aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/crypto/dsa/dsa.go
blob: a83359996dc0292f84d39fd6f5c7f4755cc79301 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package dsa implements the Digital Signature Algorithm, as defined in FIPS 186-3.
//
// The DSA operations in this package are not implemented using constant-time algorithms.
//
// Deprecated: DSA is a legacy algorithm, and modern alternatives such as
// Ed25519 (implemented by package crypto/ed25519) should be used instead. Keys
// with 1024-bit moduli (L1024N160 parameters) are cryptographically weak, while
// bigger keys are not widely supported. Note that FIPS 186-5 no longer approves
// DSA for signature generation.
package dsa

import (
	"errors"
	"io"
	"math/big"

	"crypto/internal/randutil"
)

// Parameters represents the domain parameters for a key. These parameters can
// be shared across many keys. The bit length of Q must be a multiple of 8.
type Parameters struct {
	P, Q, G *big.Int
}

// PublicKey represents a DSA public key.
type PublicKey struct {
	Parameters
	Y *big.Int
}

// PrivateKey represents a DSA private key.
type PrivateKey struct {
	PublicKey
	X *big.Int
}

// ErrInvalidPublicKey results when a public key is not usable by this code.
// FIPS is quite strict about the format of DSA keys, but other code may be
// less so. Thus, when using keys which may have been generated by other code,
// this error must be handled.
var ErrInvalidPublicKey = errors.New("crypto/dsa: invalid public key")

// ParameterSizes is an enumeration of the acceptable bit lengths of the primes
// in a set of DSA parameters. See FIPS 186-3, section 4.2.
type ParameterSizes int

const (
	L1024N160 ParameterSizes = iota
	L2048N224
	L2048N256
	L3072N256
)

// numMRTests is the number of Miller-Rabin primality tests that we perform. We
// pick the largest recommended number from table C.1 of FIPS 186-3.
const numMRTests = 64

// GenerateParameters puts a random, valid set of DSA parameters into params.
// This function can take many seconds, even on fast machines.
func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) error {
	// This function doesn't follow FIPS 186-3 exactly in that it doesn't
	// use a verification seed to generate the primes. The verification
	// seed doesn't appear to be exported or used by other code and
	// omitting it makes the code cleaner.

	var L, N int
	switch sizes {
	case L1024N160:
		L = 1024
		N = 160
	case L2048N224:
		L = 2048
		N = 224
	case L2048N256:
		L = 2048
		N = 256
	case L3072N256:
		L = 3072
		N = 256
	default:
		return errors.New("crypto/dsa: invalid ParameterSizes")
	}

	qBytes := make([]byte, N/8)
	pBytes := make([]byte, L/8)

	q := new(big.Int)
	p := new(big.Int)
	rem := new(big.Int)
	one := new(big.Int)
	one.SetInt64(1)

GeneratePrimes:
	for {
		if _, err := io.ReadFull(rand, qBytes); err != nil {
			return err
		}

		qBytes[len(qBytes)-1] |= 1
		qBytes[0] |= 0x80
		q.SetBytes(qBytes)

		if !q.ProbablyPrime(numMRTests) {
			continue
		}

		for i := 0; i < 4*L; i++ {
			if _, err := io.ReadFull(rand, pBytes); err != nil {
				return err
			}

			pBytes[len(pBytes)-1] |= 1
			pBytes[0] |= 0x80

			p.SetBytes(pBytes)
			rem.Mod(p, q)
			rem.Sub(rem, one)
			p.Sub(p, rem)
			if p.BitLen() < L {
				continue
			}

			if !p.ProbablyPrime(numMRTests) {
				continue
			}

			params.P = p
			params.Q = q
			break GeneratePrimes
		}
	}

	h := new(big.Int)
	h.SetInt64(2)
	g := new(big.Int)

	pm1 := new(big.Int).Sub(p, one)
	e := new(big.Int).Div(pm1, q)

	for {
		g.Exp(h, e, p)
		if g.Cmp(one) == 0 {
			h.Add(h, one)
			continue
		}

		params.G = g
		return nil
	}
}

// GenerateKey generates a public&private key pair. The Parameters of the
// PrivateKey must already be valid (see GenerateParameters).
func GenerateKey(priv *PrivateKey, rand io.Reader) error {
	if priv.P == nil || priv.Q == nil || priv.G == nil {
		return errors.New("crypto/dsa: parameters not set up before generating key")
	}

