aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/clickhouse/src/Storages/MergeTree/MergeTreeIndexUSearch.cpp
blob: 70e2b8f76dfdf4c8f1abf20879c745e0da218b48 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#ifdef ENABLE_USEARCH

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"

#include <Storages/MergeTree/MergeTreeIndexUSearch.h>

#include <Columns/ColumnArray.h>
#include <Common/typeid_cast.h>
#include <Core/Field.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeTuple.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Interpreters/Context.h>
#include <Interpreters/castColumn.h>

namespace DB
{

namespace ErrorCodes
{
    extern const int CANNOT_ALLOCATE_MEMORY;
    extern const int ILLEGAL_COLUMN;
    extern const int INCORRECT_DATA;
    extern const int INCORRECT_NUMBER_OF_COLUMNS;
    extern const int INCORRECT_QUERY;
    extern const int LOGICAL_ERROR;
}

template <unum::usearch::metric_kind_t Metric>
USearchIndexWithSerialization<Metric>::USearchIndexWithSerialization(size_t dimensions)
    : Base(Base::make(unum::usearch::metric_punned_t(dimensions, Metric)))
{
}

template <unum::usearch::metric_kind_t Metric>
void USearchIndexWithSerialization<Metric>::serialize(WriteBuffer & ostr) const
{
    auto callback = [&ostr](void * from, size_t n)
    {
        ostr.write(reinterpret_cast<const char *>(from), n);
        return true;
    };

    Base::save_to_stream(callback);
}

template <unum::usearch::metric_kind_t Metric>
void USearchIndexWithSerialization<Metric>::deserialize(ReadBuffer & istr)
{
    auto callback = [&istr](void * from, size_t n)
    {
        istr.readStrict(reinterpret_cast<char *>(from), n);
        return true;
    };

    Base::load_from_stream(callback);
}

template <unum::usearch::metric_kind_t Metric>
size_t USearchIndexWithSerialization<Metric>::getDimensions() const
{
    return Base::dimensions();
}

template <unum::usearch::metric_kind_t Metric>
MergeTreeIndexGranuleUSearch<Metric>::MergeTreeIndexGranuleUSearch(
    const String & index_name_,
    const Block & index_sample_block_)
    : index_name(index_name_)
    , index_sample_block(index_sample_block_)
    , index(nullptr)
{
}

template <unum::usearch::metric_kind_t Metric>
MergeTreeIndexGranuleUSearch<Metric>::MergeTreeIndexGranuleUSearch(
    const String & index_name_,
    const Block & index_sample_block_,
    USearchIndexWithSerializationPtr<Metric> index_)
    : index_name(index_name_)
    , index_sample_block(index_sample_block_)
    , index(std::move(index_))
{
}

template <unum::usearch::metric_kind_t Metric>
void MergeTreeIndexGranuleUSearch<Metric>::serializeBinary(WriteBuffer & ostr) const
{
    /// Number of dimensions is required in the index constructor,
    /// so it must be written and read separately from the other part
    writeIntBinary(static_cast<UInt64>(index->getDimensions()), ostr); // write dimension
    index->serialize(ostr);
}

template <unum::usearch::metric_kind_t Metric>
void MergeTreeIndexGranuleUSearch<Metric>::deserializeBinary(ReadBuffer & istr, MergeTreeIndexVersion /*version*/)
{
    UInt64 dimension;
    readIntBinary(dimension, istr);
    index = std::make_shared<USearchIndexWithSerialization<Metric>>(dimension);
    index->deserialize(istr);
}

template <unum::usearch::metric_kind_t Metric>
MergeTreeIndexAggregatorUSearch<Metric>::MergeTreeIndexAggregatorUSearch(
    const String & index_name_,
    const Block & index_sample_block_)
    : index_name(index_name_)
    , index_sample_block(index_sample_block_)
{
}

