1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"runtime/internal/atomic"
"unsafe"
)
const itabInitSize = 512
var (
itabLock mutex // lock for accessing itab table
itabTable = &itabTableInit // pointer to current table
itabTableInit = itabTableType{size: itabInitSize} // starter table
)
// Note: change the formula in the mallocgc call in itabAdd if you change these fields.
type itabTableType struct {
size uintptr // length of entries array. Always a power of 2.
count uintptr // current number of filled entries.
entries [itabInitSize]*itab // really [size] large
}
func itabHashFunc(inter *interfacetype, typ *_type) uintptr {
// compiler has provided some good hash codes for us.
return uintptr(inter.typ.hash ^ typ.hash)
}
func getitab(inter *interfacetype, typ *_type, canfail bool) *itab {
if len(inter.mhdr) == 0 {
throw("internal error - misuse of itab")
}
// easy case
if typ.tflag&tflagUncommon == 0 {
if canfail {
return nil
}
name := inter.typ.nameOff(inter.mhdr[0].name)
panic(&TypeAssertionError{nil, typ, &inter.typ, name.name()})
}
var m *itab
// First, look in the existing table to see if we can find the itab we need.
// This is by far the most common case, so do it without locks.
// Use atomic to ensure we see any previous writes done by the thread
// that updates the itabTable field (with atomic.Storep in itabAdd).
t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
if m = t.find(inter, typ); m != nil {
goto finish
}
// Not found. Grab the lock and try again.
lock(&itabLock)
if m = itabTable.find(inter, typ); m != nil {
unlock(&itabLock)
goto finish
}
// Entry doesn't exist yet. Make a new entry & add it.
m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*goarch.PtrSize, 0, &memstats.other_sys))
m.inter = inter
m._type = typ
// The hash is used in type switches. However, compiler statically generates itab's
// for all interface/type pairs used in switches (which are added to itabTable
// in itabsinit). The dynamically-generated itab's never participate in type switches,
// and thus the hash is irrelevant.
// Note: m.hash is _not_ the hash used for the runtime itabTable hash table.
m.hash = 0
m.init()
itabAdd(m)
unlock(&itabLock)
finish:
if m.fun[0] != 0 {
return m
}
if canfail {
return nil
}
// this can only happen if the conversion
// was already done once using the , ok form
// and we have a cached negative result.
// The cached result doesn't record which
// interface function was missing, so initialize
// the itab again to get the missing function name.
panic(&TypeAssertionError{concrete: typ, asserted: &inter.typ, missingMethod: m.init()})
}
// find finds the given interface/type pair in t.
// Returns nil if the given interface/type pair isn't present.
func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab {
// Implemented using quadratic probing.
// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k.
// We're guaranteed to hit all table entries using this probe sequence.
mask := t.size - 1
h := itabHashFunc(inter, typ) & mask
for i := uintptr(1); ; i++ {
p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize))
// Use atomic read here so if we see m != nil, we also see
// the initializations of the fields of m.
// m := *p
m := (*itab)(atomic.Loadp(unsafe.Pointer(p)))
if m == nil {
return nil
}
if m.inter == inter && m._type == typ {
return m
}
h += i
h &= mask
}
}
// itabAdd adds the given itab to the itab hash table.
// itabLock must be held.
func itabAdd(m *itab) {
// Bugs can lead to calling this while mallocing is set,
// typically because this is called while panicing.
// Crash reliably, rather than only when we need to grow
// the hash table.
if getg().m.mallocing != 0 {
throw("malloc deadlock")
}
t := itabTable
if t.count >= 3*(t.size/4) { // 75% load factor
// Grow hash table.
// t2 = new(itabTableType) + some additional entries
// We lie and tell malloc we want pointer-free memory because
// all the pointed-to values are not in the heap.
t2 := (*itabTableType)(mallocgc((2+2*t.size)*goarch.PtrSize, nil, true))
t2.size = t.size * 2
// Copy over entries.
// Note: while copying, other threads may look for an itab and
// fail to find it. That's ok, they will then try to get the itab lock
// and as a consequence wait until this copying is complete.
iterate_itabs(t2.add)
if t2.count != t.count {
throw("mismatched count during itab table copy")
}
// Publish new hash table. Use an atomic write: see comment in getitab.
atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
// Adopt the new table as our own.
t = itabTable
// Note: the old table can be GC'ed here.
}
t.add(m)
}
// add adds the given itab to itab table t.
// itabLock must be held.
func (t *itabTableType) add(m *itab) {
// See comment in find about the probe sequence.
