1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
#include <Storages/IStorage.h>
#include <Storages/ColumnsDescription.h>
#include <Storages/StorageGenerateRandom.h>
#include <Storages/StorageFactory.h>
#include <Storages/checkAndGetLiteralArgument.h>
#include <Processors/Sources/SourceFromSingleChunk.h>
#include <QueryPipeline/Pipe.h>
#include <Parsers/ASTLiteral.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnLowCardinality.h>
#include <Columns/ColumnMap.h>
#include <Columns/ColumnNullable.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnVector.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <DataTypes/DataTypeDecimalBase.h>
#include <DataTypes/DataTypeEnum.h>
#include <DataTypes/DataTypeFixedString.h>
#include <DataTypes/DataTypeLowCardinality.h>
#include <DataTypes/DataTypeMap.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/NestedUtils.h>
#include <Common/SipHash.h>
#include <Common/randomSeed.h>
#include <Interpreters/Context.h>
#include <base/unaligned.h>
#include <Functions/FunctionFactory.h>
#include <pcg_random.hpp>
namespace DB
{
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int TOO_LARGE_ARRAY_SIZE;
extern const int TOO_LARGE_STRING_SIZE;
}
namespace
{
void fillBufferWithRandomData(char * __restrict data, size_t limit, size_t size_of_type, pcg64 & rng, [[maybe_unused]] bool flip_bytes = false)
{
size_t size = limit * size_of_type;
char * __restrict end = data + size;
while (data < end)
{
/// The loop can be further optimized.
UInt64 number = rng();
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
unalignedStoreLittleEndian<UInt64>(data, number);
#else
unalignedStore<UInt64>(data, number);
#endif
data += sizeof(UInt64); /// We assume that data has at least 7-byte padding (see PaddedPODArray)
}
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
if (flip_bytes)
{
data = end - size;
while (data < end)
{
char * rev_end = data + size_of_type;
std::reverse(data, rev_end);
data += size_of_type;
}
}
#endif
}
size_t estimateValueSize(
const DataTypePtr type,
UInt64 max_array_length,
UInt64 max_string_length)
{
if (type->haveMaximumSizeOfValue())
return type->getMaximumSizeOfValueInMemory();
TypeIndex idx = type->getTypeId();
switch (idx)
{
case TypeIndex::String:
{
return max_string_length + sizeof(size_t) + 1;
}
/// The logic in this function should reflect the logic of fillColumnWithRandomData.
case TypeIndex::Array:
{
auto nested_type = typeid_cast<const DataTypeArray &>(*type).getNestedType();
return sizeof(size_t) + estimateValueSize(nested_type, max_array_length / 2, max_string_length);
}
case TypeIndex::Map:
{
const DataTypePtr & nested_type = typeid_cast<const DataTypeMap &>(*type).getNestedType();
return sizeof(size_t) + estimateValueSize(nested_type, max_array_length / 2, max_string_length);
}
case TypeIndex::Tuple:
{
auto elements = typeid_cast<const DataTypeTuple *>(type.get())->getElements();
const size_t tuple_size = elements.size();
size_t res = 0;
for (size_t i = 0; i < tuple_size; ++i)
res += estimateValueSize(elements[i], max_array_length, max_string_length);
return res;
}
case TypeIndex::Nullable:
{
auto nested_type = typeid_cast<const DataTypeNullable &>(*type).getNestedType();
return 1 + estimateValueSize(nested_type, max_array_length, max_string_length);
}
case TypeIndex::LowCardinality:
{
auto nested_type = typeid_cast<const DataTypeLowCardinality &>(*type).getDictionaryType();
return sizeof(size_t) + estimateValueSize(nested_type, max_array_length, max_string_length);
}
default:
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "The 'GenerateRandom' is not implemented for type {}", type->getName());
}
}
ColumnPtr fillColumnWithRandomData(
const DataTypePtr type,
UInt64 limit,
UInt64 max_array_length,
UInt64 max_string_length,
pcg64 & rng,
ContextPtr context)
{
TypeIndex idx = type->getTypeId();
switch (idx)
{
case TypeIndex::String:
{
/// Mostly the same as the implementation of randomPrintableASCII function.
