1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
|
#include <boost/rational.hpp> /// For calculations related to sampling coefficients.
#include <optional>
#include <unordered_set>
#include <Storages/MergeTree/MergeTreeDataSelectExecutor.h>
#include <Storages/MergeTree/MergeTreeReadPool.h>
#include <Storages/MergeTree/MergeTreeIndices.h>
#include <Storages/MergeTree/MergeTreeIndexReader.h>
#include <Storages/MergeTree/KeyCondition.h>
#include <Storages/MergeTree/MergeTreeDataPartUUID.h>
#include <Storages/MergeTree/StorageFromMergeTreeDataPart.h>
#include <Storages/MergeTree/MergeTreeIndexInverted.h>
#include <Storages/ReadInOrderOptimizer.h>
#include <Storages/VirtualColumnUtils.h>
#include <Parsers/ASTIdentifier.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTSampleRatio.h>
#include <Parsers/ExpressionListParsers.h>
#include <Parsers/parseIdentifierOrStringLiteral.h>
#include <Interpreters/ExpressionAnalyzer.h>
#include <Interpreters/InterpreterSelectQuery.h>
#include <Interpreters/Context.h>
#include <Processors/ConcatProcessor.h>
#include <Processors/QueryPlan/QueryPlan.h>
#include <Processors/QueryPlan/CreatingSetsStep.h>
#include <Processors/QueryPlan/FilterStep.h>
#include <Processors/QueryPlan/ExpressionStep.h>
#include <Processors/QueryPlan/ReadFromPreparedSource.h>
#include <Processors/QueryPlan/ReadFromMergeTree.h>
#include <Processors/QueryPlan/UnionStep.h>
#include <Processors/QueryPlan/QueryIdHolder.h>
#include <Processors/QueryPlan/AggregatingStep.h>
#include <Processors/QueryPlan/SortingStep.h>
#include <Processors/Sources/SourceFromSingleChunk.h>
#include <Processors/Transforms/AggregatingTransform.h>
#include <Core/UUID.h>
#include <Common/CurrentMetrics.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeEnum.h>
#include <DataTypes/DataTypeUUID.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeArray.h>
#include <IO/WriteBufferFromOStream.h>
#include <Storages/MergeTree/ApproximateNearestNeighborIndexesCommon.h>
namespace CurrentMetrics
{
extern const Metric MergeTreeDataSelectExecutorThreads;
extern const Metric MergeTreeDataSelectExecutorThreadsActive;
}
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int INDEX_NOT_USED;
extern const int ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER;
extern const int ILLEGAL_COLUMN;
extern const int ARGUMENT_OUT_OF_BOUND;
extern const int CANNOT_PARSE_TEXT;
extern const int TOO_MANY_PARTITIONS;
extern const int DUPLICATED_PART_UUIDS;
extern const int NO_SUCH_COLUMN_IN_TABLE;
extern const int PROJECTION_NOT_USED;
}
MergeTreeDataSelectExecutor::MergeTreeDataSelectExecutor(const MergeTreeData & data_)
: data(data_), log(&Poco::Logger::get(data.getLogName() + " (SelectExecutor)"))
{
}
size_t MergeTreeDataSelectExecutor::getApproximateTotalRowsToRead(
const MergeTreeData::DataPartsVector & parts,
const StorageMetadataPtr & metadata_snapshot,
const KeyCondition & key_condition,
const Settings & settings,
Poco::Logger * log)
{
size_t rows_count = 0;
/// We will find out how many rows we would have read without sampling.
LOG_DEBUG(log, "Preliminary index scan with condition: {}", key_condition.toString());
for (const auto & part : parts)
{
MarkRanges ranges = markRangesFromPKRange(part, metadata_snapshot, key_condition, settings, log);
/** In order to get a lower bound on the number of rows that match the condition on PK,
* consider only guaranteed full marks.
* That is, do not take into account the first and last marks, which may be incomplete.
*/
for (const auto & range : ranges)
if (range.end - range.begin > 2)
rows_count += part->index_granularity.getRowsCountInRange({range.begin + 1, range.end - 1});
}
return rows_count;
}
using RelativeSize = boost::rational<ASTSampleRatio::BigNum>;
static std::string toString(const RelativeSize & x)
{
return ASTSampleRatio::toString(x.numerator()) + "/" + ASTSampleRatio::toString(x.denominator());
}
/// Converts sample size to an approximate number of rows (ex. `SAMPLE 1000000`) to relative value (ex. `SAMPLE 0.1`).
static RelativeSize convertAbsoluteSampleSizeToRelative(const ASTSampleRatio::Rational & ratio, size_t approx_total_rows)
{
if (approx_total_rows == 0)
return 1;
auto absolute_sample_size = ratio.numerator / ratio.denominator;
return std::min(RelativeSize(1), RelativeSize(absolute_sample_size) / RelativeSize(approx_total_rows));
}
static SortDescription getSortDescriptionFromGroupBy(const ASTSelectQuery & query)
{
SortDescription order_descr;
order_descr.reserve(query.groupBy()->children.size());
for (const auto & elem : query.groupBy()->children)
{
/// Note, here aliases should not be used, since there will be no such column in a block.
