aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/strconv/ftoaryu.go
blob: f2e74bed1779400c87820a9dbc9c127fdd0a9a4f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package strconv

import (
	"math/bits"
)

// binary to decimal conversion using the Ryū algorithm.
//
// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
//
// Fixed precision formatting is a variant of the original paper's
// algorithm, where a single multiplication by 10^k is required,
// sharing the same rounding guarantees.

// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
	if prec < 0 {
		panic("ryuFtoaFixed32 called with negative prec")
	}
	if prec > 9 {
		panic("ryuFtoaFixed32 called with prec > 9")
	}
	// Zero input.
	if mant == 0 {
		d.nd, d.dp = 0, 0
		return
	}
	// Renormalize to a 25-bit mantissa.
	e2 := exp
	if b := bits.Len32(mant); b < 25 {
		mant <<= uint(25 - b)
		e2 += int(b) - 25
	}
	// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
	// at least prec decimal digits, i.e
	//     mant*(2^e2)*(10^q) >= 10^(prec-1)
	// Because mant >= 2^24, it is enough to choose:
	//     2^(e2+24) >= 10^(-q+prec-1)
	// or q = -mulByLog2Log10(e2+24) + prec - 1
	q := -mulByLog2Log10(e2+24) + prec - 1

	// Now compute mant*(2^e2)*(10^q).
	// Is it an exact computation?
	// Only small positive powers of 10 are exact (5^28 has 66 bits).
	exact := q <= 27 && q >= 0

	di, dexp2, d0 := mult64bitPow10(mant, e2, q)
	if dexp2 >= 0 {
		panic("not enough significant bits after mult64bitPow10")
	}
	// As a special case, computation might still be exact, if exponent
	// was negative and if it amounts to computing an exact division.
	// In that case, we ignore all lower bits.
	// Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
	if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
		exact = true
		d0 = true
	}
	// Remove extra lower bits and keep rounding info.
	extra := uint(-dexp2)
	extraMask := uint32(1<<extra - 1)

	di, dfrac := di>>extra, di&extraMask
	roundUp := false
	if exact {
		// If we computed an exact product, d + 1/2
		// should round to d+1 if 'd' is odd.
		roundUp = dfrac > 1<<(extra-1) ||
			(dfrac == 1<<(extra-1) && !d0) ||
			(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
	} else {
		// otherwise, d+1/2 always rounds up because
		// we truncated below.
		roundUp = dfrac>>(extra-1) == 1
	}
	if dfrac != 0 {
		d0 = false
	}
	// Proceed to the requested number of digits
	formatDecimal(d, uint64(di), !d0, roundUp, prec)
	// Adjust exponent
	d.dp -= q
}

// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
	if prec > 18 {
		panic("ryuFtoaFixed64 called with prec > 18")
	}
	// Zero input.
	if mant == 0 {
		d.nd, d.dp = 0, 0
		return
	}
	// Renormalize to a 55-bit mantissa.
	e2 := exp
	if b := bits.Len64(mant); b < 55 {
		mant = mant << uint(55-b)
		e2 += int(b) - 55
	}
	// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
	// at least prec decimal digits, i.e
	//     mant*(2^e2)*(10^q) >= 10^(prec-1)
	// Because mant >= 2^54, it is enough to choose:
	//     2^(e2+54) >= 10^(-q+prec-1)
	// or q = -mulByLog2Log10(e2+54) + prec - 1
	//
	// The minimal required exponent is -mulByLog2Log10(1025)+18 = -291
	// The maximal required exponent is mulByLog2Log10(1074)+18 = 342
	q := -mulByLog2Log10(e2+54) + prec - 1

	// Now compute mant*(2^e2)*(10^q).
	// Is it an exact computation?
	// Only small positive powers of 10 are exact (5^55 has 128 bits).
	exact := q <= 55 && q >= 0

	di, dexp2, d0 := mult128bitPow10(mant, e2, q)
	if dexp2 >= 0 {
		panic("not enough significant bits after mult128bitPow10")
	}
	// As a special case, computation might still be exact, if exponent
	// was negative and if it amounts to computing an exact division.
	// In that case, we ignore all lower bits.
	// Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
	if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
		exact = true
		d0 = true
	}
	// Remove extra lower bits and keep rounding info.
	extra := uint(-dexp2)
	extraMask := uint64(1<<extra - 1)

