aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/hash/crc32/crc32_amd64.s
blob: 6af6c253a79003316e23605da9af65a4c30ecc92 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "textflag.h"

// castagnoliSSE42 updates the (non-inverted) crc with the given buffer.
//
// func castagnoliSSE42(crc uint32, p []byte) uint32
TEXT ·castagnoliSSE42(SB),NOSPLIT,$0
	MOVL crc+0(FP), AX  // CRC value
	MOVQ p+8(FP), SI  // data pointer
	MOVQ p_len+16(FP), CX  // len(p)

	// If there are fewer than 8 bytes to process, skip alignment.
	CMPQ CX, $8
	JL less_than_8

	MOVQ SI, BX
	ANDQ $7, BX
	JZ aligned

	// Process the first few bytes to 8-byte align the input.

	// BX = 8 - BX. We need to process this many bytes to align.
	SUBQ $1, BX
	XORQ $7, BX

	BTQ $0, BX
	JNC align_2

	CRC32B (SI), AX
	DECQ CX
	INCQ SI

align_2:
	BTQ $1, BX
	JNC align_4

	CRC32W (SI), AX

	SUBQ $2, CX
	ADDQ $2, SI

align_4:
	BTQ $2, BX
	JNC aligned

	CRC32L (SI), AX

	SUBQ $4, CX
	ADDQ $4, SI

aligned:
	// The input is now 8-byte aligned and we can process 8-byte chunks.
	CMPQ CX, $8
	JL less_than_8

	CRC32Q (SI), AX
	ADDQ $8, SI
	SUBQ $8, CX
	JMP aligned

less_than_8:
	// We may have some bytes left over; process 4 bytes, then 2, then 1.
	BTQ $2, CX
	JNC less_than_4

	CRC32L (SI), AX
	ADDQ $4, SI

less_than_4:
	BTQ $1, CX
	JNC less_than_2

	CRC32W (SI), AX
	ADDQ $2, SI

less_than_2:
	BTQ $0, CX
	JNC done

	CRC32B (SI), AX

done:
	MOVL AX, ret+32(FP)
	RET

// castagnoliSSE42Triple updates three (non-inverted) crcs with (24*rounds)
// bytes from each buffer.
//
// func castagnoliSSE42Triple(
//     crc1, crc2, crc3 uint32,
//     a, b, c []byte,
//     rounds uint32,
// ) (retA uint32, retB uint32, retC uint32)
TEXT ·castagnoliSSE42Triple(SB),NOSPLIT,$0
	MOVL crcA+0(FP), AX
	MOVL crcB+4(FP), CX
	MOVL crcC+8(FP), DX

	MOVQ a+16(FP), R8   // data pointer
	MOVQ b+40(FP), R9   // data pointer
	MOVQ c+64(FP), R10  // data pointer

	MOVL rounds+88(FP), R11

loop:
	CRC32Q (R8), AX
	CRC32Q (R9), CX
	CRC32Q (R10), DX

	CRC32Q 8(R8), AX
	CRC32Q 8(R9), CX
	CRC32Q 8(R10), DX

	CRC32Q 16(R8), AX
	CRC32Q 16(R9), CX
	CRC32Q 16(R10), DX

	ADDQ $24, R8
	ADDQ $24, R9
	ADDQ $24, R10

	DECQ R11
	JNZ loop

	MOVL AX, retA+96(FP)
	MOVL CX, retB+100(FP)
	MOVL DX, retC+104(FP)
	RET

// CRC32 polynomial data
//
// These constants are lifted from the
// Linux kernel, since they avoid the costly
// PSHUFB 16 byte reversal proposed in the
// original Intel paper.
DATA r2r1<>+0(SB)/8, $0x154442bd4
DATA r2r1<>+8(SB)/8, $0x1c6e41596
DATA r4r3<>+0(SB)/8, $0x1751997d0
DATA r4r3<>+8(SB)/8, $0x0ccaa009e
DATA rupoly<>+0(SB)/8, $0x1db710641
DATA rupoly<>+8(SB)/8, $0x1f7011641
DATA r5<>+0(SB)/8, $0x163cd6124

GLOBL r2r1<>(SB),RODATA,$16
GLOBL r4r3<>(SB),RODATA,$16
GLOBL rupoly<>(SB),RODATA,$16
GLOBL r5<>(SB),RODATA,$8

// Based on https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
// len(p) must be at least 64, and must be a multiple of 16.