auto column = ColumnString::create();
ColumnString::Chars & data_to = column->getChars();
ColumnString::Offsets & offsets_to = column->getOffsets();
offsets_to.resize(limit);
IColumn::Offset offset = 0;
for (size_t row_num = 0; row_num < limit; ++row_num)
{
size_t length = rng() % (max_string_length + 1); /// Slow
IColumn::Offset next_offset = offset + length + 1;
data_to.resize(next_offset);
offsets_to[row_num] = next_offset;
auto * data_to_ptr = data_to.data(); /// avoid assert on array indexing after end
for (size_t pos = offset, end = offset + length; pos < end; pos += 4) /// We have padding in column buffers that we can overwrite.
{
UInt64 rand = rng();
UInt16 rand1 = rand;
UInt16 rand2 = rand >> 16;
UInt16 rand3 = rand >> 32;
UInt16 rand4 = rand >> 48;
/// Printable characters are from range [32; 126].
/// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
data_to_ptr[pos + 0] = 32 + ((rand1 * 95) >> 16);
data_to_ptr[pos + 1] = 32 + ((rand2 * 95) >> 16);
data_to_ptr[pos + 2] = 32 + ((rand3 * 95) >> 16);
data_to_ptr[pos + 3] = 32 + ((rand4 * 95) >> 16);
/// NOTE gcc failed to vectorize this code (aliasing of char?)
/// TODO Implement SIMD optimizations from Danila Kutenin.
}
data_to[offset + length] = 0;
offset = next_offset;
}
return column;
}
case TypeIndex::Enum8:
{
auto column = ColumnVector<Int8>::create();
auto values = typeid_cast<const DataTypeEnum<Int8> *>(type.get())->getValues();
auto & data = column->getData();
data.resize(limit);
UInt8 size = values.size();
UInt8 off;
for (UInt64 i = 0; i < limit; ++i)
{
off = static_cast<UInt8>(rng()) % size;
data[i] = values[off].second;
}
return column;
}
case TypeIndex::Enum16:
{
auto column = ColumnVector<Int16>::create();
auto values = typeid_cast<const DataTypeEnum<Int16> *>(type.get())->getValues();
auto & data = column->getData();
data.resize(limit);
UInt16 size = values.size();
UInt8 off;
for (UInt64 i = 0; i < limit; ++i)
{
off = static_cast<UInt16>(rng()) % size;
data[i] = values[off].second;
}
return column;
}
case TypeIndex::Array:
{
auto nested_type = typeid_cast<const DataTypeArray &>(*type).getNestedType();
auto offsets_column = ColumnVector<ColumnArray::Offset>::create();
auto & offsets = offsets_column->getData();
UInt64 offset = 0;
offsets.resize(limit);
for (UInt64 i = 0; i < limit; ++i)
{
offset += static_cast<UInt64>(rng()) % (max_array_length + 1);
offsets[i] = offset;
}
/// This division by two makes the size growth subexponential on depth.
auto data_column = fillColumnWithRandomData(nested_type, offset, max_array_length / 2, max_string_length, rng, context);
return ColumnArray::create(data_column, std::move(offsets_column));
}
case TypeIndex::Map:
{
const DataTypePtr & nested_type = typeid_cast<const DataTypeMap &>(*type).getNestedType();
auto nested_column = fillColumnWithRandomData(nested_type, limit, max_array_length / 2, max_string_length, rng, context);
return ColumnMap::create(nested_column);
}
case TypeIndex::Tuple:
{
auto elements = typeid_cast<const DataTypeTuple *>(type.get())->getElements();
const size_t tuple_size = elements.size();
Columns tuple_columns(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
tuple_columns[i] = fillColumnWithRandomData(elements[i], limit, max_array_length, max_string_length, rng, context);
return ColumnTuple::create(std::move(tuple_columns));
}
case TypeIndex::Nullable:
{
auto nested_type = typeid_cast<const DataTypeNullable &>(*type).getNestedType();
auto nested_column = fillColumnWithRandomData(nested_type, limit, max_array_length, max_string_length, rng, context);
auto null_map_column = ColumnUInt8::create();
auto & null_map = null_map_column->getData();
null_map.resize(limit);
for (UInt64 i = 0; i < limit; ++i)
null_map[i] = rng() % 16 == 0; /// No real motivation for this.
