn't underflow (meaning x >= m)
// or if always was set.
keep := not(choice(underflow)) | choice(always)
x.assign(keep, t)
}
// Sub computes x = x - y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
func (x *Nat) Sub(y *Nat, m *Modulus) *Nat {
underflow := x.sub(y)
// If the subtraction underflowed, add m.
t := NewNat().set(x)
t.add(m.nat)
x.assign(choice(underflow), t)
return x
}
// Add computes x = x + y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
func (x *Nat) Add(y *Nat, m *Modulus) *Nat {
overflow := x.add(y)
x.maybeSubtractModulus(choice(overflow), m)
return x
}
// montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs).
//
// Faster Montgomery multiplication replaces standard modular multiplication for
// numbers in this representation.
//
// This assumes that x is already reduced mod m.
func (x *Nat) montgomeryRepresentation(m *Modulus) *Nat {
// A Montgomery multiplication (which computes a * b / R) by R * R works out
// to a multiplication by R, which takes the value out of the Montgomery domain.
return x.montgomeryMul(x, m.rr, m)
}
// montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs).
//
// This assumes that x is already reduced mod m.
func (x *Nat) montgomeryReduction(m *Modulus) *Nat {
// By Montgomery multiplying with 1 not in Montgomery representation, we
// convert out back from Montgomery representation, because it works out to
// dividing by R.
one := NewNat().ExpandFor(m)
one.limbs[0] = 1
return x.montgomeryMul(x, one, m)
}
// montgomeryMul calculates x = a * b / R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs), also known as a Montgomery multiplication.
//
// All inputs should be the same length and already reduced modulo m.
// x will be resized to the size of m and overwritten.
func (x *Nat) montgomeryMul(a *Nat, b *Nat, m *Modulus) *Nat {
n := len(m.nat.limbs)
mLimbs := m.nat.limbs[:n]
aLimbs := a.limbs[:n]
bLimbs := b.limbs[:n]
switch n {
default:
// Attempt to use a stack-allocated backing array.
T := make([]uint, 0, preallocLimbs*2)
if cap(T) < n*2 {
T = make([]uint, 0, n*2)
}
T = T[:n*2]
// This loop implements Word-by-Word Montgomery Multiplication, as
// described in Algorithm 4 (Fig. 3) of "Efficient Software
// Implementations of Modular Exponentiation" by Shay Gueron
// [https://eprint.iacr.org/2011/239.pdf].
var c uint
for i := 0; i < n; i++ {
_ = T[n+i] // bounds check elimination hint
// Step 1 (T = a × b) is computed as a large pen-and-paper column
// multiplication of two numbers with n base-2^_W digits. If we just
// wanted to produce 2n-wide T, we would do
//
// for i := 0; i < n; i++ {
// d := bLimbs[i]
// T[n+i] = addMulVVW(T[i:n+i], aLimbs, d)
// }
//
// where d is a digit of the multiplier, T[i:n+i] is the shifted
// position of the product of that digit, and T[n+i] is the final carry.
// Note that T[i] isn't modified after processing the i-th digit.
//
// Instead of running two loops, one for Step 1 and one for Steps 2–6,
// the result of Step 1 is computed during the next loop. This is
// possible because each iteration only uses T[i] in Step 2 and then
// discards it in Step 6.
d := bLimbs[i]
c1 := addMulVVW(T[i:n+i], aLimbs, d)
// Step 6 is replaced by shifting the virtual window we operate
// over: T of the algorithm is T[i:] for us. That means that T1 in
// Step 2 (T mod 2^_W) is simply T[i]. k0 in Step 3 is our m0inv.
Y := T[i] * m.m0inv
// Step 4 and 5 add Y × m to T, which as mentioned above is stored
// at T[i:]. The two carries (from a × d and Y × m) are added up in
// the next word T[n+i], and the carry bit from that addition is
// brought forward to the next iteration.
c2 := addMulVVW(T[i:n+i], mLimbs, Y)
T[n+i], c = bits.Add(c1, c2, c)
}
// Finally for Step 7 we copy the final T window into x, and subtract m
// if necessary (which as explained in maybeSubtractModulus can be the
// case both if x >= m, or if x overflowed).
//
// The paper suggests in Section 4 that we can do an "Almost Montgomery
// Multiplication" by subtracting only in the overflow case, but the
// cost is very similar since the constant time subtraction tells us if
// x >= m as a side effect, and taking care of the broken invariant is
// highly undesirable (see https://go.dev/issue/13907).