template <unum::usearch::metric_kind_t Metric>
MergeTreeIndexGranulePtr MergeTreeIndexAggregatorUSearch<Metric>::getGranuleAndReset()
{
    auto granule = std::make_shared<MergeTreeIndexGranuleUSearch<Metric>>(index_name, index_sample_block, index);
    index = nullptr;
    return granule;
}

template <unum::usearch::metric_kind_t Metric>
void MergeTreeIndexAggregatorUSearch<Metric>::update(const Block & block, size_t * pos, size_t limit)
{
    if (*pos >= block.rows())
        throw Exception(
            ErrorCodes::LOGICAL_ERROR,
            "The provided position is not less than the number of block rows. Position: {}, Block rows: {}.",
            *pos,
            block.rows());

    size_t rows_read = std::min(limit, block.rows() - *pos);
    if (rows_read == 0)
        return;

    if (index_sample_block.columns() > 1)
        throw Exception(ErrorCodes::LOGICAL_ERROR, "Expected block with single column");

    const String & index_column_name = index_sample_block.getByPosition(0).name;
    ColumnPtr column_cut = block.getByName(index_column_name).column->cut(*pos, rows_read);

    if (const auto & column_array = typeid_cast<const ColumnArray *>(column_cut.get()))
    {
        const auto & data = column_array->getData();
        const auto & array = typeid_cast<const ColumnFloat32 &>(data).getData();

        if (array.empty())
            throw Exception(ErrorCodes::LOGICAL_ERROR, "Array has 0 rows, {} rows expected", rows_read);

        const auto & offsets = column_array->getOffsets();
        const size_t num_rows = offsets.size();


        /// Check all sizes are the same
        size_t size = offsets[0];
        for (size_t i = 0; i < num_rows - 1; ++i)
            if (offsets[i + 1] - offsets[i] != size)
                throw Exception(ErrorCodes::INCORRECT_DATA, "All arrays in column {} must have equal length", index_column_name);

        if (!index)
            index = std::make_shared<USearchIndexWithSerialization<Metric>>(size);

        /// Add all rows of block
        if (!index->reserve(unum::usearch::ceil2(index->size() + num_rows)))
            throw Exception(ErrorCodes::CANNOT_ALLOCATE_MEMORY, "Could not reserve memory for usearch index");

        if (auto rc = index->add(index->size(), array.data()); !rc)
            throw Exception(ErrorCodes::INCORRECT_DATA, rc.error.release());
        for (size_t current_row = 1; current_row < num_rows; ++current_row)
            if (auto rc = index->add(index->size(), &array[offsets[current_row - 1]]); !rc)
                throw Exception(ErrorCodes::INCORRECT_DATA, rc.error.release());

    }
    else if (const auto & column_tuple = typeid_cast<const ColumnTuple *>(column_cut.get()))
    {
        const auto & columns = column_tuple->getColumns();
        std::vector<std::vector<Float32>> data{column_tuple->size(), std::vector<Float32>()};
        for (const auto & column : columns)
        {
            const auto & pod_array = typeid_cast<const ColumnFloat32 *>(column.get())->getData();
            for (size_t i = 0; i < pod_array.size(); ++i)
                data[i].push_back(pod_array[i]);
        }

        if (data.empty())
            throw Exception(ErrorCodes::LOGICAL_ERROR, "Tuple has 0 rows, {} rows expected", rows_read);

        if (!index)
            index = std::make_shared<USearchIndexWithSerialization<Metric>>(data[0].size());

        if (!index->reserve(unum::usearch::ceil2(index->size() + data.size())))
            throw Exception(ErrorCodes::CANNOT_ALLOCATE_MEMORY, "Could not reserve memory for usearch index");

        for (const auto & item : data)
            if (auto rc = index->add(index->size(), item.data()); !rc)
                throw Exception(ErrorCodes::INCORRECT_DATA, rc.error.release());
    }
    else
        throw Exception(ErrorCodes::LOGICAL_ERROR, "Expected Array or Tuple column");

