aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/math/big/rat.go
blob: 731a979ff7a18896a0acfbfc2467e190063b2814 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements multi-precision rational numbers.

package big

import (
	"fmt"
	"math"
)

// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
//
// Operations always take pointer arguments (*Rat) rather
// than Rat values, and each unique Rat value requires
// its own unique *Rat pointer. To "copy" a Rat value,
// an existing (or newly allocated) Rat must be set to
// a new value using the Rat.Set method; shallow copies
// of Rats are not supported and may lead to errors.
type Rat struct {
	// To make zero values for Rat work w/o initialization,
	// a zero value of b (len(b) == 0) acts like b == 1. At
	// the earliest opportunity (when an assignment to the Rat
	// is made), such uninitialized denominators are set to 1.
	// a.neg determines the sign of the Rat, b.neg is ignored.
	a, b Int
}

// NewRat creates a new Rat with numerator a and denominator b.
func NewRat(a, b int64) *Rat {
	return new(Rat).SetFrac64(a, b)
}

// SetFloat64 sets z to exactly f and returns z.
// If f is not finite, SetFloat returns nil.
func (z *Rat) SetFloat64(f float64) *Rat {
	const expMask = 1<<11 - 1
	bits := math.Float64bits(f)
	mantissa := bits & (1<<52 - 1)
	exp := int((bits >> 52) & expMask)
	switch exp {
	case expMask: // non-finite
		return nil
	case 0: // denormal
		exp -= 1022
	default: // normal
		mantissa |= 1 << 52
		exp -= 1023
	}

	shift := 52 - exp

	// Optimization (?): partially pre-normalise.
	for mantissa&1 == 0 && shift > 0 {
		mantissa >>= 1
		shift--
	}

	z.a.SetUint64(mantissa)
	z.a.neg = f < 0
	z.b.Set(intOne)
	if shift > 0 {
		z.b.Lsh(&z.b, uint(shift))
	} else {
		z.a.Lsh(&z.a, uint(-shift))
	}
	return z.norm()
}

// quotToFloat32 returns the non-negative float32 value
// nearest to the quotient a/b, using round-to-even in
// halfway cases. It does not mutate its arguments.
// Preconditions: b is non-zero; a and b have no common factors.
func quotToFloat32(a, b nat) (f float32, exact bool) {
	const (
		// float size in bits
		Fsize = 32

		// mantissa
		Msize  = 23
		Msize1 = Msize + 1 // incl. implicit 1
		Msize2 = Msize1 + 1

		// exponent
		Esize = Fsize - Msize1
		Ebias = 1<<(Esize-1) - 1
		Emin  = 1 - Ebias
		Emax  = Ebias
	)

	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
	alen := a.bitLen()
	if alen == 0 {
		return 0, true
	}
	blen := b.bitLen()
	if blen == 0 {
		panic("division by zero")
	}

	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
	// This is 2 or 3 more than the float32 mantissa field width of Msize:
	// - the optional extra bit is shifted away in step 3 below.
	// - the high-order 1 is omitted in "normal" representation;
	// - the low-order 1 will be used during rounding then discarded.
	exp := alen - blen
	var a2, b2 nat
	a2 = a2.set(a)
	b2 = b2.set(b)
	if shift := Msize2 - exp; shift > 0 {
		a2 = a2.shl(a2, uint(shift))
	} else if shift < 0 {
		b2 = b2.shl(b2, uint(-shift))
	}

	// 2. Compute quotient and remainder (q, r).  NB: due to the
	// extra shift, the low-order bit of q is logically the
	// high-order bit of r.
	var q nat
	q, r := q.div(a2, a2, b2) // (recycle a2)
	mantissa := low32(q)
	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half

	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
	// (in effect---we accomplish this incrementally).
	if mantissa>>Msize2 == 1 {
		if mantissa&1 == 1 {
			haveRem = true
		}
		mantissa >>= 1
		exp++
	}
	if mantissa>>Msize1 != 1 {
		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
	}

	// 4. Rounding.
	if Emin-Msize <= exp && exp <= Emin {
		// Denormal case; lose 'shift' bits of precision.
		shift := uint(Emin - (exp - 1)) // [1..Esize1)
		lostbits := mantissa & (1<<shift - 1)
		haveRem = haveRem || lostbits != 0
		mantissa >>= shift
		exp = 2 - Ebias // == exp + shift
	}
	// Round q using round-half-to-even.
	exact = !haveRem
	if mantissa&1 != 0 {
		exact = false
		if haveRem || mantissa&2 != 0 {
			if mantissa++; mantissa >= 1<<Msize2 {
				// Complete rollover 11...1 => 100...0, so shift is safe
				mantissa >>= 1
				exp++
			}
		}
	}
	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.

	f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
	if math.IsInf(float64(f), 0) {
		exact = false
	}
	return
}

// quotToFloat64 returns the non-negative float64 value
// nearest to the quotient a/b, using round-to-even in
// halfway cases. It does not mutate its arguments.
// Preconditions: b is non-zero; a and b have no common factors.
func quotToFloat64(a, b nat) (f float64, exact bool) {
	const (
		// float size in bits
		Fsize = 64