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
// The following specialized cases follow the exact same algorithm, but
// optimized for the sizes most used in RSA. addMulVVW is implemented in
// assembly with loop unrolling depending on the architecture and bounds
// checks are removed by the compiler thanks to the constant size.
case 1024 / _W:
const n = 1024 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW1024(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW1024(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
case 1536 / _W:
const n = 1536 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW1536(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW1536(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
case 2048 / _W:
const n = 2048 / _W // compiler hint
T := make([]uint, n*2)
var c uint
for i := 0; i < n; i++ {
d := bLimbs[i]
c1 := addMulVVW2048(&T[i], &aLimbs[0], d)
Y := T[i] * m.m0inv
c2 := addMulVVW2048(&T[i], &mLimbs[0], Y)
T[n+i], c = bits.Add(c1, c2, c)
}
copy(x.reset(n).limbs, T[n:])
x.maybeSubtractModulus(choice(c), m)
}
return x
}
// addMulVVW multiplies the multi-word value x by the single-word value y,
// adding the result to the multi-word value z and returning the final carry.
// It can be thought of as one row of a pen-and-paper column multiplication.
func addMulVVW(z, x []uint, y uint) (carry uint) {
_ = x[len(z)-1] // bounds check elimination hint
for i := range z {
hi, lo := bits.Mul(x[i], y)
lo, c := bits.Add(lo, z[i], 0)
// We use bits.Add with zero to get an add-with-carry instruction that
// absorbs the carry from the previous bits.Add.
hi, _ = bits.Add(hi, 0, c)
lo, c = bits.Add(lo, carry, 0)
hi, _ = bits.Add(hi, 0, c)
carry = hi
z[i] = lo
}
return carry
}
// Mul calculates x = x * y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
func (x *Nat) Mul(y *Nat, m *Modulus) *Nat {
// A Montgomery multiplication by a value out of the Montgomery domain
// takes the result out of Montgomery representation.
xR := NewNat().set(x).montgomeryRepresentation(m) // xR = x * R mod m
return x.montgomeryMul(xR, y, m) // x = xR * y / R mod m
}
// Exp calculates out = x^e mod m.
//
// The exponent e is represented in big-endian order. The output will be resized
// to the size of m and overwritten. x must already be reduced modulo m.
func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat {
// We use a 4 bit window. For our RSA workload, 4 bit windows are faster
// than 2 bit windows, but use an extra 12 nats worth of scratch space.
// Using bit sizes that don't divide 8 are more complex to implement, but
// are likely to be more efficient if necessary.
table := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1)
// newNat calls are unrolled so they are allocated on the stack.
NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
}
table[0].set(x).montgomeryRepresentation(m)
for i := 1; i < len(table); i++ {
table[i].montgomeryMul(table[i-1], table[0], m)
}
out.resetFor(m)
out.limbs[0] = 1
out.montgomeryRepresentation(m)
tmp := NewNat().ExpandFor(m)
for _, b := range e {
for _, j := range []int{4, 0} {
// Square four times. Optimization note: this can be implemented
// more efficiently than with generic Montgomery multiplication.
out.montgomeryMul(out, out, m)
out.montgomeryMul(out, out, m)
out.montgomeryMul(out, out, m)
out.montgomeryMul(out, out, m)
// Select x^k in constant time from the table.
k := uint((b >> j) & 0b1111)
for i := range table {
tmp.assign(ctEq(k, uint(i+1)), table[i])
}
// Multiply by x^k, discarding the result if k = 0.
tmp.montgomeryMul(out, tmp, m)
out.assign(not(ctEq(k, 0)), tmp)
}
}
return out.montgomeryReduction(m)
}
// ExpShort calculates out = x^e mod m.
//
// The output will be resized to the size of m and overwritten. x must already
// be reduced modulo m. This leaks the exact bit size of the exponent.
func (out *Nat) ExpShort(x *Nat, e uint, m *Modulus) *Nat {
xR := NewNat().set(x).montgomeryRepresentation(m)
out.resetFor(m)
out.limbs[0] = 1
out.montgomeryRepresentation(m)
// For short exponents, precomputing a table and using a window like in Exp
// doesn't pay off. Instead, we do a simple constant-time conditional
// square-and-multiply chain, skipping the initial run of zeroes.
tmp := NewNat().ExpandFor(m)
for i := bits.UintSize - bitLen(e); i < bits.UintSize; i++ {
out.montgomeryMul(out, out, m)
k := (e >> (bits.UintSize - i - 1)) & 1
tmp.montgomeryMul(out, xR, m)
out.assign(ctEq(k, 1), tmp)
}
return out.montgomeryReduction(m)
}
|