	x := new(big.Int)
	xBytes := make([]byte, priv.Q.BitLen()/8)

	for {
		_, err := io.ReadFull(rand, xBytes)
		if err != nil {
			return err
		}
		x.SetBytes(xBytes)
		if x.Sign() != 0 && x.Cmp(priv.Q) < 0 {
			break
		}
	}

	priv.X = x
	priv.Y = new(big.Int)
	priv.Y.Exp(priv.G, x, priv.P)
	return nil
}

// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
// This has better constant-time properties than Euclid's method (implemented
// in math/big.Int.ModInverse) although math/big itself isn't strictly
// constant-time so it's not perfect.
func fermatInverse(k, P *big.Int) *big.Int {
	two := big.NewInt(2)
	pMinus2 := new(big.Int).Sub(P, two)
	return new(big.Int).Exp(k, pMinus2, P)
}

// Sign signs an arbitrary length hash (which should be the result of hashing a
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
// rand.
//
// Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated
// to the byte-length of the subgroup. This function does not perform that
// truncation itself.
//
// Be aware that calling Sign with an attacker-controlled PrivateKey may
// require an arbitrary amount of CPU.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
	randutil.MaybeReadByte(rand)

	// FIPS 186-3, section 4.6

	n := priv.Q.BitLen()
	if priv.Q.Sign() <= 0 || priv.P.Sign() <= 0 || priv.G.Sign() <= 0 || priv.X.Sign() <= 0 || n%8 != 0 {
		err = ErrInvalidPublicKey
		return
	}
	n >>= 3

	var attempts int
	for attempts = 10; attempts > 0; attempts-- {
		k := new(big.Int)
		buf := make([]byte, n)
		for {
			_, err = io.ReadFull(rand, buf)
			if err != nil {
				return
			}
			k.SetBytes(buf)
			// priv.Q must be >= 128 because the test above
			// requires it to be > 0 and that
			//    ceil(log_2(Q)) mod 8 = 0
			// Thus this loop will quickly terminate.
			if k.Sign() > 0 && k.Cmp(priv.Q) < 0 {
				break
			}
		}

		kInv := fermatInverse(k, priv.Q)

		r = new(big.Int).Exp(priv.G, k, priv.P)
		r.Mod(r, priv.Q)

		if r.Sign() == 0 {
			continue
		}

		z := k.SetBytes(hash)

		s = new(big.Int).Mul(priv.X, r)
		s.Add(s, z)
		s.Mod(s, priv.Q)
		s.Mul(s, kInv)
		s.Mod(s, priv.Q)

		if s.Sign() != 0 {
			break
		}
	}

	// Only degenerate private keys will require more than a handful of
	// attempts.
	if attempts == 0 {
		return nil, nil, ErrInvalidPublicKey
	}

	return
}

// Verify verifies the signature in r, s of hash using the public key, pub. It
// reports whether the signature is valid.
//
// Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated
// to the byte-length of the subgroup. This function does not perform that
// truncation itself.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
	// FIPS 186-3, section 4.7

	if pub.P.Sign() == 0 {
		return false
	}

	if r.Sign() < 1 || r.Cmp(pub.Q) >= 0 {
		return false
	}
	if s.Sign() < 1 || s.Cmp(pub.Q) >= 0 {
		return false
	}

	w := new(big.Int).ModInverse(s, pub.Q)
	if w == nil {
		return false
	}

	n := pub.Q.BitLen()
	if n%8 != 0 {
		return false
	}
	z := new(big.Int).SetBytes(hash)

	u1 := new(big.Int).Mul(z, w)
	u1.Mod(u1, pub.Q)
	u2 := w.Mul(r, w)
	u2.Mod(u2, pub.Q)
	v := u1.Exp(pub.G, u1, pub.P)
	u2.Exp(pub.Y, u2, pub.P)
	v.Mul(v, u2)
	v.Mod(v, pub.P)
	v.Mod(v, pub.Q)

	return v.Cmp(r) == 0
}