aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/crypto/ecdsa/ecdsa.go
blob: 9f9a09a8842f3172b0c11aae171871db6c0f3921 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in FIPS 186-4 and SEC 1, Version 2.0.
//
// Signatures generated by this package are not deterministic, but entropy is
// mixed with the private key and the message, achieving the same level of
// security in case of randomness source failure.
package ecdsa

// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
// That standard is not freely available, which is a problem in an open source
// implementation, because not only the implementer, but also any maintainer,
// contributor, reviewer, auditor, and learner needs access to it. Instead, this
// package references and follows the equivalent [SEC 1, Version 2.0].
//
// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf

import (
	"crypto"
	"crypto/aes"
	"crypto/cipher"
	"crypto/elliptic"
	"crypto/internal/randutil"
	"crypto/sha512"
	"errors"
	"io"
	"math/big"

	"golang.org/x/crypto/cryptobyte"
	"golang.org/x/crypto/cryptobyte/asn1"
)

// A invertible implements fast inverse in GF(N).
type invertible interface {
	// Inverse returns the inverse of k mod Params().N.
	Inverse(k *big.Int) *big.Int
}

// A combinedMult implements fast combined multiplication for verification.
type combinedMult interface {
	// CombinedMult returns [s1]G + [s2]P where G is the generator.
	CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int)
}

const (
	aesIV = "IV for ECDSA CTR"
)

// PublicKey represents an ECDSA public key.
type PublicKey struct {
	elliptic.Curve
	X, Y *big.Int
}

// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.

// Equal reports whether pub and x have the same value.
//
// Two keys are only considered to have the same value if they have the same Curve value.
// Note that for example elliptic.P256() and elliptic.P256().Params() are different
// values, as the latter is a generic not constant time implementation.
func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
	xx, ok := x.(*PublicKey)
	if !ok {
		return false
	}
	return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 &&
		// Standard library Curve implementations are singletons, so this check
		// will work for those. Other Curves might be equivalent even if not
		// singletons, but there is no definitive way to check for that, and
		// better to err on the side of safety.
		pub.Curve == xx.Curve
}

// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
	PublicKey
	D *big.Int
}

// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
	return &priv.PublicKey
}

// Equal reports whether priv and x have the same value.
//
// See PublicKey.Equal for details on how Curve is compared.
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
	xx, ok := x.(*PrivateKey)
	if !ok {
		return false
	}
	return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0
}

// Sign signs digest with priv, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface,
// should be the hash function used to digest the message.
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common
// uses can use the SignASN1 function in this package directly.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
	r, s, err := Sign(rand, priv, digest)
	if err != nil {
		return nil, err
	}

	var b cryptobyte.Builder
	b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
		b.AddASN1BigInt(r)
		b.AddASN1BigInt(s)
	})
	return b.Bytes()
}

var one = new(big.Int).SetInt64(1)

// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
	params := c.Params()
	// Note that for P-521 this will actually be 63 bits more than the order, as
	// division rounds down, but the extra bit is inconsequential.
	b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen()
	_, err = io.ReadFull(rand, b)
	if err != nil {
		return
	}

	k = new(big.Int).SetBytes(b)
	n := new(big.Int).Sub(params.N, one)
	k.Mod(k, n)
	k.Add(k, one)
	return
}

// GenerateKey generates a public and private key pair.
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
	k, err := randFieldElement(c, rand)
	if err != nil {
		return nil, err
	}

	priv := new(PrivateKey)
	priv.PublicKey.Curve = c
	priv.D = k
	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
	return priv, nil
}

// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
// we use the left-most bits of the hash to match the bit-length of the order of
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
	orderBits := c.Params().N.BitLen()
	orderBytes := (orderBits + 7) / 8
	if len(hash) > orderBytes {
		hash = hash[:orderBytes]
	}

	ret := new(big.Int).SetBytes(hash)
	excess := len(hash)*8 - orderBits
	if excess > 0 {
		ret.Rsh(ret, uint(excess))
	}
	return ret
}

// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
// (exponentiation modulo P - 2, per Euler's theorem). This has better
// constant-time properties than Euclid's method (implemented in
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
// itself isn't strictly constant-time so it's not perfect.
func fermatInverse(k, N *big.Int) *big.Int {
	two := big.NewInt(2)
	nMinus2 := new(big.Int).Sub(N, two)
	return new(big.Int).Exp(k, nMinus2, N)
}

var errZeroParam = errors.New("zero parameter")

// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. Most applications should use
// SignASN1 instead of dealing directly with r, s.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
	randutil.MaybeReadByte(rand)

	// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
	//
	//    SHA2-512(priv.D || entropy || hash)[:32]
	//
	// The CSPRNG key is indifferentiable from a random oracle as shown in
	// [Coron], the AES-CTR stream is indifferentiable from a random oracle
	// under standard cryptographic assumptions (see [Larsson] for examples).
	//
	// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
	// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf

	// Get 256 bits of entropy from rand.
	entropy := make([]byte, 32)
	_, err = io.ReadFull(rand, entropy)
	if err != nil {
		return
	}

	// Initialize an SHA-512 hash context; digest...
	md := sha512.New()
	md.Write(priv.D.Bytes()) // the private key,
	md.Write(entropy)        // the entropy,
	md.Write(hash)           // and the input hash;
	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
	// which is an indifferentiable MAC.

	// Create an AES-CTR instance to use as a CSPRNG.
	block, err := aes.NewCipher(key)
	if err != nil {
		return nil, nil, err
	}

	// Create a CSPRNG that xors a stream of zeros with
	// the output of the AES-CTR instance.
	csprng := cipher.StreamReader{
		R: zeroReader,
		S: cipher.NewCTR(block, []byte(aesIV)),
	}

	c := priv.PublicKey.Curve
	return sign(priv, &csprng, c, hash)
}

func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
	// SEC 1, Version 2.0, Section 4.1.3
	N := c.Params().N
	if N.Sign() == 0 {
		return nil, nil, errZeroParam
	}
	var k, kInv *big.Int
	for {
		for {
			k, err = randFieldElement(c, *csprng)
			if err != nil {
				r = nil
				return
			}

			if in, ok := priv.Curve.(invertible); ok {
				kInv = in.Inverse(k)
			} else {
				kInv = fermatInverse(k, N) // N != 0
			}

			r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
			r.Mod(r, N)
			if r.Sign() != 0 {
				break
			}
		}

		e := hashToInt(hash, c)
		s = new(big.Int).Mul(priv.D, r)
		s.Add(s, e)
		s.Mul(s, kInv)
		s.Mod(s, N) // N != 0
		if s.Sign() != 0 {
			break
		}
	}

	return
}

// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the ASN.1 encoded signature.
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
	return priv.Sign(rand, hash, nil)
}

// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid. Most applications should
// use VerifyASN1 instead of dealing directly with r, s.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
	c := pub.Curve
	N := c.Params().N

	if r.Sign() <= 0 || s.Sign() <= 0 {
		return false
	}
	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
		return false
	}
	return verify(pub, c, hash, r, s)
}

func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
	// SEC 1, Version 2.0, Section 4.1.4
	e := hashToInt(hash, c)
	var w *big.Int
	N := c.Params().N
	if in, ok := c.(invertible); ok {
		w = in.Inverse(s)
	} else {
		w = new(big.Int).ModInverse(s, N)
	}

	u1 := e.Mul(e, w)
	u1.Mod(u1, N)
	u2 := w.Mul(r, w)
	u2.Mod(u2, N)

	// Check if implements S1*g + S2*p
	var x, y *big.Int
	if opt, ok := c.(combinedMult); ok {
		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
	} else {
		x1, y1 := c.ScalarBaseMult(u1.Bytes())
		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
		x, y = c.Add(x1, y1, x2, y2)
	}

	if x.Sign() == 0 && y.Sign() == 0 {
		return false
	}
	x.Mod(x, N)
	return x.Cmp(r) == 0
}

// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
	var (
		r, s  = &big.Int{}, &big.Int{}
		inner cryptobyte.String
	)
	input := cryptobyte.String(sig)
	if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
		!input.Empty() ||
		!inner.ReadASN1Integer(r) ||
		!inner.ReadASN1Integer(s) ||
		!inner.Empty() {
		return false
	}
	return Verify(pub, hash, r, s)
}

type zr struct {
	io.Reader
}

// Read replaces the contents of dst with zeros.
func (z *zr) Read(dst []byte) (n int, err error) {
	for i := range dst {
		dst[i] = 0
	}
	return len(dst), nil
}

var zeroReader = &zr{}