	di, dfrac := di>>extra, di&extraMask
	roundUp := false
	if exact {
		// If we computed an exact product, d + 1/2
		// should round to d+1 if 'd' is odd.
		roundUp = dfrac > 1<<(extra-1) ||
			(dfrac == 1<<(extra-1) && !d0) ||
			(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
	} else {
		// otherwise, d+1/2 always rounds up because
		// we truncated below.
		roundUp = dfrac>>(extra-1) == 1
	}
	if dfrac != 0 {
		d0 = false
	}
	// Proceed to the requested number of digits
	formatDecimal(d, di, !d0, roundUp, prec)
	// Adjust exponent
	d.dp -= q
}

var uint64pow10 = [...]uint64{
	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
}

// formatDecimal fills d with at most prec decimal digits
// of mantissa m. The boolean trunc indicates whether m
// is truncated compared to the original number being formatted.
func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
	max := uint64pow10[prec]
	trimmed := 0
	for m >= max {
		a, b := m/10, m%10
		m = a
		trimmed++
		if b > 5 {
			roundUp = true
		} else if b < 5 {
			roundUp = false
		} else { // b == 5
			// round up if there are trailing digits,
			// or if the new value of m is odd (round-to-even convention)
			roundUp = trunc || m&1 == 1
		}
		if b != 0 {
			trunc = true
		}
	}
	if roundUp {
		m++
	}
	if m >= max {
		// Happens if di was originally 99999....xx
		m /= 10
		trimmed++
	}
	// render digits (similar to formatBits)
	n := uint(prec)
	d.nd = int(prec)
	v := m
	for v >= 100 {
		var v1, v2 uint64
		if v>>32 == 0 {
			v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100)
		} else {
			v1, v2 = v/100, v%100
		}
		n -= 2
		d.d[n+1] = smallsString[2*v2+1]
		d.d[n+0] = smallsString[2*v2+0]
		v = v1
	}
	if v > 0 {
		n--
		d.d[n] = smallsString[2*v+1]
	}
	if v >= 10 {
		n--
		d.d[n] = smallsString[2*v]
	}
	for d.d[d.nd-1] == '0' {
		d.nd--
		trimmed++
	}
	d.dp = d.nd + trimmed
}

// ryuFtoaShortest formats mant*2^exp with prec decimal digits.
func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
	if mant == 0 {
		d.nd, d.dp = 0, 0
		return
	}
	// If input is an exact integer with fewer bits than the mantissa,
	// the previous and next integer are not admissible representations.
	if exp <= 0 && bits.TrailingZeros64(mant) >= -exp {
		mant >>= uint(-exp)
		ryuDigits(d, mant, mant, mant, true, false)
		return
	}
	ml, mc, mu, e2 := computeBounds(mant, exp, flt)
	if e2 == 0 {
		ryuDigits(d, ml, mc, mu, true, false)
		return
	}
	// Find 10^q *larger* than 2^-e2
	q := mulByLog2Log10(-e2) + 1