return ColumnNullable::create(nested_column, std::move(null_map_column));
}
case TypeIndex::UInt8:
{
auto column = ColumnUInt8::create();
auto & data = column->getData();
data.resize(limit);
if (isBool(type))
{
for (size_t i = 0; i < limit; ++i)
data[i] = rng() % 2;
}
else
{
fillBufferWithRandomData(reinterpret_cast<char *>(data.data()), limit, sizeof(UInt8), rng);
}
return column;
}
case TypeIndex::UInt16: [[fallthrough]];
case TypeIndex::Date:
{
auto column = ColumnUInt16::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(UInt16), rng, true);
return column;
}
case TypeIndex::Date32:
{
auto column = ColumnInt32::create();
column->getData().resize(limit);
for (size_t i = 0; i < limit; ++i)
column->getData()[i] = (rng() % static_cast<UInt64>(DATE_LUT_SIZE)) - DAYNUM_OFFSET_EPOCH;
return column;
}
case TypeIndex::UInt32: [[fallthrough]];
case TypeIndex::DateTime:
{
auto column = ColumnUInt32::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(UInt32), rng, true);
return column;
}
case TypeIndex::UInt64:
{
auto column = ColumnUInt64::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(UInt64), rng, true);
return column;
}
case TypeIndex::UInt128:
{
auto column = ColumnUInt128::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(UInt128), rng, true);
return column;
}
case TypeIndex::UInt256:
{
auto column = ColumnUInt256::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(UInt256), rng);
return column;
}
case TypeIndex::UUID:
{
auto column = ColumnUUID::create();
column->getData().resize(limit);
/// NOTE This is slightly incorrect as random UUIDs should have fixed version 4.
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(UUID), rng, true);
return column;
}
case TypeIndex::Int8:
{
auto column = ColumnInt8::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Int8), rng);
return column;
}
case TypeIndex::Int16:
{
auto column = ColumnInt16::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Int16), rng, true);
return column;
}
case TypeIndex::Int32:
{
auto column = ColumnInt32::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Int32), rng, true);
return column;
}
case TypeIndex::Int64:
{
auto column = ColumnInt64::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Int64), rng, true);
return column;
}
case TypeIndex::Int128:
{
auto column = ColumnInt128::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Int128), rng, true);
return column;
}
case TypeIndex::Int256:
{
auto column = ColumnInt256::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Int256), rng, true);
return column;
}
case TypeIndex::Float32:
{
auto column = ColumnFloat32::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Float32), rng, true);
return column;
}
case TypeIndex::Float64:
{
auto column = ColumnFloat64::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(Float64), rng, true);
return column;
}
case TypeIndex::Decimal32:
{
const auto & decimal_type = assert_cast<const DataTypeDecimal<Decimal32> &>(*type);
auto column = decimal_type.createColumn();
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal32> &>(*column);
auto & data = column_concrete.getData();
data.resize(limit);
/// Generate numbers from range [-10^P + 1, 10^P - 1]
Int32 range = common::exp10_i32(decimal_type.getPrecision());
for (size_t i = 0; i != limit; ++i)
data[i] = static_cast<Int32>(rng()) % range;
return column;
}
case TypeIndex::Decimal64:
{
const auto & decimal_type = assert_cast<const DataTypeDecimal<Decimal64> &>(*type);
auto column = type->createColumn();
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal64> &>(*column);
auto & data = column_concrete.getData();
data.resize(limit);
/// Generate numbers from range [-10^P + 1, 10^P - 1]
Int64 range = common::exp10_i64(decimal_type.getPrecision());
for (size_t i = 0; i != limit; ++i)
data[i] = static_cast<Int64>(rng()) % range;
return column;
}
case TypeIndex::Decimal128:
{
