1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in FIPS 186-4 and SEC 1, Version 2.0.
//
// Signatures generated by this package are not deterministic, but entropy is
// mixed with the private key and the message, achieving the same level of
// security in case of randomness source failure.
package ecdsa
// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
// That standard is not freely available, which is a problem in an open source
// implementation, because not only the implementer, but also any maintainer,
// contributor, reviewer, auditor, and learner needs access to it. Instead, this
// package references and follows the equivalent [SEC 1, Version 2.0].
//
// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
import (
"bytes"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdh"
"crypto/elliptic"
"crypto/internal/bigmod"
"crypto/internal/boring"
"crypto/internal/boring/bbig"
"crypto/internal/nistec"
"crypto/internal/randutil"
"crypto/sha512"
"crypto/subtle"
"errors"
"io"
"math/big"
"sync"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// PublicKey represents an ECDSA public key.
type PublicKey struct {
elliptic.Curve
X, Y *big.Int
}
// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.
// ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
// Curve is not supported by crypto/ecdh.
func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) {
c := curveToECDH(k.Curve)
if c == nil {
return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
}
if !k.Curve.IsOnCurve(k.X, k.Y) {
return nil, errors.New("ecdsa: invalid public key")
}
return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
}
// Equal reports whether pub and x have the same value.
//
// Two keys are only considered to have the same value if they have the same Curve value.
// Note that for example elliptic.P256() and elliptic.P256().Params() are different
// values, as the latter is a generic not constant time implementation.
func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(*PublicKey)
if !ok {
return false
}
return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) &&
// Standard library Curve implementations are singletons, so this check
// will work for those. Other Curves might be equivalent even if not
// singletons, but there is no definitive way to check for that, and
// better to err on the side of safety.
pub.Curve == xx.Curve
}
// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
PublicKey
D *big.Int
}
// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
// Curve is not supported by crypto/ecdh.
func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
c := curveToECDH(k.Curve)
if c == nil {
return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
}
size := (k.Curve.Params().N.BitLen() + 7) / 8
if k.D.BitLen() > size*8 {
return nil, errors.New("ecdsa: invalid private key")
}
return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
}
func curveToECDH(c elliptic.Curve) ecdh.Curve {
switch c {
case elliptic.P256():
return ecdh.P256()
case elliptic.P384():
return ecdh.P384()
case elliptic.P521():
return ecdh.P521()
default:
return nil
}
}
// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
return &priv.PublicKey
}
// Equal reports whether priv and x have the same value.
//
// See PublicKey.Equal for details on how Curve is compared.
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(*PrivateKey)
if !ok {
return false
}
return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
}
// bigIntEqual reports whether a and b are equal leaking only their bit length
// through timing side-channels.
func bigIntEqual(a, b *big.Int) bool {
return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
}
// Sign signs digest with priv, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface,
// should be the hash function used to digest the message.
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common
// uses can use the SignASN1 function in this package directly.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
return SignASN1(rand, priv, digest)
}
// GenerateKey generates a new ECDSA private key for the specified curve.
//
// Most applications should use [crypto/rand.Reader] as rand. Note that the
// returned key does not depend deterministically on the bytes read from rand,
// and may change between calls and/or between versions.
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
randutil.MaybeReadByte(rand)
if boring.Enabled && rand == boring.RandReader {
x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name)
if err != nil {
return nil, err
}
return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil
}
boring.UnreachableExceptTests()
switch c.Params() {
case elliptic.P224().Params():
return generateNISTEC(p224(), rand)
case elliptic.P256().Params():
return generateNISTEC(p256(), rand)
case elliptic.P384().Params():
return generateNISTEC(p384(), rand)
case elliptic.P521().Params():
return generateNISTEC(p521(), rand)
default:
return generateLegacy(c, rand)
}
}
func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) {
k, Q, err := randomPoint(c, rand)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c.curve
priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q)
if err != nil {
return nil, err
}
return priv, nil
}
// randomPoint returns a random scalar and the corresponding point using the
// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling).