		// mantissa
		Msize  = 52
		Msize1 = Msize + 1 // incl. implicit 1
		Msize2 = Msize1 + 1

		// exponent
		Esize = Fsize - Msize1
		Ebias = 1<<(Esize-1) - 1
		Emin  = 1 - Ebias
		Emax  = Ebias
	)

	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
	alen := a.bitLen()
	if alen == 0 {
		return 0, true
	}
	blen := b.bitLen()
	if blen == 0 {
		panic("division by zero")
	}

	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
	// This is 2 or 3 more than the float64 mantissa field width of Msize:
	// - the optional extra bit is shifted away in step 3 below.
	// - the high-order 1 is omitted in "normal" representation;
	// - the low-order 1 will be used during rounding then discarded.
	exp := alen - blen
	var a2, b2 nat
	a2 = a2.set(a)
	b2 = b2.set(b)
	if shift := Msize2 - exp; shift > 0 {
		a2 = a2.shl(a2, uint(shift))
	} else if shift < 0 {
		b2 = b2.shl(b2, uint(-shift))
	}

	// 2. Compute quotient and remainder (q, r).  NB: due to the
	// extra shift, the low-order bit of q is logically the
	// high-order bit of r.
	var q nat
	q, r := q.div(a2, a2, b2) // (recycle a2)
	mantissa := low64(q)
	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half

	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
	// (in effect---we accomplish this incrementally).
	if mantissa>>Msize2 == 1 {
		if mantissa&1 == 1 {
			haveRem = true
		}
		mantissa >>= 1
		exp++
	}
	if mantissa>>Msize1 != 1 {
		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
	}

	// 4. Rounding.
	if Emin-Msize <= exp && exp <= Emin {
		// Denormal case; lose 'shift' bits of precision.
		shift := uint(Emin - (exp - 1)) // [1..Esize1)
		lostbits := mantissa & (1<<shift - 1)
		haveRem = haveRem || lostbits != 0
		mantissa >>= shift
		exp = 2 - Ebias // == exp + shift
	}
	// Round q using round-half-to-even.
	exact = !haveRem
	if mantissa&1 != 0 {
		exact = false
		if haveRem || mantissa&2 != 0 {
			if mantissa++; mantissa >= 1<<Msize2 {
				// Complete rollover 11...1 => 100...0, so shift is safe
				mantissa >>= 1
				exp++
			}
		}
	}
	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.

	f = math.Ldexp(float64(mantissa), exp-Msize1)
	if math.IsInf(f, 0) {
		exact = false
	}
	return
}

// Float32 returns the nearest float32 value for x and a bool indicating
// whether f represents x exactly. If the magnitude of x is too large to
// be represented by a float32, f is an infinity and exact is false.
// The sign of f always matches the sign of x, even if f == 0.
func (x *Rat) Float32() (f float32, exact bool) {
	b := x.b.abs
	if len(b) == 0 {
		b = natOne
	}
	f, exact = quotToFloat32(x.a.abs, b)
	if x.a.neg {
		f = -f
	}
	return
}

// Float64 returns the nearest float64 value for x and a bool indicating
// whether f represents x exactly. If the magnitude of x is too large to
// be represented by a float64, f is an infinity and exact is false.
// The sign of f always matches the sign of x, even if f == 0.
func (x *Rat) Float64() (f float64, exact bool) {
	b := x.b.abs
	if len(b) == 0 {
		b = natOne
	}
	f, exact = quotToFloat64(x.a.abs, b)
	if x.a.neg {
		f = -f
	}
	return
}

// SetFrac sets z to a/b and returns z.
// If b == 0, SetFrac panics.
func (z *Rat) SetFrac(a, b *Int) *Rat {
	z.a.neg = a.neg != b.neg
	babs := b.abs
	if len(babs) == 0 {
		panic("division by zero")
	}
	if &z.a == b || alias(z.a.abs, babs) {
		babs = nat(nil).set(babs) // make a copy
	}
	z.a.abs = z.a.abs.set(a.abs)
	z.b.abs = z.b.abs.set(babs)
	return z.norm()
}

// SetFrac64 sets z to a/b and returns z.
// If b == 0, SetFrac64 panics.
func (z *Rat) SetFrac64(a, b int64) *Rat {
	if b == 0 {
		panic("division by zero")
	}
	z.a.SetInt64(a)
	if b < 0 {
		b = -b
		z.a.neg = !z.a.neg
	}
	z.b.abs = z.b.abs.setUint64(uint64(b))
	return z.norm()
}

// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
	z.a.Set(x)
	z.b.abs = z.b.abs.setWord(1)
	return z
}

// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
	z.a.SetInt64(x)
	z.b.abs = z.b.abs.setWord(1)
	return z
}

// SetUint64 sets z to x and returns z.
func (z *Rat) SetUint64(x uint64) *Rat {
	z.a.SetUint64(x)
	z.b.abs = z.b.abs.setWord(1)
	return z
}