// Insert new itab in the first empty spot in the probe sequence.
mask := t.size - 1
h := itabHashFunc(m.inter, m._type) & mask
for i := uintptr(1); ; i++ {
p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize))
m2 := *p
if m2 == m {
// A given itab may be used in more than one module
// and thanks to the way global symbol resolution works, the
// pointed-to itab may already have been inserted into the
// global 'hash'.
return
}
if m2 == nil {
// Use atomic write here so if a reader sees m, it also
// sees the correctly initialized fields of m.
// NoWB is ok because m is not in heap memory.
// *p = m
atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m))
t.count++
return
}
h += i
h &= mask
}
}
// init fills in the m.fun array with all the code pointers for
// the m.inter/m._type pair. If the type does not implement the interface,
// it sets m.fun[0] to 0 and returns the name of an interface function that is missing.
// It is ok to call this multiple times on the same m, even concurrently.
func (m *itab) init() string {
inter := m.inter
typ := m._type
x := typ.uncommon()
// both inter and typ have method sorted by name,
// and interface names are unique,
// so can iterate over both in lock step;
// the loop is O(ni+nt) not O(ni*nt).
ni := len(inter.mhdr)
nt := int(x.mcount)
xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt]
j := 0
methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.fun[0]))[:ni:ni]
var fun0 unsafe.Pointer
imethods:
for k := 0; k < ni; k++ {
i := &inter.mhdr[k]
itype := inter.typ.typeOff(i.ityp)
name := inter.typ.nameOff(i.name)
iname := name.name()
ipkg := name.pkgPath()
if ipkg == "" {
ipkg = inter.pkgpath.name()
}
for ; j < nt; j++ {
t := &xmhdr[j]
tname := typ.nameOff(t.name)
if typ.typeOff(t.mtyp) == itype && tname.name() == iname {
pkgPath := tname.pkgPath()
if pkgPath == "" {
pkgPath = typ.nameOff(x.pkgpath).name()
}
if tname.isExported() || pkgPath == ipkg {
if m != nil {
ifn := typ.textOff(t.ifn)
if k == 0 {
fun0 = ifn // we'll set m.fun[0] at the end
} else {
methods[k] = ifn
}
}
continue imethods
}
}
}
// didn't find method
m.fun[0] = 0
return iname
}
m.fun[0] = uintptr(fun0)
return ""
}
func itabsinit() {
lockInit(&itabLock, lockRankItab)
lock(&itabLock)
for _, md := range activeModules() {
for _, i := range md.itablinks {
itabAdd(i)
}
}
unlock(&itabLock)
}
// panicdottypeE is called when doing an e.(T) conversion and the conversion fails.
// have = the dynamic type we have.
// want = the static type we're trying to convert to.
// iface = the static type we're converting from.
func panicdottypeE(have, want, iface *_type) {
panic(&TypeAssertionError{iface, have, want, ""})
}
// panicdottypeI is called when doing an i.(T) conversion and the conversion fails.
// Same args as panicdottypeE, but "have" is the dynamic itab we have.
func panicdottypeI(have *itab, want, iface *_type) {
var t *_type
if have != nil {
t = have._type
}
panicdottypeE(t, want, iface)
}
// panicnildottype is called when doing a i.(T) conversion and the interface i is nil.
// want = the static type we're trying to convert to.
func panicnildottype(want *_type) {
panic(&TypeAssertionError{nil, nil, want, ""})
// TODO: Add the static type we're converting from as well.
// It might generate a better error message.
// Just to match other nil conversion errors, we don't for now.
}
// The specialized convTx routines need a type descriptor to use when calling mallocgc.
// We don't need the type to be exact, just to have the correct size, alignment, and pointer-ness.
// However, when debugging, it'd be nice to have some indication in mallocgc where the types came from,
// so we use named types here.
// We then construct interface values of these types,
// and then extract the type word to use as needed.
type (
uint16InterfacePtr uint16
uint32InterfacePtr uint32
uint64InterfacePtr uint64
stringInterfacePtr string
sliceInterfacePtr []byte
)
var (
uint16Eface any = uint16InterfacePtr(0)
uint32Eface any = uint32InterfacePtr(0)
uint64Eface any = uint64InterfacePtr(0)
stringEface any = stringInterfacePtr("")
sliceEface any = sliceInterfacePtr(nil)
uint16Type *_type = efaceOf(&uint16Eface)._type
uint32Type *_type = efaceOf(&uint32Eface)._type
uint64Type *_type = efaceOf(&uint64Eface)._type
stringType *_type = efaceOf(&stringEface)._type
sliceType *_type = efaceOf(&sliceEface)._type
)
// The conv and assert functions below do very similar things.
// The convXXX functions are guaranteed by the compiler to succeed.
// The assertXXX functions may fail (either panicking or returning false,
// depending on whether they are 1-result or 2-result).