String name = elem->getColumnNameWithoutAlias();
order_descr.emplace_back(name, 1, 1);
}
return order_descr;
}
QueryPlanPtr MergeTreeDataSelectExecutor::read(
const Names & column_names_to_return,
const StorageSnapshotPtr & storage_snapshot,
const SelectQueryInfo & query_info,
ContextPtr context,
const UInt64 max_block_size,
const size_t num_streams,
QueryProcessingStage::Enum processed_stage,
std::shared_ptr<PartitionIdToMaxBlock> max_block_numbers_to_read,
bool enable_parallel_reading) const
{
if (query_info.merge_tree_empty_result)
return std::make_unique<QueryPlan>();
const auto & settings = context->getSettingsRef();
const auto & metadata_for_reading = storage_snapshot->getMetadataForQuery();
const auto & snapshot_data = assert_cast<const MergeTreeData::SnapshotData &>(*storage_snapshot->data);
const auto & parts = snapshot_data.parts;
const auto & alter_conversions = snapshot_data.alter_conversions;
if (!query_info.projection)
{
auto step = readFromParts(
query_info.merge_tree_select_result_ptr ? MergeTreeData::DataPartsVector{} : parts,
query_info.merge_tree_select_result_ptr ? std::vector<AlterConversionsPtr>{} : alter_conversions,
column_names_to_return,
storage_snapshot,
query_info,
context,
max_block_size,
num_streams,
max_block_numbers_to_read,
query_info.merge_tree_select_result_ptr,
enable_parallel_reading);
if (!step && settings.optimize_use_projections && settings.force_optimize_projection
&& !metadata_for_reading->projections.empty() && !settings.query_plan_optimize_projection)
throw Exception(ErrorCodes::PROJECTION_NOT_USED,
"No projection is used when optimize_use_projections = 1 and force_optimize_projection = 1");
auto plan = std::make_unique<QueryPlan>();
if (step)
plan->addStep(std::move(step));
return plan;
}
LOG_DEBUG(
log,
"Choose {} {} projection {}",
query_info.projection->complete ? "complete" : "incomplete",
query_info.projection->desc->type,
query_info.projection->desc->name);
const ASTSelectQuery & select_query = query_info.query->as<ASTSelectQuery &>();
QueryPlanResourceHolder resources;
auto projection_plan = std::make_unique<QueryPlan>();
if (query_info.projection->desc->is_minmax_count_projection)
{
Pipe pipe(std::make_shared<SourceFromSingleChunk>(query_info.minmax_count_projection_block));
auto read_from_pipe = std::make_unique<ReadFromPreparedSource>(std::move(pipe));
projection_plan->addStep(std::move(read_from_pipe));
}
else if (query_info.projection->merge_tree_projection_select_result_ptr)
{
LOG_DEBUG(log, "projection required columns: {}", fmt::join(query_info.projection->required_columns, ", "));
projection_plan->addStep(readFromParts(
/*parts=*/ {},
/*alter_conversions=*/ {},
query_info.projection->required_columns,
storage_snapshot,
query_info,
context,
max_block_size,
num_streams,
max_block_numbers_to_read,
query_info.projection->merge_tree_projection_select_result_ptr,
enable_parallel_reading));
}
if (projection_plan->isInitialized())
{
if (query_info.projection->before_where)
{
auto where_step = std::make_unique<FilterStep>(
projection_plan->getCurrentDataStream(),
query_info.projection->before_where,
query_info.projection->where_column_name,
query_info.projection->remove_where_filter);
where_step->setStepDescription("WHERE");
projection_plan->addStep(std::move(where_step));
}
if (query_info.projection->before_aggregation)
{
auto expression_before_aggregation
= std::make_unique<ExpressionStep>(projection_plan->getCurrentDataStream(), query_info.projection->before_aggregation);
expression_before_aggregation->setStepDescription("Before GROUP BY");
projection_plan->addStep(std::move(expression_before_aggregation));
}
/// NOTE: input_order_info (for projection and not) is set only if projection is complete
if (query_info.has_order_by && !query_info.need_aggregate && query_info.projection->input_order_info)
{
chassert(query_info.projection->complete);
SortDescription output_order_descr = InterpreterSelectQuery::getSortDescription(select_query, context);