func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) {
k = bigmod.NewNat()
for {
b := make([]byte, c.N.Size())
if _, err = io.ReadFull(rand, b); err != nil {
return
}
// Mask off any excess bits to increase the chance of hitting a value in
// (0, N). These are the most dangerous lines in the package and maybe in
// the library: a single bit of bias in the selection of nonces would likely
// lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
// Just to be safe, assert that this only happens for the one curve that
// doesn't have a round number of bits.
if excess != 0 && c.curve.Params().Name != "P-521" {
panic("ecdsa: internal error: unexpectedly masking off bits")
}
b[0] >>= excess
}
// FIPS 186-4 makes us check k <= N - 2 and then add one.
// Checking 0 < k <= N - 1 is strictly equivalent.
// None of this matters anyway because the chance of selecting
// zero is cryptographically negligible.
if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 {
break
}
if testingOnlyRejectionSamplingLooped != nil {
testingOnlyRejectionSamplingLooped()
}
}
p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N))
return
}
// testingOnlyRejectionSamplingLooped is called when rejection sampling in
// randomPoint rejects a candidate for being higher than the modulus.
var testingOnlyRejectionSamplingLooped func()
// errNoAsm is returned by signAsm and verifyAsm when the assembly
// implementation is not available.
var errNoAsm = errors.New("no assembly implementation available")
// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the ASN.1 encoded signature.
//
// The signature is randomized. Most applications should use [crypto/rand.Reader]
// as rand. Note that the returned signature does not depend deterministically on
// the bytes read from rand, and may change between calls and/or between versions.
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
randutil.MaybeReadByte(rand)
if boring.Enabled && rand == boring.RandReader {
b, err := boringPrivateKey(priv)
if err != nil {
return nil, err
}
return boring.SignMarshalECDSA(b, hash)
}
boring.UnreachableExceptTests()
csprng, err := mixedCSPRNG(rand, priv, hash)
if err != nil {
return nil, err
}
if sig, err := signAsm(priv, csprng, hash); err != errNoAsm {
return sig, err
}
switch priv.Curve.Params() {
case elliptic.P224().Params():
return signNISTEC(p224(), priv, csprng, hash)
case elliptic.P256().Params():
return signNISTEC(p256(), priv, csprng, hash)
case elliptic.P384().Params():
return signNISTEC(p384(), priv, csprng, hash)
case elliptic.P521().Params():
return signNISTEC(p521(), priv, csprng, hash)
default:
return signLegacy(priv, csprng, hash)
}
}
func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
// SEC 1, Version 2.0, Section 4.1.3
k, R, err := randomPoint(c, csprng)
if err != nil {
return nil, err
}
// kInv = k⁻¹
kInv := bigmod.NewNat()
inverse(c, kInv, k)
Rx, err := R.BytesX()
if err != nil {
return nil, err
}
r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
if err != nil {
return nil, err
}
// The spec wants us to retry here, but the chance of hitting this condition
// on a large prime-order group like the NIST curves we support is
// cryptographically negligible. If we hit it, something is awfully wrong.
if r.IsZero() == 1 {
return nil, errors.New("ecdsa: internal error: r is zero")
}
e := bigmod.NewNat()
hashToNat(c, e, hash)
s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
if err != nil {
return nil, err
}
s.Mul(r, c.N)
s.Add(e, c.N)
s.Mul(kInv, c.N)
// Again, the chance of this happening is cryptographically negligible.
if s.IsZero() == 1 {
return nil, errors.New("ecdsa: internal error: s is zero")
}
return encodeSignature(r.Bytes(c.N), s.Bytes(c.N))
}
func encodeSignature(r, s []byte) ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
addASN1IntBytes(b, r)
addASN1IntBytes(b, s)
})
return b.Bytes()
}
// addASN1IntBytes encodes in ASN.1 a positive integer represented as
// a big-endian byte slice with zero or more leading zeroes.
func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
for len(bytes) > 0 && bytes[0] == 0 {
bytes = bytes[1:]
}
if len(bytes) == 0 {
b.SetError(errors.New("invalid integer"))
return
}
b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
if bytes[0]&0x80 != 0 {
c.AddUint8(0)
}
c.AddBytes(bytes)
})
}
// inverse sets kInv to the inverse of k modulo the order of the curve.
