1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
// This file contains the implementation of Go select statements.
import (
"internal/abi"
"runtime/internal/atomic"
"unsafe"
)
const debugSelect = false
// Select case descriptor.
// Known to compiler.
// Changes here must also be made in src/cmd/compile/internal/walk/select.go's scasetype.
type scase struct {
c *hchan // chan
elem unsafe.Pointer // data element
}
var (
chansendpc = abi.FuncPCABIInternal(chansend)
chanrecvpc = abi.FuncPCABIInternal(chanrecv)
)
func selectsetpc(pc *uintptr) {
*pc = getcallerpc()
}
func sellock(scases []scase, lockorder []uint16) {
var c *hchan
for _, o := range lockorder {
c0 := scases[o].c
if c0 != c {
c = c0
lock(&c.lock)
}
}
}
func selunlock(scases []scase, lockorder []uint16) {
// We must be very careful here to not touch sel after we have unlocked
// the last lock, because sel can be freed right after the last unlock.
// Consider the following situation.
// First M calls runtime·park() in runtime·selectgo() passing the sel.
// Once runtime·park() has unlocked the last lock, another M makes
// the G that calls select runnable again and schedules it for execution.
// When the G runs on another M, it locks all the locks and frees sel.
// Now if the first M touches sel, it will access freed memory.
for i := len(lockorder) - 1; i >= 0; i-- {
c := scases[lockorder[i]].c
if i > 0 && c == scases[lockorder[i-1]].c {
continue // will unlock it on the next iteration
}
unlock(&c.lock)
}
}
func selparkcommit(gp *g, _ unsafe.Pointer) bool {
// There are unlocked sudogs that point into gp's stack. Stack
// copying must lock the channels of those sudogs.
// Set activeStackChans here instead of before we try parking
// because we could self-deadlock in stack growth on a
// channel lock.
gp.activeStackChans = true
// Mark that it's safe for stack shrinking to occur now,
// because any thread acquiring this G's stack for shrinking
// is guaranteed to observe activeStackChans after this store.
atomic.Store8(&gp.parkingOnChan, 0)
// Make sure we unlock after setting activeStackChans and
// unsetting parkingOnChan. The moment we unlock any of the
// channel locks we risk gp getting readied by a channel operation
// and so gp could continue running before everything before the
// unlock is visible (even to gp itself).
// This must not access gp's stack (see gopark). In
// particular, it must not access the *hselect. That's okay,
// because by the time this is called, gp.waiting has all
// channels in lock order.
var lastc *hchan
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
if sg.c != lastc && lastc != nil {
// As soon as we unlock the channel, fields in
// any sudog with that channel may change,
// including c and waitlink. Since multiple
// sudogs may have the same channel, we unlock
// only after we've passed the last instance
// of a channel.
unlock(&lastc.lock)
}
lastc = sg.c
}
if lastc != nil {
unlock(&lastc.lock)
}
return true
}
func block() {
gopark(nil, nil, waitReasonSelectNoCases, traceEvGoStop, 1) // forever
}
// selectgo implements the select statement.
//
// cas0 points to an array of type [ncases]scase, and order0 points to
// an array of type [2*ncases]uint16 where ncases must be <= 65536.
// Both reside on the goroutine's stack (regardless of any escaping in
// selectgo).
//
// For race detector builds, pc0 points to an array of type
// [ncases]uintptr (also on the stack); for other builds, it's set to
// nil.
//
// selectgo returns the index of the chosen scase, which matches the
// ordinal position of its respective select{recv,send,default} call.
// Also, if the chosen scase was a receive operation, it reports whether
// a value was received.
func selectgo(cas0 *scase, order0 *uint16, pc0 *uintptr, nsends, nrecvs int, block bool) (int, bool) {
if debugSelect {
print("select: cas0=", cas0, "\n")
}
// NOTE: In order to maintain a lean stack size, the number of scases
// is capped at 65536.
cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))
ncases := nsends + nrecvs
scases := cas1[:ncases:ncases]
pollorder := order1[:ncases:ncases]
lockorder := order1[ncases:][:ncases:ncases]
// NOTE: pollorder/lockorder's underlying array was not zero-initialized by compiler.
// Even when raceenabled is true, there might be select
// statements in packages compiled without -race (e.g.,
// ensureSigM in runtime/signal_unix.go).
var pcs []uintptr
if raceenabled && pc0 != nil {
pc1 := (*[1 << 16]uintptr)(unsafe.Pointer(pc0))
pcs = pc1[:ncases:ncases]
}
casePC := func(casi int) uintptr {
if pcs == nil {
return 0
}
return pcs[casi]
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}
// The compiler rewrites selects that statically have
// only 0 or 1 cases plus default into simpler constructs.
// The only way we can end up with such small sel.ncase
// values here is for a larger select in which most channels
// have been nilled out. The general code handles those
// cases correctly, and they are rare enough not to bother
// optimizing (and needing to test).