    *pos += rows_read;
}

MergeTreeIndexConditionUSearch::MergeTreeIndexConditionUSearch(
    const IndexDescription & /*index_description*/,
    const SelectQueryInfo & query,
    const String & distance_function_,
    ContextPtr context)
    : ann_condition(query, context)
    , distance_function(distance_function_)
{
}

bool MergeTreeIndexConditionUSearch::mayBeTrueOnGranule(MergeTreeIndexGranulePtr /*idx_granule*/) const
{
    throw Exception(ErrorCodes::LOGICAL_ERROR, "mayBeTrueOnGranule is not supported for ANN skip indexes");
}

bool MergeTreeIndexConditionUSearch::alwaysUnknownOrTrue() const
{
    return ann_condition.alwaysUnknownOrTrue(distance_function);
}

std::vector<size_t> MergeTreeIndexConditionUSearch::getUsefulRanges(MergeTreeIndexGranulePtr idx_granule) const
{
    if (distance_function == DISTANCE_FUNCTION_L2)
        return getUsefulRangesImpl<unum::usearch::metric_kind_t::l2sq_k>(idx_granule);
    else if (distance_function == DISTANCE_FUNCTION_COSINE)
        return getUsefulRangesImpl<unum::usearch::metric_kind_t::cos_k>(idx_granule);
    std::unreachable();
}

template <unum::usearch::metric_kind_t Metric>
std::vector<size_t> MergeTreeIndexConditionUSearch::getUsefulRangesImpl(MergeTreeIndexGranulePtr idx_granule) const
{
    const UInt64 limit = ann_condition.getLimit();
    const UInt64 index_granularity = ann_condition.getIndexGranularity();
    const std::optional<float> comparison_distance = ann_condition.getQueryType() == ApproximateNearestNeighborInformation::Type::Where
        ? std::optional<float>(ann_condition.getComparisonDistanceForWhereQuery())
        : std::nullopt;

    if (comparison_distance && comparison_distance.value() < 0)
        throw Exception(ErrorCodes::LOGICAL_ERROR, "Attempt to optimize query with where without distance");

    const std::vector<float> reference_vector = ann_condition.getReferenceVector();

    const auto granule = std::dynamic_pointer_cast<MergeTreeIndexGranuleUSearch<Metric>>(idx_granule);
    if (granule == nullptr)
        throw Exception(ErrorCodes::LOGICAL_ERROR, "Granule has the wrong type");

    const USearchIndexWithSerializationPtr<Metric> index = granule->index;

    if (ann_condition.getDimensions() != index->dimensions())
        throw Exception(ErrorCodes::INCORRECT_QUERY, "The dimension of the space in the request ({}) "
            "does not match the dimension in the index ({})",
            ann_condition.getDimensions(), index->dimensions());

    auto result = index->search(reference_vector.data(), limit);
    std::vector<UInt64> neighbors(result.size()); /// indexes of dots which were closest to the reference vector
    std::vector<Float32> distances(result.size());
    result.dump_to(neighbors.data(), distances.data());

    std::vector<size_t> granule_numbers;
    granule_numbers.reserve(neighbors.size());
    for (size_t i = 0; i < neighbors.size(); ++i)
    {
        if (comparison_distance && distances[i] > comparison_distance)
            continue;
        granule_numbers.push_back(neighbors[i] / index_granularity);
    }

    /// make unique
    std::sort(granule_numbers.begin(), granule_numbers.end());
    granule_numbers.erase(std::unique(granule_numbers.begin(), granule_numbers.end()), granule_numbers.end());

    return granule_numbers;
}

MergeTreeIndexUSearch::MergeTreeIndexUSearch(const IndexDescription & index_, const String & distance_function_)
    : IMergeTreeIndex(index_)
    , distance_function(distance_function_)
{
}

