aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.21/src/crypto/ecdh/ecdh.go
blob: b86f5217878251f9f6515a6600b9f8af8bf8d0bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ecdh implements Elliptic Curve Diffie-Hellman over
// NIST curves and Curve25519.
package ecdh

import (
	"crypto"
	"crypto/internal/boring"
	"crypto/subtle"
	"errors"
	"io"
	"sync"
)

type Curve interface {
	// GenerateKey generates a random PrivateKey.
	//
	// Most applications should use [crypto/rand.Reader] as rand. Note that the
	// returned key does not depend deterministically on the bytes read from rand,
	// and may change between calls and/or between versions.
	GenerateKey(rand io.Reader) (*PrivateKey, error)

	// NewPrivateKey checks that key is valid and returns a PrivateKey.
	//
	// For NIST curves, this follows SEC 1, Version 2.0, Section 2.3.6, which
	// amounts to decoding the bytes as a fixed length big endian integer and
	// checking that the result is lower than the order of the curve. The zero
	// private key is also rejected, as the encoding of the corresponding public
	// key would be irregular.
	//
	// For X25519, this only checks the scalar length.
	NewPrivateKey(key []byte) (*PrivateKey, error)

	// NewPublicKey checks that key is valid and returns a PublicKey.
	//
	// For NIST curves, this decodes an uncompressed point according to SEC 1,
	// Version 2.0, Section 2.3.4. Compressed encodings and the point at
	// infinity are rejected.
	//
	// For X25519, this only checks the u-coordinate length. Adversarially
	// selected public keys can cause ECDH to return an error.
	NewPublicKey(key []byte) (*PublicKey, error)

	// ecdh performs a ECDH exchange and returns the shared secret. It's exposed
	// as the PrivateKey.ECDH method.
	//
	// The private method also allow us to expand the ECDH interface with more
	// methods in the future without breaking backwards compatibility.
	ecdh(local *PrivateKey, remote *PublicKey) ([]byte, error)

	// privateKeyToPublicKey converts a PrivateKey to a PublicKey. It's exposed
	// as the PrivateKey.PublicKey method.
	//
	// This method always succeeds: for X25519, the zero key can't be
	// constructed due to clamping; for NIST curves, it is rejected by
	// NewPrivateKey.
	privateKeyToPublicKey(*PrivateKey) *PublicKey
}

// PublicKey is an ECDH public key, usually a peer's ECDH share sent over the wire.
//
// These keys can be parsed with [crypto/x509.ParsePKIXPublicKey] and encoded
// with [crypto/x509.MarshalPKIXPublicKey]. For NIST curves, they then need to
// be converted with [crypto/ecdsa.PublicKey.ECDH] after parsing.
type PublicKey struct {
	curve     Curve
	publicKey []byte
	boring    *boring.PublicKeyECDH
}

// Bytes returns a copy of the encoding of the public key.
func (k *PublicKey) Bytes() []byte {
	// Copy the public key to a fixed size buffer that can get allocated on the
	// caller's stack after inlining.
	var buf [133]byte
	return append(buf[:0], k.publicKey...)
}

// Equal returns whether x represents the same public key as k.
//
// Note that there can be equivalent public keys with different encodings which
// would return false from this check but behave the same way as inputs to ECDH.
//
// This check is performed in constant time as long as the key types and their
// curve match.
func (k *PublicKey) Equal(x crypto.PublicKey) bool {
	xx, ok := x.(*PublicKey)
	if !ok {
		return false
	}
	return k.curve == xx.curve &&
		subtle.ConstantTimeCompare(k.publicKey, xx.publicKey) == 1
}

func (k *PublicKey) Curve() Curve {
	return k.curve
}

// PrivateKey is an ECDH private key, usually kept secret.
//
// These keys can be parsed with [crypto/x509.ParsePKCS8PrivateKey] and encoded
// with [crypto/x509.MarshalPKCS8PrivateKey]. For NIST curves, they then need to
// be converted with [crypto/ecdsa.PrivateKey.ECDH] after parsing.
type PrivateKey struct {
	curve      Curve
	privateKey []byte
	boring     *boring.PrivateKeyECDH
	// publicKey is set under publicKeyOnce, to allow loading private keys with
	// NewPrivateKey without having to perform a scalar multiplication.
	publicKey     *PublicKey
	publicKeyOnce sync.Once
}

// ECDH performs a ECDH exchange and returns the shared secret. The PrivateKey
// and PublicKey must use the same curve.
//
// For NIST curves, this performs ECDH as specified in SEC 1, Version 2.0,
// Section 3.3.1, and returns the x-coordinate encoded according to SEC 1,
// Version 2.0, Section 2.3.5. The result is never the point at infinity.
//
// For X25519, this performs ECDH as specified in RFC 7748, Section 6.1. If
// the result is the all-zero value, ECDH returns an error.
func (k *PrivateKey) ECDH(remote *PublicKey) ([]byte, error) {
	if k.curve != remote.curve {
		return nil, errors.New("crypto/ecdh: private key and public key curves do not match")
	}
	return k.curve.ecdh(k, remote)
}

// Bytes returns a copy of the encoding of the private key.
func (k *PrivateKey) Bytes() []byte {
	// Copy the private key to a fixed size buffer that can get allocated on the
	// caller's stack after inlining.
	var buf [66]byte
	return append(buf[:0], k.privateKey...)
}

// Equal returns whether x represents the same private key as k.
//
// Note that there can be equivalent private keys with different encodings which
// would return false from this check but behave the same way as inputs to ECDH.
//
// This check is performed in constant time as long as the key types and their
// curve match.
func (k *PrivateKey) Equal(x crypto.PrivateKey) bool {
	xx, ok := x.(*PrivateKey)
	if !ok {
		return false
	}
	return k.curve == xx.curve &&
		subtle.ConstantTimeCompare(k.privateKey, xx.privateKey) == 1
}

func (k *PrivateKey) Curve() Curve {
	return k.curve
}

func (k *PrivateKey) PublicKey() *PublicKey {
	k.publicKeyOnce.Do(func() {
		if k.boring != nil {
			// Because we already checked in NewPrivateKey that the key is valid,
			// there should not be any possible errors from BoringCrypto,
			// so we turn the error into a panic.
			// (We can't return it anyhow.)
			kpub, err := k.boring.PublicKey()
			if err != nil {
				panic("boringcrypto: " + err.Error())
			}
			k.publicKey = &PublicKey{
				curve:     k.curve,
				publicKey: kpub.Bytes(),
				boring:    kpub,
			}
		} else {
			k.publicKey = k.curve.privateKeyToPublicKey(k)
		}
	})
	return k.publicKey
}

// Public implements the implicit interface of all standard library private
// keys. See the docs of crypto.PrivateKey.
func (k *PrivateKey) Public() crypto.PublicKey {
	return k.PublicKey()
}