// func ieeeCLMUL(crc uint32, p []byte) uint32
TEXT ·ieeeCLMUL(SB),NOSPLIT,$0
	MOVL   crc+0(FP), X0             // Initial CRC value
	MOVQ   p+8(FP), SI  	         // data pointer
	MOVQ   p_len+16(FP), CX          // len(p)

	MOVOU  (SI), X1
	MOVOU  16(SI), X2
	MOVOU  32(SI), X3
	MOVOU  48(SI), X4
	PXOR   X0, X1
	ADDQ   $64, SI                  // buf+=64
	SUBQ   $64, CX                  // len-=64
	CMPQ   CX, $64                  // Less than 64 bytes left
	JB     remain64

	MOVOA  r2r1<>+0(SB), X0
loopback64:
	MOVOA  X1, X5
	MOVOA  X2, X6
	MOVOA  X3, X7
	MOVOA  X4, X8

	PCLMULQDQ $0, X0, X1
	PCLMULQDQ $0, X0, X2
	PCLMULQDQ $0, X0, X3
	PCLMULQDQ $0, X0, X4

	/* Load next early */
	MOVOU    (SI), X11
	MOVOU    16(SI), X12
	MOVOU    32(SI), X13
	MOVOU    48(SI), X14

	PCLMULQDQ $0x11, X0, X5
	PCLMULQDQ $0x11, X0, X6
	PCLMULQDQ $0x11, X0, X7
	PCLMULQDQ $0x11, X0, X8

	PXOR     X5, X1
	PXOR     X6, X2
	PXOR     X7, X3
	PXOR     X8, X4

	PXOR     X11, X1
	PXOR     X12, X2
	PXOR     X13, X3
	PXOR     X14, X4

	ADDQ    $0x40, DI
	ADDQ    $64, SI      // buf+=64
	SUBQ    $64, CX      // len-=64
	CMPQ    CX, $64      // Less than 64 bytes left?
	JGE     loopback64

	/* Fold result into a single register (X1) */
remain64:
	MOVOA       r4r3<>+0(SB), X0

	MOVOA       X1, X5
	PCLMULQDQ   $0, X0, X1
	PCLMULQDQ   $0x11, X0, X5
	PXOR        X5, X1
	PXOR        X2, X1

	MOVOA       X1, X5
	PCLMULQDQ   $0, X0, X1
	PCLMULQDQ   $0x11, X0, X5
	PXOR        X5, X1
	PXOR        X3, X1

	MOVOA       X1, X5
	PCLMULQDQ   $0, X0, X1
	PCLMULQDQ   $0x11, X0, X5
	PXOR        X5, X1
	PXOR        X4, X1

	/* If there is less than 16 bytes left we are done */
	CMPQ        CX, $16
	JB          finish

	/* Encode 16 bytes */
remain16:
	MOVOU       (SI), X10
	MOVOA       X1, X5
	PCLMULQDQ   $0, X0, X1
	PCLMULQDQ   $0x11, X0, X5
	PXOR        X5, X1
	PXOR        X10, X1
	SUBQ        $16, CX
	ADDQ        $16, SI
	CMPQ        CX, $16
	JGE         remain16

finish:
	/* Fold final result into 32 bits and return it */
	PCMPEQB     X3, X3
	PCLMULQDQ   $1, X1, X0
	PSRLDQ      $8, X1
	PXOR        X0, X1

	MOVOA       X1, X2
	MOVQ        r5<>+0(SB), X0

	/* Creates 32 bit mask. Note that we don't care about upper half. */
	PSRLQ       $32, X3

	PSRLDQ      $4, X2
	PAND        X3, X1
	PCLMULQDQ   $0, X0, X1
	PXOR        X2, X1

	MOVOA       rupoly<>+0(SB), X0

	MOVOA       X1, X2
	PAND        X3, X1
	PCLMULQDQ   $0x10, X0, X1
	PAND        X3, X1
	PCLMULQDQ   $0, X0, X1
	PXOR        X2, X1

	PEXTRD	$1, X1, AX
	MOVL        AX, ret+32(FP)

	RET