MergeTreeIndexGranulePtr MergeTreeIndexUSearch::createIndexGranule() const
{
    if (distance_function == DISTANCE_FUNCTION_L2)
        return std::make_shared<MergeTreeIndexGranuleUSearch<unum::usearch::metric_kind_t::l2sq_k>>(index.name, index.sample_block);
    else if (distance_function == DISTANCE_FUNCTION_COSINE)
        return std::make_shared<MergeTreeIndexGranuleUSearch<unum::usearch::metric_kind_t::cos_k>>(index.name, index.sample_block);
    std::unreachable();
}

MergeTreeIndexAggregatorPtr MergeTreeIndexUSearch::createIndexAggregator() const
{
    if (distance_function == DISTANCE_FUNCTION_L2)
        return std::make_shared<MergeTreeIndexAggregatorUSearch<unum::usearch::metric_kind_t::l2sq_k>>(index.name, index.sample_block);
    else if (distance_function == DISTANCE_FUNCTION_COSINE)
        return std::make_shared<MergeTreeIndexAggregatorUSearch<unum::usearch::metric_kind_t::cos_k>>(index.name, index.sample_block);
    std::unreachable();
}

MergeTreeIndexConditionPtr MergeTreeIndexUSearch::createIndexCondition(const SelectQueryInfo & query, ContextPtr context) const
{
    return std::make_shared<MergeTreeIndexConditionUSearch>(index, query, distance_function, context);
};

MergeTreeIndexPtr usearchIndexCreator(const IndexDescription & index)
{
    static constexpr auto default_distance_function = DISTANCE_FUNCTION_L2;
    String distance_function = default_distance_function;
    if (!index.arguments.empty())
        distance_function = index.arguments[0].get<String>();

    return std::make_shared<MergeTreeIndexUSearch>(index, distance_function);
}

void usearchIndexValidator(const IndexDescription & index, bool /* attach */)
{
    /// Check number and type of USearch index arguments:

    if (index.arguments.size() > 1)
        throw Exception(ErrorCodes::INCORRECT_QUERY, "USearch index must not have more than one parameters");

    if (!index.arguments.empty() && index.arguments[0].getType() != Field::Types::String)
        throw Exception(ErrorCodes::INCORRECT_QUERY, "Distance function argument of USearch index must be of type String");

    /// Check that the index is created on a single column

    if (index.column_names.size() != 1 || index.data_types.size() != 1)
        throw Exception(ErrorCodes::INCORRECT_NUMBER_OF_COLUMNS, "USearch indexes must be created on a single column");

    /// Check that a supported metric was passed as first argument

    if (!index.arguments.empty())
    {
        String distance_name = index.arguments[0].get<String>();
        if (distance_name != DISTANCE_FUNCTION_L2 && distance_name != DISTANCE_FUNCTION_COSINE)
            throw Exception(ErrorCodes::INCORRECT_DATA, "USearch index only supports distance functions '{}' and '{}'", DISTANCE_FUNCTION_L2, DISTANCE_FUNCTION_COSINE);
    }

    /// Check data type of indexed column:

    auto throw_unsupported_underlying_column_exception = []()
    {
        throw Exception(
            ErrorCodes::ILLEGAL_COLUMN, "USearch indexes can only be created on columns of type Array(Float32) and Tuple(Float32)");
    };

    DataTypePtr data_type = index.sample_block.getDataTypes()[0];

    if (const auto * data_type_array = typeid_cast<const DataTypeArray *>(data_type.get()))
    {
        TypeIndex nested_type_index = data_type_array->getNestedType()->getTypeId();
        if (!WhichDataType(nested_type_index).isFloat32())
            throw_unsupported_underlying_column_exception();
    }
    else if (const auto * data_type_tuple = typeid_cast<const DataTypeTuple *>(data_type.get()))
    {
        const DataTypes & inner_types = data_type_tuple->getElements();
        for (const auto & inner_type : inner_types)
        {
            TypeIndex nested_type_index = inner_type->getTypeId();
            if (!WhichDataType(nested_type_index).isFloat32())
                throw_unsupported_underlying_column_exception();
        }
    }
    else
        throw_unsupported_underlying_column_exception();
}

}

#endif