// Set sets z to x (by making a copy of x) and returns z.
func (z *Rat) Set(x *Rat) *Rat {
	if z != x {
		z.a.Set(&x.a)
		z.b.Set(&x.b)
	}
	if len(z.b.abs) == 0 {
		z.b.abs = z.b.abs.setWord(1)
	}
	return z
}

// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Rat) Abs(x *Rat) *Rat {
	z.Set(x)
	z.a.neg = false
	return z
}

// Neg sets z to -x and returns z.
func (z *Rat) Neg(x *Rat) *Rat {
	z.Set(x)
	z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
	return z
}

// Inv sets z to 1/x and returns z.
// If x == 0, Inv panics.
func (z *Rat) Inv(x *Rat) *Rat {
	if len(x.a.abs) == 0 {
		panic("division by zero")
	}
	z.Set(x)
	z.a.abs, z.b.abs = z.b.abs, z.a.abs
	return z
}

// Sign returns:
//
//	-1 if x <  0
//	 0 if x == 0
//	+1 if x >  0
//
func (x *Rat) Sign() int {
	return x.a.Sign()
}

// IsInt reports whether the denominator of x is 1.
func (x *Rat) IsInt() bool {
	return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
}

// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
// may change if a new value is assigned to x, and vice versa.
// The sign of the numerator corresponds to the sign of x.
func (x *Rat) Num() *Int {
	return &x.a
}

// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator, unless
// x is an uninitialized (zero value) Rat, in which case
// the result is a new Int of value 1. (To initialize x,
// any operation that sets x will do, including x.Set(x).)
// If the result is a reference to x's denominator it
// may change if a new value is assigned to x, and vice versa.
func (x *Rat) Denom() *Int {
	// Note that x.b.neg is guaranteed false.
	if len(x.b.abs) == 0 {
		// Note: If this proves problematic, we could
		//       panic instead and require the Rat to
		//       be explicitly initialized.
		return &Int{abs: nat{1}}
	}
	return &x.b
}

func (z *Rat) norm() *Rat {
	switch {
	case len(z.a.abs) == 0:
		// z == 0; normalize sign and denominator
		z.a.neg = false
		fallthrough
	case len(z.b.abs) == 0:
		// z is integer; normalize denominator
		z.b.abs = z.b.abs.setWord(1)
	default:
		// z is fraction; normalize numerator and denominator
		neg := z.a.neg
		z.a.neg = false
		z.b.neg = false
		if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 {
			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
		}
		z.a.neg = neg
	}
	return z
}

// mulDenom sets z to the denominator product x*y (by taking into
// account that 0 values for x or y must be interpreted as 1) and
// returns z.
func mulDenom(z, x, y nat) nat {
	switch {
	case len(x) == 0 && len(y) == 0:
		return z.setWord(1)
	case len(x) == 0:
		return z.set(y)
	case len(y) == 0:
		return z.set(x)
	}
	return z.mul(x, y)
}

// scaleDenom sets z to the product x*f.
// If f == 0 (zero value of denominator), z is set to (a copy of) x.
func (z *Int) scaleDenom(x *Int, f nat) {
	if len(f) == 0 {
		z.Set(x)
		return
	}
	z.abs = z.abs.mul(x.abs, f)
	z.neg = x.neg
}

// Cmp compares x and y and returns:
//
//   -1 if x <  y
//    0 if x == y
//   +1 if x >  y
//
func (x *Rat) Cmp(y *Rat) int {
	var a, b Int
	a.scaleDenom(&x.a, y.b.abs)
	b.scaleDenom(&y.a, x.b.abs)
	return a.Cmp(&b)
}

// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
	var a1, a2 Int
	a1.scaleDenom(&x.a, y.b.abs)
	a2.scaleDenom(&y.a, x.b.abs)
	z.a.Add(&a1, &a2)
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
	return z.norm()
}

// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
	var a1, a2 Int
	a1.scaleDenom(&x.a, y.b.abs)
	a2.scaleDenom(&y.a, x.b.abs)
	z.a.Sub(&a1, &a2)
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
	return z.norm()
}

// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
	if x == y {
		// a squared Rat is positive and can't be reduced (no need to call norm())
		z.a.neg = false
		z.a.abs = z.a.abs.sqr(x.a.abs)
		if len(x.b.abs) == 0 {
			z.b.abs = z.b.abs.setWord(1)
		} else {
			z.b.abs = z.b.abs.sqr(x.b.abs)
		}
		return z
	}
	z.a.Mul(&x.a, &y.a)
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
	return z.norm()
}

// Quo sets z to the quotient x/y and returns z.
// If y == 0, Quo panics.
func (z *Rat) Quo(x, y *Rat) *Rat {
	if len(y.a.abs) == 0 {
		panic("division by zero")
	}
	var a, b Int
	a.scaleDenom(&x.a, y.b.abs)
	b.scaleDenom(&y.a, x.b.abs)
	z.a.abs = a.abs
	z.b.abs = b.abs
	z.a.neg = a.neg != b.neg
	return z.norm()
}