// The convXXX functions succeed on a nil input, whereas the assertXXX
// functions fail on a nil input.
// convT converts a value of type t, which is pointed to by v, to a pointer that can
// be used as the second word of an interface value.
func convT(t *_type, v unsafe.Pointer) unsafe.Pointer {
if raceenabled {
raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convT))
}
if msanenabled {
msanread(v, t.size)
}
if asanenabled {
asanread(v, t.size)
}
x := mallocgc(t.size, t, true)
typedmemmove(t, x, v)
return x
}
func convTnoptr(t *_type, v unsafe.Pointer) unsafe.Pointer {
// TODO: maybe take size instead of type?
if raceenabled {
raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convTnoptr))
}
if msanenabled {
msanread(v, t.size)
}
if asanenabled {
asanread(v, t.size)
}
x := mallocgc(t.size, t, false)
memmove(x, v, t.size)
return x
}
func convT16(val uint16) (x unsafe.Pointer) {
if val < uint16(len(staticuint64s)) {
x = unsafe.Pointer(&staticuint64s[val])
if goarch.BigEndian {
x = add(x, 6)
}
} else {
x = mallocgc(2, uint16Type, false)
*(*uint16)(x) = val
}
return
}
func convT32(val uint32) (x unsafe.Pointer) {
if val < uint32(len(staticuint64s)) {
x = unsafe.Pointer(&staticuint64s[val])
if goarch.BigEndian {
x = add(x, 4)
}
} else {
x = mallocgc(4, uint32Type, false)
*(*uint32)(x) = val
}
return
}
func convT64(val uint64) (x unsafe.Pointer) {
if val < uint64(len(staticuint64s)) {
x = unsafe.Pointer(&staticuint64s[val])
} else {
x = mallocgc(8, uint64Type, false)
*(*uint64)(x) = val
}
return
}
func convTstring(val string) (x unsafe.Pointer) {
if val == "" {
x = unsafe.Pointer(&zeroVal[0])
} else {
x = mallocgc(unsafe.Sizeof(val), stringType, true)
*(*string)(x) = val
}
return
}
func convTslice(val []byte) (x unsafe.Pointer) {
// Note: this must work for any element type, not just byte.
if (*slice)(unsafe.Pointer(&val)).array == nil {
x = unsafe.Pointer(&zeroVal[0])
} else {
x = mallocgc(unsafe.Sizeof(val), sliceType, true)
*(*[]byte)(x) = val
}
return
}
// convI2I returns the new itab to be used for the destination value
// when converting a value with itab src to the dst interface.
func convI2I(dst *interfacetype, src *itab) *itab {
if src == nil {
return nil
}
if src.inter == dst {
return src
}
return getitab(dst, src._type, false)
}
func assertI2I(inter *interfacetype, tab *itab) *itab {
if tab == nil {
// explicit conversions require non-nil interface value.
panic(&TypeAssertionError{nil, nil, &inter.typ, ""})
}
if tab.inter == inter {
return tab
}
return getitab(inter, tab._type, false)
}
func assertI2I2(inter *interfacetype, i iface) (r iface) {
tab := i.tab
if tab == nil {
return
}
if tab.inter != inter {
tab = getitab(inter, tab._type, true)
if tab == nil {
return
}
}
r.tab = tab
r.data = i.data
return
}
func assertE2I(inter *interfacetype, t *_type) *itab {
if t == nil {
// explicit conversions require non-nil interface value.
panic(&TypeAssertionError{nil, nil, &inter.typ, ""})
}
return getitab(inter, t, false)
}
func assertE2I2(inter *interfacetype, e eface) (r iface) {
t := e._type
if t == nil {
return
}
tab := getitab(inter, t, true)
if tab == nil {
return
}
r.tab = tab
r.data = e.data
return
}
//go:linkname reflect_ifaceE2I reflect.ifaceE2I
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
*dst = iface{assertE2I(inter, e._type), e.data}
}
//go:linkname reflectlite_ifaceE2I internal/reflectlite.ifaceE2I
func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
*dst = iface{assertE2I(inter, e._type), e.data}
}
func iterate_itabs(fn func(*itab)) {
// Note: only runs during stop the world or with itabLock held,
// so no other locks/atomics needed.
t := itabTable
for i := uintptr(0); i < t.size; i++ {
m := *(**itab)(add(unsafe.Pointer(&t.entries), i*goarch.PtrSize))
if m != nil {
fn(m)
}
}
}
// staticuint64s is used to avoid allocating in convTx for small integer values.
var staticuint64s = [...]uint64{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
}
// The linker redirects a reference of a method that it determined
// unreachable to a reference to this function, so it will throw if
// ever called.
func unreachableMethod() {
throw("unreachable method called. linker bug?")
}
|