func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) {
if c.curve.Params().Name == "P-256" {
kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N))
// Some platforms don't implement P256OrdInverse, and always return an error.
if err == nil {
_, err := kInv.SetBytes(kBytes, c.N)
if err != nil {
panic("ecdsa: internal error: P256OrdInverse produced an invalid value")
}
return
}
}
// Calculate the inverse of s in GF(N) using Fermat's method
// (exponentiation modulo P - 2, per Euler's theorem)
kInv.Exp(k, c.nMinus2, c.N)
}
// hashToNat sets e to the left-most bits of hash, according to
// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3.
func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) {
// ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
// an integer modulo N. This is the absolute worst of all worlds: we still
// have to reduce, because the result might still overflow N, but to take
// the left-most bits for P-521 we have to do a right shift.
if size := c.N.Size(); len(hash) >= size {
hash = hash[:size]
if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
hash = bytes.Clone(hash)
for i := len(hash) - 1; i >= 0; i-- {
hash[i] >>= excess
if i > 0 {
hash[i] |= hash[i-1] << (8 - excess)
}
}
}
}
_, err := e.SetOverflowingBytes(hash, c.N)
if err != nil {
panic("ecdsa: internal error: truncated hash is too long")
}
}
// mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message
// and the private key, to protect the key in case rand fails. This is
// equivalent in security to RFC 6979 deterministic nonce generation, but still
// produces randomized signatures.
func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) {
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
//
// SHA2-512(priv.D || entropy || hash)[:32]
//
// The CSPRNG key is indifferentiable from a random oracle as shown in
// [Coron], the AES-CTR stream is indifferentiable from a random oracle
// under standard cryptographic assumptions (see [Larsson] for examples).
//
// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
// Get 256 bits of entropy from rand.
entropy := make([]byte, 32)
if _, err := io.ReadFull(rand, entropy); err != nil {
return nil, err
}
// Initialize an SHA-512 hash context; digest...
md := sha512.New()
md.Write(priv.D.Bytes()) // the private key,
md.Write(entropy) // the entropy,
md.Write(hash) // and the input hash;
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
// which is an indifferentiable MAC.
// Create an AES-CTR instance to use as a CSPRNG.
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
// Create a CSPRNG that xors a stream of zeros with
// the output of the AES-CTR instance.
const aesIV = "IV for ECDSA CTR"
return &cipher.StreamReader{
R: zeroReader,
S: cipher.NewCTR(block, []byte(aesIV)),
}, nil
}
type zr struct{}
var zeroReader = zr{}
// Read replaces the contents of dst with zeros. It is safe for concurrent use.
func (zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
if boring.Enabled {
key, err := boringPublicKey(pub)
if err != nil {
return false
}
return boring.VerifyECDSA(key, hash, sig)
}
boring.UnreachableExceptTests()
if err := verifyAsm(pub, hash, sig); err != errNoAsm {
return err == nil
}
switch pub.Curve.Params() {
case elliptic.P224().Params():
return verifyNISTEC(p224(), pub, hash, sig)
case elliptic.P256().Params():
return verifyNISTEC(p256(), pub, hash, sig)
case elliptic.P384().Params():
return verifyNISTEC(p384(), pub, hash, sig)
case elliptic.P521().Params():
return verifyNISTEC(p521(), pub, hash, sig)
default:
return verifyLegacy(pub, hash, sig)
}
}
func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool {
rBytes, sBytes, err := parseSignature(sig)
if err != nil {
return false
}
Q, err := c.pointFromAffine(pub.X, pub.Y)
if err != nil {
return false
}
// SEC 1, Version 2.0, Section 4.1.4
r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
if err != nil || r.IsZero() == 1 {
return false
}
s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
if err != nil || s.IsZero() == 1 {
return false
}
e := bigmod.NewNat()
hashToNat(c, e, hash)
// w = s⁻¹
w := bigmod.NewNat()
inverse(c, w, s)
// p₁ = [e * s⁻¹]G
p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N))
if err != nil {
return false
}
// p₂ = [r * s⁻¹]Q
p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N))
if err != nil {
return false
}
// BytesX returns an error for the point at infinity.