UInt64 limit = InterpreterSelectQuery::getLimitForSorting(select_query, context);
auto sorting_step = std::make_unique<SortingStep>(
projection_plan->getCurrentDataStream(),
query_info.projection->input_order_info->sort_description_for_merging,
output_order_descr,
settings.max_block_size,
limit);
sorting_step->setStepDescription("ORDER BY for projections");
projection_plan->addStep(std::move(sorting_step));
}
}
auto ordinary_query_plan = std::make_unique<QueryPlan>();
if (query_info.projection->merge_tree_normal_select_result_ptr)
{
auto storage_from_base_parts_of_projection
= std::make_shared<StorageFromMergeTreeDataPart>(data, query_info.projection->merge_tree_normal_select_result_ptr);
auto interpreter = InterpreterSelectQuery(
query_info.query,
context,
storage_from_base_parts_of_projection,
nullptr,
SelectQueryOptions{processed_stage}.projectionQuery());
interpreter.buildQueryPlan(*ordinary_query_plan);
const auto & expressions = interpreter.getAnalysisResult();
if (processed_stage == QueryProcessingStage::Enum::FetchColumns && expressions.before_where)
{
auto where_step = std::make_unique<FilterStep>(
ordinary_query_plan->getCurrentDataStream(),
expressions.before_where,
expressions.where_column_name,
expressions.remove_where_filter);
where_step->setStepDescription("WHERE");
ordinary_query_plan->addStep(std::move(where_step));
}
}
Pipe projection_pipe;
Pipe ordinary_pipe;
if (query_info.projection->desc->type == ProjectionDescription::Type::Aggregate)
{
auto make_aggregator_params = [&](bool projection)
{
const auto & keys = query_info.projection->aggregation_keys.getNames();
AggregateDescriptions aggregates = query_info.projection->aggregate_descriptions;
/// This part is hacky.
/// We want AggregatingTransform to work with aggregate states instead of normal columns.
/// It is almost the same, just instead of adding new data to aggregation state we merge it with existing.
///
/// It is needed because data in projection:
/// * is not merged completely (we may have states with the same key in different parts)
/// * is not split into buckets (so if we just use MergingAggregated, it will use single thread)
const bool only_merge = projection;
Aggregator::Params params(
keys,
aggregates,
query_info.projection->aggregate_overflow_row,
settings.max_rows_to_group_by,
settings.group_by_overflow_mode,
settings.group_by_two_level_threshold,
settings.group_by_two_level_threshold_bytes,
settings.max_bytes_before_external_group_by,
settings.empty_result_for_aggregation_by_empty_set,
context->getTempDataOnDisk(),
settings.max_threads,
settings.min_free_disk_space_for_temporary_data,
settings.compile_aggregate_expressions,
settings.min_count_to_compile_aggregate_expression,
settings.max_block_size,
settings.enable_software_prefetch_in_aggregation,
only_merge);
return std::make_pair(params, only_merge);
};
if (ordinary_query_plan->isInitialized() && projection_plan->isInitialized())
{
auto projection_builder = projection_plan->buildQueryPipeline(
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
projection_pipe = QueryPipelineBuilder::getPipe(std::move(*projection_builder), resources);
auto ordinary_builder = ordinary_query_plan->buildQueryPipeline(
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
ordinary_pipe = QueryPipelineBuilder::getPipe(std::move(*ordinary_builder), resources);
/// Here we create shared ManyAggregatedData for both projection and ordinary data.
/// For ordinary data, AggregatedData is filled in a usual way.
/// For projection data, AggregatedData is filled by merging aggregation states.
/// When all AggregatedData is filled, we merge aggregation states together in a usual way.
/// Pipeline will look like:
/// ReadFromProjection -> Aggregating (only merge states) ->
/// ReadFromProjection -> Aggregating (only merge states) ->
/// ... -> Resize -> ConvertingAggregatedToChunks
/// ReadFromOrdinaryPart -> Aggregating (usual) -> (added by last Aggregating)
/// ReadFromOrdinaryPart -> Aggregating (usual) ->
/// ...