const auto & decimal_type = assert_cast<const DataTypeDecimal<Decimal128> &>(*type);
auto column = type->createColumn();
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal128> &>(*column);
auto & data = column_concrete.getData();
data.resize(limit);
/// Generate numbers from range [-10^P + 1, 10^P - 1]
Int128 range = common::exp10_i128(decimal_type.getPrecision());
for (size_t i = 0; i != limit; ++i)
data[i] = Int128({rng(), rng()}) % range;
return column;
}
case TypeIndex::Decimal256:
{
const auto & decimal_type = assert_cast<const DataTypeDecimal<Decimal256> &>(*type);
auto column = type->createColumn();
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal256> &>(*column);
auto & data = column_concrete.getData();
data.resize(limit);
/// Generate numbers from range [-10^P + 1, 10^P - 1]
Int256 range = common::exp10_i256(decimal_type.getPrecision());
for (size_t i = 0; i != limit; ++i)
data[i] = Int256({rng(), rng(), rng(), rng()}) % range;
return column;
}
case TypeIndex::FixedString:
{
size_t n = typeid_cast<const DataTypeFixedString &>(*type).getN();
auto column = ColumnFixedString::create(n);
column->getChars().resize(limit * n);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getChars().data()), limit, n, rng);
return column;
}
case TypeIndex::DateTime64:
{
auto column = type->createColumn();
auto & column_concrete = typeid_cast<ColumnDecimal<DateTime64> &>(*column);
column_concrete.getData().resize(limit);
UInt64 range = (1ULL << 32) * intExp10(typeid_cast<const DataTypeDateTime64 &>(*type).getScale());
for (size_t i = 0; i < limit; ++i)
column_concrete.getData()[i] = rng() % range; /// Slow
return column;
}
case TypeIndex::LowCardinality:
{
/// We are generating the values using the same random distribution as for full columns
/// so it's not in fact "low cardinality",
/// but it's ok for testing purposes, because the LowCardinality data type supports high cardinality data as well.
auto nested_type = typeid_cast<const DataTypeLowCardinality &>(*type).getDictionaryType();
auto nested_column = fillColumnWithRandomData(nested_type, limit, max_array_length, max_string_length, rng, context);
auto column = type->createColumn();
typeid_cast<ColumnLowCardinality &>(*column).insertRangeFromFullColumn(*nested_column, 0, limit);
return column;
}
case TypeIndex::IPv4:
{
auto column = ColumnIPv4::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(IPv4), rng);
return column;
}
case TypeIndex::IPv6:
{
auto column = ColumnIPv6::create();
column->getData().resize(limit);
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit, sizeof(IPv6), rng);
return column;
}
default:
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "The 'GenerateRandom' is not implemented for type {}", type->getName());
}
}
class GenerateSource : public ISource
{
public:
GenerateSource(UInt64 block_size_, UInt64 max_array_length_, UInt64 max_string_length_, UInt64 random_seed_, Block block_header_, ContextPtr context_)
: ISource(Nested::flattenArrayOfTuples(prepareBlockToFill(block_header_)))
, block_size(block_size_), max_array_length(max_array_length_), max_string_length(max_string_length_)
, block_to_fill(std::move(block_header_)), rng(random_seed_), context(context_) {}
String getName() const override { return "GenerateRandom"; }
protected:
Chunk generate() override
{
Columns columns;
columns.reserve(block_to_fill.columns());
for (const auto & elem : block_to_fill)
columns.emplace_back(fillColumnWithRandomData(elem.type, block_size, max_array_length, max_string_length, rng, context));
columns = Nested::flattenArrayOfTuples(block_to_fill.cloneWithColumns(columns)).getColumns();
return {std::move(columns), block_size};
}
private:
UInt64 block_size;
UInt64 max_array_length;
UInt64 max_string_length;
Block block_to_fill;
pcg64 rng;
ContextPtr context;
static Block & prepareBlockToFill(Block & block)
{
/// To support Nested types, we will collect them to single Array of Tuple.