// generate permuted order
norder := 0
for i := range scases {
cas := &scases[i]
// Omit cases without channels from the poll and lock orders.
if cas.c == nil {
cas.elem = nil // allow GC
continue
}
j := fastrandn(uint32(norder + 1))
pollorder[norder] = pollorder[j]
pollorder[j] = uint16(i)
norder++
}
pollorder = pollorder[:norder]
lockorder = lockorder[:norder]
// sort the cases by Hchan address to get the locking order.
// simple heap sort, to guarantee n log n time and constant stack footprint.
for i := range lockorder {
j := i
// Start with the pollorder to permute cases on the same channel.
c := scases[pollorder[i]].c
for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() {
k := (j - 1) / 2
lockorder[j] = lockorder[k]
j = k
}
lockorder[j] = pollorder[i]
}
for i := len(lockorder) - 1; i >= 0; i-- {
o := lockorder[i]
c := scases[o].c
lockorder[i] = lockorder[0]
j := 0
for {
k := j*2 + 1
if k >= i {
break
}
if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() {
k++
}
if c.sortkey() < scases[lockorder[k]].c.sortkey() {
lockorder[j] = lockorder[k]
j = k
continue
}
break
}
lockorder[j] = o
}
if debugSelect {
for i := 0; i+1 < len(lockorder); i++ {
if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() {
print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n")
throw("select: broken sort")
}
}
}
// lock all the channels involved in the select
sellock(scases, lockorder)
var (
gp *g
sg *sudog
c *hchan
k *scase
sglist *sudog
sgnext *sudog
qp unsafe.Pointer
nextp **sudog
)
// pass 1 - look for something already waiting
var casi int
var cas *scase
var caseSuccess bool
var caseReleaseTime int64 = -1
var recvOK bool
for _, casei := range pollorder {
casi = int(casei)
cas = &scases[casi]
c = cas.c
if casi >= nsends {
sg = c.sendq.dequeue()
if sg != nil {
goto recv
}
if c.qcount > 0 {
goto bufrecv
}
if c.closed != 0 {
goto rclose
}
} else {
if raceenabled {
racereadpc(c.raceaddr(), casePC(casi), chansendpc)
}
if c.closed != 0 {
goto sclose
}
sg = c.recvq.dequeue()
if sg != nil {
goto send
}
if c.qcount < c.dataqsiz {
goto bufsend
}
}
}
if !block {
selunlock(scases, lockorder)
casi = -1
goto retc
}
// pass 2 - enqueue on all chans
gp = getg()
if gp.waiting != nil {
throw("gp.waiting != nil")
}
nextp = &gp.waiting
for _, casei := range lockorder {
casi = int(casei)
cas = &scases[casi]
c = cas.c
sg := acquireSudog()
sg.g = gp
sg.isSelect = true
// No stack splits between assigning elem and enqueuing
// sg on gp.waiting where copystack can find it.
sg.elem = cas.elem
sg.releasetime = 0
if t0 != 0 {
sg.releasetime = -1
}
sg.c = c
// Construct waiting list in lock order.
*nextp = sg
nextp = &sg.waitlink
if casi < nsends {
c.sendq.enqueue(sg)
} else {
c.recvq.enqueue(sg)
}
}
// wait for someone to wake us up
gp.param = nil
// Signal to anyone trying to shrink our stack that we're about
// to park on a channel. The window between when this G's status
// changes and when we set gp.activeStackChans is not safe for
// stack shrinking.
atomic.Store8(&gp.parkingOnChan, 1)
gopark(selparkcommit, nil, waitReasonSelect, traceEvGoBlockSelect, 1)
gp.activeStackChans = false
sellock(scases, lockorder)
gp.selectDone = 0
sg = (*sudog)(gp.param)
gp.param = nil
// pass 3 - dequeue from unsuccessful chans
// otherwise they stack up on quiet channels
// record the successful case, if any.
// We singly-linked up the SudoGs in lock order.
casi = -1
cas = nil
caseSuccess = false
sglist = gp.waiting
// Clear all elem before unlinking from gp.waiting.
for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink {
sg1.isSelect = false
sg1.elem = nil
sg1.c = nil
}
gp.waiting = nil
for _, casei := range lockorder {
k = &scases[casei]
if sg == sglist {
// sg has already been dequeued by the G that woke us up.