	// We are going to multiply by 10^q using 128-bit arithmetic.
	// The exponent is the same for all 3 numbers.
	var dl, dc, du uint64
	var dl0, dc0, du0 bool
	if flt == &float32info {
		var dl32, dc32, du32 uint32
		dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q)
		dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q)
		du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q)
		dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32)
	} else {
		dl, _, dl0 = mult128bitPow10(ml, e2, q)
		dc, _, dc0 = mult128bitPow10(mc, e2, q)
		du, e2, du0 = mult128bitPow10(mu, e2, q)
	}
	if e2 >= 0 {
		panic("not enough significant bits after mult128bitPow10")
	}
	// Is it an exact computation?
	if q > 55 {
		// Large positive powers of ten are not exact
		dl0, dc0, du0 = false, false, false
	}
	if q < 0 && q >= -24 {
		// Division by a power of ten may be exact.
		// (note that 5^25 is a 59-bit number so division by 5^25 is never exact).
		if divisibleByPower5(ml, -q) {
			dl0 = true
		}
		if divisibleByPower5(mc, -q) {
			dc0 = true
		}
		if divisibleByPower5(mu, -q) {
			du0 = true
		}
	}
	// Express the results (dl, dc, du)*2^e2 as integers.
	// Extra bits must be removed and rounding hints computed.
	extra := uint(-e2)
	extraMask := uint64(1<<extra - 1)
	// Now compute the floored, integral base 10 mantissas.
	dl, fracl := dl>>extra, dl&extraMask
	dc, fracc := dc>>extra, dc&extraMask
	du, fracu := du>>extra, du&extraMask
	// Is it allowed to use 'du' as a result?
	// It is always allowed when it is truncated, but also
	// if it is exact and the original binary mantissa is even
	// When disallowed, we can subtract 1.
	uok := !du0 || fracu > 0
	if du0 && fracu == 0 {
		uok = mant&1 == 0
	}
	if !uok {
		du--
	}
	// Is 'dc' the correctly rounded base 10 mantissa?
	// The correct rounding might be dc+1
	cup := false // don't round up.
	if dc0 {
		// If we computed an exact product, the half integer
		// should round to next (even) integer if 'dc' is odd.
		cup = fracc > 1<<(extra-1) ||
			(fracc == 1<<(extra-1) && dc&1 == 1)
	} else {
		// otherwise, the result is a lower truncation of the ideal
		// result.
		cup = fracc>>(extra-1) == 1
	}
	// Is 'dl' an allowed representation?
	// Only if it is an exact value, and if the original binary mantissa
	// was even.
	lok := dl0 && fracl == 0 && (mant&1 == 0)
	if !lok {
		dl++
	}
	// We need to remember whether the trimmed digits of 'dc' are zero.
	c0 := dc0 && fracc == 0
	// render digits
	ryuDigits(d, dl, dc, du, c0, cup)
	d.dp -= q
}

// mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in
// the range -1600 <= x && x <= +1600.
//
// The range restriction lets us work in faster integer arithmetic instead of
// slower floating point arithmetic. Correctness is verified by unit tests.
func mulByLog2Log10(x int) int {
	// log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18
	return (x * 78913) >> 18
}

// mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in
// the range -500 <= x && x <= +500.
//
// The range restriction lets us work in faster integer arithmetic instead of
// slower floating point arithmetic. Correctness is verified by unit tests.
func mulByLog10Log2(x int) int {
	// log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
	return (x * 108853) >> 15
}

// computeBounds returns a floating-point vector (l, c, u)×2^e2
// where the mantissas are 55-bit (or 26-bit) integers, describing the interval
// represented by the input float64 or float32.
func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) {
	if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) {
		// regular case (or denormals)
		lower, central, upper = 2*mant-1, 2*mant, 2*mant+1
		e2 = exp - 1
		return
	} else {
		// border of an exponent
		lower, central, upper = 4*mant-1, 4*mant, 4*mant+2
		e2 = exp - 2
		return
	}
}

func ryuDigits(d *decimalSlice, lower, central, upper uint64,
	c0, cup bool) {
	lhi, llo := divmod1e9(lower)
	chi, clo := divmod1e9(central)
	uhi, ulo := divmod1e9(upper)
	if uhi == 0 {
		// only low digits (for denormals)
		ryuDigits32(d, llo, clo, ulo, c0, cup, 8)
	} else if lhi < uhi {
		// truncate 9 digits at once.
		if llo != 0 {
			lhi++
		}
		c0 = c0 && clo == 0
		cup = (clo > 5e8) || (clo == 5e8 && cup)
		ryuDigits32(d, lhi, chi, uhi, c0, cup, 8)
		d.dp += 9
	} else {
		d.nd = 0
		// emit high part
		n := uint(9)
		for v := chi; v > 0; {
			v1, v2 := v/10, v%10
			v = v1
			n--
			d.d[n] = byte(v2 + '0')
		}
		d.d = d.d[n:]
		d.nd = int(9 - n)
		// emit low part
		ryuDigits32(d, llo, clo, ulo,
			c0, cup, d.nd+8)
	}
	// trim trailing zeros
	for d.nd > 0 && d.d[d.nd-1] == '0' {
		d.nd--
	}
	// trim initial zeros
	for d.nd > 0 && d.d[0] == '0' {
		d.nd--
		d.dp--
		d.d = d.d[1:]
	}
}