auto names_and_types = Nested::collect(block.getNamesAndTypesList());
block.clear();
for (auto & column : names_and_types)
block.insert(ColumnWithTypeAndName(column.type, column.name));
return block;
}
};
}
StorageGenerateRandom::StorageGenerateRandom(
const StorageID & table_id_,
const ColumnsDescription & columns_,
const String & comment,
UInt64 max_array_length_,
UInt64 max_string_length_,
const std::optional<UInt64> & random_seed_)
: IStorage(table_id_), max_array_length(max_array_length_), max_string_length(max_string_length_)
{
static constexpr size_t MAX_ARRAY_SIZE = 1 << 30;
static constexpr size_t MAX_STRING_SIZE = 1 << 30;
if (max_array_length > MAX_ARRAY_SIZE)
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Too large array size in GenerateRandom: {}, maximum: {}",
max_array_length, MAX_ARRAY_SIZE);
if (max_string_length > MAX_STRING_SIZE)
throw Exception(ErrorCodes::TOO_LARGE_STRING_SIZE, "Too large string size in GenerateRandom: {}, maximum: {}",
max_string_length, MAX_STRING_SIZE);
random_seed = random_seed_ ? sipHash64(*random_seed_) : randomSeed();
StorageInMemoryMetadata storage_metadata;
storage_metadata.setColumns(columns_);
storage_metadata.setComment(comment);
setInMemoryMetadata(storage_metadata);
}
void registerStorageGenerateRandom(StorageFactory & factory)
{
factory.registerStorage("GenerateRandom", [](const StorageFactory::Arguments & args)
{
ASTs & engine_args = args.engine_args;
if (engine_args.size() > 3)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Storage GenerateRandom requires at most three arguments: "
"random_seed, max_string_length, max_array_length.");
std::optional<UInt64> random_seed;
UInt64 max_string_length = 10;
UInt64 max_array_length = 10;
if (!engine_args.empty())
{
const auto & ast_literal = engine_args[0]->as<const ASTLiteral &>();
if (!ast_literal.value.isNull())
random_seed = checkAndGetLiteralArgument<UInt64>(ast_literal, "random_seed");
}
if (engine_args.size() >= 2)
max_string_length = checkAndGetLiteralArgument<UInt64>(engine_args[1], "max_string_length");
if (engine_args.size() == 3)
max_array_length = checkAndGetLiteralArgument<UInt64>(engine_args[2], "max_array_length");
return std::make_shared<StorageGenerateRandom>(args.table_id, args.columns, args.comment, max_array_length, max_string_length, random_seed);
});
}
Pipe StorageGenerateRandom::read(
const Names & column_names,
const StorageSnapshotPtr & storage_snapshot,
SelectQueryInfo & /*query_info*/,
ContextPtr context,
QueryProcessingStage::Enum /*processed_stage*/,
size_t max_block_size,
size_t num_streams)
{
storage_snapshot->check(column_names);
Pipes pipes;
pipes.reserve(num_streams);
const ColumnsDescription & our_columns = storage_snapshot->metadata->getColumns();
Block block_header;
for (const auto & name : column_names)
{
const auto & name_type = our_columns.get(name);
MutableColumnPtr column = name_type.type->createColumn();
block_header.insert({std::move(column), name_type.type, name_type.name});
}
/// Correction of block size for wide tables.
size_t preferred_block_size_bytes = context->getSettingsRef().preferred_block_size_bytes;
if (preferred_block_size_bytes)
{
size_t estimated_row_size_bytes = estimateValueSize(std::make_shared<DataTypeTuple>(block_header.getDataTypes()), max_array_length, max_string_length);
size_t estimated_block_size_bytes = 0;
if (common::mulOverflow(max_block_size, estimated_row_size_bytes, estimated_block_size_bytes))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Too large estimated block size in GenerateRandom table: its estimation leads to 64bit overflow");
chassert(estimated_block_size_bytes != 0);
if (estimated_block_size_bytes > preferred_block_size_bytes)
{
max_block_size = static_cast<size_t>(max_block_size * (static_cast<double>(preferred_block_size_bytes) / estimated_block_size_bytes));
if (max_block_size == 0)
max_block_size = 1;
}
}
/// Will create more seed values for each source from initial seed.
pcg64 generate(random_seed);
for (UInt64 i = 0; i < num_streams; ++i)
pipes.emplace_back(std::make_shared<GenerateSource>(max_block_size, max_array_length, max_string_length, generate(), block_header, context));
return Pipe::unitePipes(std::move(pipes));
}
}
|