casi = int(casei)
cas = k
caseSuccess = sglist.success
if sglist.releasetime > 0 {
caseReleaseTime = sglist.releasetime
}
} else {
c = k.c
if int(casei) < nsends {
c.sendq.dequeueSudoG(sglist)
} else {
c.recvq.dequeueSudoG(sglist)
}
}
sgnext = sglist.waitlink
sglist.waitlink = nil
releaseSudog(sglist)
sglist = sgnext
}
if cas == nil {
throw("selectgo: bad wakeup")
}
c = cas.c
if debugSelect {
print("wait-return: cas0=", cas0, " c=", c, " cas=", cas, " send=", casi < nsends, "\n")
}
if casi < nsends {
if !caseSuccess {
goto sclose
}
} else {
recvOK = caseSuccess
}
if raceenabled {
if casi < nsends {
raceReadObjectPC(c.elemtype, cas.elem, casePC(casi), chansendpc)
} else if cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, casePC(casi), chanrecvpc)
}
}
if msanenabled {
if casi < nsends {
msanread(cas.elem, c.elemtype.size)
} else if cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
}
}
if asanenabled {
if casi < nsends {
asanread(cas.elem, c.elemtype.size)
} else if cas.elem != nil {
asanwrite(cas.elem, c.elemtype.size)
}
}
selunlock(scases, lockorder)
goto retc
bufrecv:
// can receive from buffer
if raceenabled {
if cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, casePC(casi), chanrecvpc)
}
racenotify(c, c.recvx, nil)
}
if msanenabled && cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
}
if asanenabled && cas.elem != nil {
asanwrite(cas.elem, c.elemtype.size)
}
recvOK = true
qp = chanbuf(c, c.recvx)
if cas.elem != nil {
typedmemmove(c.elemtype, cas.elem, qp)
}
typedmemclr(c.elemtype, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
selunlock(scases, lockorder)
goto retc
bufsend:
// can send to buffer
if raceenabled {
racenotify(c, c.sendx, nil)
raceReadObjectPC(c.elemtype, cas.elem, casePC(casi), chansendpc)
}
if msanenabled {
msanread(cas.elem, c.elemtype.size)
}
if asanenabled {
asanread(cas.elem, c.elemtype.size)
}
typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
selunlock(scases, lockorder)
goto retc
recv:
// can receive from sleeping sender (sg)
recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
if debugSelect {
print("syncrecv: cas0=", cas0, " c=", c, "\n")
}
recvOK = true
goto retc
rclose:
// read at end of closed channel
selunlock(scases, lockorder)
recvOK = false
if cas.elem != nil {
typedmemclr(c.elemtype, cas.elem)
}
if raceenabled {
raceacquire(c.raceaddr())
}
goto retc
send:
// can send to a sleeping receiver (sg)
if raceenabled {
raceReadObjectPC(c.elemtype, cas.elem, casePC(casi), chansendpc)
}
if msanenabled {
msanread(cas.elem, c.elemtype.size)
}
if asanenabled {
asanread(cas.elem, c.elemtype.size)
}
send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
if debugSelect {
print("syncsend: cas0=", cas0, " c=", c, "\n")
}
goto retc
retc:
if caseReleaseTime > 0 {
blockevent(caseReleaseTime-t0, 1)
}
return casi, recvOK
sclose:
// send on closed channel
selunlock(scases, lockorder)
panic(plainError("send on closed channel"))
}
func (c *hchan) sortkey() uintptr {
return uintptr(unsafe.Pointer(c))
}
// A runtimeSelect is a single case passed to rselect.
// This must match ../reflect/value.go:/runtimeSelect
type runtimeSelect struct {
dir selectDir
typ unsafe.Pointer // channel type (not used here)
ch *hchan // channel
val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
}
// These values must match ../reflect/value.go:/SelectDir.
type selectDir int
const (
_ selectDir = iota
selectSend // case Chan <- Send
selectRecv // case <-Chan:
selectDefault // default
)
//go:linkname reflect_rselect reflect.rselect
func reflect_rselect(cases []runtimeSelect) (int, bool) {
if len(cases) == 0 {
block()
}
sel := make([]scase, len(cases))
orig := make([]int, len(cases))
nsends, nrecvs := 0, 0
dflt := -1
for i, rc := range cases {
var j int
switch rc.dir {
case selectDefault:
dflt = i
continue
case selectSend:
j = nsends
nsends++
case selectRecv:
nrecvs++
j = len(cases) - nrecvs
}
sel[j] = scase{c: rc.ch, elem: rc.val}
orig[j] = i
}
// Only a default case.
if nsends+nrecvs == 0 {
return dflt, false
}
// Compact sel and orig if necessary.
if nsends+nrecvs < len(cases) {
copy(sel[nsends:], sel[len(cases)-nrecvs:])
copy(orig[nsends:], orig[len(cases)-nrecvs:])
}
order := make([]uint16, 2*(nsends+nrecvs))
var pc0 *uintptr
if raceenabled {
pcs := make([]uintptr, nsends+nrecvs)
for i := range pcs {
selectsetpc(&pcs[i])
}
pc0 = &pcs[0]
}
chosen, recvOK := selectgo(&sel[0], &order[0], pc0, nsends, nrecvs, dflt == -1)
// Translate chosen back to caller's ordering.
if chosen < 0 {
chosen = dflt
} else {
chosen = orig[chosen]
}
return chosen, recvOK
}
func (q *waitq) dequeueSudoG(sgp *sudog) {
x := sgp.prev
y := sgp.next
if x != nil {
if y != nil {
// middle of queue
x.next = y
y.prev = x
sgp.next = nil
sgp.prev = nil
return
}
// end of queue
x.next = nil
q.last = x
sgp.prev = nil
return
}
if y != nil {
// start of queue
y.prev = nil
q.first = y
sgp.next = nil
return
}
// x==y==nil. Either sgp is the only element in the queue,
// or it has already been removed. Use q.first to disambiguate.
if q.first == sgp {
q.first = nil
q.last = nil
}
}
|