// ryuDigits32 emits decimal digits for a number less than 1e9.
func ryuDigits32(d *decimalSlice, lower, central, upper uint32,
	c0, cup bool, endindex int) {
	if upper == 0 {
		d.dp = endindex + 1
		return
	}
	trimmed := 0
	// Remember last trimmed digit to check for round-up.
	// c0 will be used to remember zeroness of following digits.
	cNextDigit := 0
	for upper > 0 {
		// Repeatedly compute:
		// l = Ceil(lower / 10^k)
		// c = Round(central / 10^k)
		// u = Floor(upper / 10^k)
		// and stop when c goes out of the (l, u) interval.
		l := (lower + 9) / 10
		c, cdigit := central/10, central%10
		u := upper / 10
		if l > u {
			// don't trim the last digit as it is forbidden to go below l
			// other, trim and exit now.
			break
		}
		// Check that we didn't cross the lower boundary.
		// The case where l < u but c == l-1 is essentially impossible,
		// but may happen if:
		//    lower   = ..11
		//    central = ..19
		//    upper   = ..31
		// and means that 'central' is very close but less than
		// an integer ending with many zeros, and usually
		// the "round-up" logic hides the problem.
		if l == c+1 && c < u {
			c++
			cdigit = 0
			cup = false
		}
		trimmed++
		// Remember trimmed digits of c
		c0 = c0 && cNextDigit == 0
		cNextDigit = int(cdigit)
		lower, central, upper = l, c, u
	}
	// should we round up?
	if trimmed > 0 {
		cup = cNextDigit > 5 ||
			(cNextDigit == 5 && !c0) ||
			(cNextDigit == 5 && c0 && central&1 == 1)
	}
	if central < upper && cup {
		central++
	}
	// We know where the number ends, fill directly
	endindex -= trimmed
	v := central
	n := endindex
	for n > d.nd {
		v1, v2 := v/100, v%100
		d.d[n] = smallsString[2*v2+1]
		d.d[n-1] = smallsString[2*v2+0]
		n -= 2
		v = v1
	}
	if n == d.nd {
		d.d[n] = byte(v + '0')
	}
	d.nd = endindex + 1
	d.dp = d.nd + trimmed
}

// mult64bitPow10 takes a floating-point input with a 25-bit
// mantissa and multiplies it with 10^q. The resulting mantissa
// is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables.
// It is typically 31 or 32-bit wide.
// The returned boolean is true if all trimmed bits were zero.
//
// That is:
//     m*2^e2 * round(10^q) = resM * 2^resE + ε
//     exact = ε == 0
func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) {
	if q == 0 {
		// P == 1<<63
		return m << 6, e2 - 6, true
	}
	if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
		// This never happens due to the range of float32/float64 exponent
		panic("mult64bitPow10: power of 10 is out of range")
	}
	pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1]
	if q < 0 {
		// Inverse powers of ten must be rounded up.
		pow += 1
	}
	hi, lo := bits.Mul64(uint64(m), pow)
	e2 += mulByLog10Log2(q) - 63 + 57
	return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0
}

// mult128bitPow10 takes a floating-point input with a 55-bit
// mantissa and multiplies it with 10^q. The resulting mantissa
// is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables.
// It is typically 63 or 64-bit wide.
// The returned boolean is true is all trimmed bits were zero.
//
// That is:
//     m*2^e2 * round(10^q) = resM * 2^resE + ε
//     exact = ε == 0
func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
	if q == 0 {
		// P == 1<<127
		return m << 8, e2 - 8, true
	}
	if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
		// This never happens due to the range of float32/float64 exponent
		panic("mult128bitPow10: power of 10 is out of range")
	}
	pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10]
	if q < 0 {
		// Inverse powers of ten must be rounded up.
		pow[0] += 1
	}
	e2 += mulByLog10Log2(q) - 127 + 119

	// long multiplication
	l1, l0 := bits.Mul64(m, pow[0])
	h1, h0 := bits.Mul64(m, pow[1])
	mid, carry := bits.Add64(l1, h0, 0)
	h1 += carry
	return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0
}

func divisibleByPower5(m uint64, k int) bool {
	if m == 0 {
		return true
	}
	for i := 0; i < k; i++ {
		if m%5 != 0 {
			return false
		}
		m /= 5
	}
	return true
}

// divmod1e9 computes quotient and remainder of division by 1e9,
// avoiding runtime uint64 division on 32-bit platforms.
func divmod1e9(x uint64) (uint32, uint32) {
	if !host32bit {
		return uint32(x / 1e9), uint32(x % 1e9)
	}
	// Use the same sequence of operations as the amd64 compiler.
	hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9
	q := hi >> 28
	return uint32(q), uint32(x - q*1e9)
}