Rx, err := p1.Add(p1, p2).BytesX()
if err != nil {
return false
}
v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
if err != nil {
return false
}
return v.Equal(r) == 1
}
func parseSignature(sig []byte) (r, s []byte, err error) {
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(&r) ||
!inner.ReadASN1Integer(&s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1")
}
return r, s, nil
}
type nistCurve[Point nistPoint[Point]] struct {
newPoint func() Point
curve elliptic.Curve
N *bigmod.Modulus
nMinus2 []byte
}
// nistPoint is a generic constraint for the nistec Point types.
type nistPoint[T any] interface {
Bytes() []byte
BytesX() ([]byte, error)
SetBytes([]byte) (T, error)
Add(T, T) T
ScalarMult(T, []byte) (T, error)
ScalarBaseMult([]byte) (T, error)
}
// pointFromAffine is used to convert the PublicKey to a nistec Point.
func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) {
bitSize := curve.curve.Params().BitSize
// Reject values that would not get correctly encoded.
if x.Sign() < 0 || y.Sign() < 0 {
return p, errors.New("negative coordinate")
}
if x.BitLen() > bitSize || y.BitLen() > bitSize {
return p, errors.New("overflowing coordinate")
}
// Encode the coordinates and let SetBytes reject invalid points.
byteLen := (bitSize + 7) / 8
buf := make([]byte, 1+2*byteLen)
buf[0] = 4 // uncompressed point
x.FillBytes(buf[1 : 1+byteLen])
y.FillBytes(buf[1+byteLen : 1+2*byteLen])
return curve.newPoint().SetBytes(buf)
}
// pointToAffine is used to convert a nistec Point to a PublicKey.
func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) {
out := p.Bytes()
if len(out) == 1 && out[0] == 0 {
// This is the encoding of the point at infinity.
return nil, nil, errors.New("ecdsa: public key point is the infinity")
}
byteLen := (curve.curve.Params().BitSize + 7) / 8
x = new(big.Int).SetBytes(out[1 : 1+byteLen])
y = new(big.Int).SetBytes(out[1+byteLen:])
return x, y, nil
}
var p224Once sync.Once
var _p224 *nistCurve[*nistec.P224Point]
func p224() *nistCurve[*nistec.P224Point] {
p224Once.Do(func() {
_p224 = &nistCurve[*nistec.P224Point]{
newPoint: func() *nistec.P224Point { return nistec.NewP224Point() },
}
precomputeParams(_p224, elliptic.P224())
})
return _p224
}
var p256Once sync.Once
var _p256 *nistCurve[*nistec.P256Point]
func p256() *nistCurve[*nistec.P256Point] {
p256Once.Do(func() {
_p256 = &nistCurve[*nistec.P256Point]{
newPoint: func() *nistec.P256Point { return nistec.NewP256Point() },
}
precomputeParams(_p256, elliptic.P256())
})
return _p256
}
var p384Once sync.Once
var _p384 *nistCurve[*nistec.P384Point]
func p384() *nistCurve[*nistec.P384Point] {
p384Once.Do(func() {
_p384 = &nistCurve[*nistec.P384Point]{
newPoint: func() *nistec.P384Point { return nistec.NewP384Point() },
}
precomputeParams(_p384, elliptic.P384())
})
return _p384
}
var p521Once sync.Once
var _p521 *nistCurve[*nistec.P521Point]
func p521() *nistCurve[*nistec.P521Point] {
p521Once.Do(func() {
_p521 = &nistCurve[*nistec.P521Point]{
newPoint: func() *nistec.P521Point { return nistec.NewP521Point() },
}
precomputeParams(_p521, elliptic.P521())
})
return _p521
}
func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) {
params := curve.Params()
c.curve = curve
var err error
c.N, err = bigmod.NewModulusFromBig(params.N)
if err != nil {
panic(err)
}
c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes()
}
|