auto many_data = std::make_shared<ManyAggregatedData>(projection_pipe.numOutputPorts() + ordinary_pipe.numOutputPorts());
size_t counter = 0;
AggregatorListPtr aggregator_list_ptr = std::make_shared<AggregatorList>();
/// TODO apply optimize_aggregation_in_order here too (like below)
auto build_aggregate_pipe = [&](Pipe & pipe, bool projection)
{
auto [params, only_merge] = make_aggregator_params(projection);
AggregatingTransformParamsPtr transform_params = std::make_shared<AggregatingTransformParams>(
pipe.getHeader(), std::move(params), aggregator_list_ptr, query_info.projection->aggregate_final);
pipe.resize(pipe.numOutputPorts(), true, true);
auto merge_threads = num_streams;
auto temporary_data_merge_threads = settings.aggregation_memory_efficient_merge_threads
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
: static_cast<size_t>(settings.max_threads);
pipe.addSimpleTransform([&](const Block & header)
{
return std::make_shared<AggregatingTransform>(
header, transform_params, many_data, counter++, merge_threads, temporary_data_merge_threads);
});
};
if (!projection_pipe.empty())
build_aggregate_pipe(projection_pipe, true);
if (!ordinary_pipe.empty())
build_aggregate_pipe(ordinary_pipe, false);
}
else
{
auto add_aggregating_step = [&](QueryPlanPtr & query_plan, bool projection)
{
auto [params, only_merge] = make_aggregator_params(projection);
auto merge_threads = num_streams;
auto temporary_data_merge_threads = settings.aggregation_memory_efficient_merge_threads
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
: static_cast<size_t>(settings.max_threads);
InputOrderInfoPtr group_by_info = query_info.projection->input_order_info;
SortDescription sort_description_for_merging;
SortDescription group_by_sort_description;
if (group_by_info && settings.optimize_aggregation_in_order)
{
group_by_sort_description = getSortDescriptionFromGroupBy(select_query);
sort_description_for_merging = group_by_info->sort_description_for_merging;
}
else
group_by_info = nullptr;
// We don't have information regarding the `to_stage` of the query processing, only about `from_stage` (which is passed through `processed_stage` argument).
// Thus we cannot assign false here since it may be a query over distributed table.
const bool should_produce_results_in_order_of_bucket_number = true;
auto aggregating_step = std::make_unique<AggregatingStep>(
query_plan->getCurrentDataStream(),
std::move(params),
/* grouping_sets_params_= */ GroupingSetsParamsList{},
query_info.projection->aggregate_final,
settings.max_block_size,
settings.aggregation_in_order_max_block_bytes,
merge_threads,
temporary_data_merge_threads,
/* storage_has_evenly_distributed_read_= */ false,
/* group_by_use_nulls */ false,
std::move(sort_description_for_merging),
std::move(group_by_sort_description),
should_produce_results_in_order_of_bucket_number,
settings.enable_memory_bound_merging_of_aggregation_results,
!group_by_info && settings.force_aggregation_in_order);
query_plan->addStep(std::move(aggregating_step));
};
if (projection_plan->isInitialized())
{
add_aggregating_step(projection_plan, true);
auto projection_builder = projection_plan->buildQueryPipeline(
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
projection_pipe = QueryPipelineBuilder::getPipe(std::move(*projection_builder), resources);
}
if (ordinary_query_plan->isInitialized())
{
add_aggregating_step(ordinary_query_plan, false);
auto ordinary_builder = ordinary_query_plan->buildQueryPipeline(
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
ordinary_pipe = QueryPipelineBuilder::getPipe(std::move(*ordinary_builder), resources);
}
}
}
else
{
if (projection_plan->isInitialized())
{
auto projection_builder = projection_plan->buildQueryPipeline(
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
projection_pipe = QueryPipelineBuilder::getPipe(std::move(*projection_builder), resources);
}
if (ordinary_query_plan->isInitialized())
{
auto ordinary_builder = ordinary_query_plan->buildQueryPipeline(
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
ordinary_pipe = QueryPipelineBuilder::getPipe(std::move(*ordinary_builder), resources);
}
}
Pipes pipes;
pipes.emplace_back(std::move(projection_pipe));
pipes.emplace_back(std::move(ordinary_pipe));
auto pipe = Pipe::unitePipes(std::move(pipes));
auto plan = std::make_unique<QueryPlan>();
if (pipe.empty())
return plan;
pipe.resize(1);
auto step = std::make_unique<ReadFromStorageStep>(
std::move(pipe),
fmt::format("MergeTree(with {} projection {})", query_info.projection->desc->type, query_info.projection->desc->name),
query_info.storage_limits);
plan->addStep(std::move(step));
plan->addInterpreterContext(query_info.projection->context);
return plan;
}
MergeTreeDataSelectSamplingData MergeTreeDataSelectExecutor::getSampling(
const SelectQueryInfo & select_query_info,
NamesAndTypesList available_real_columns,
const MergeTreeData::DataPartsVector & parts,
KeyCondition & key_condition,
const MergeTreeData & data,
const StorageMetadataPtr & metadata_snapshot,
ContextPtr context,
bool sample_factor_column_queried,
Poco::Logger * log)
{
const Settings & settings = context->getSettingsRef();
/// Sampling.
MergeTreeDataSelectSamplingData sampling;
RelativeSize relative_sample_size = 0;
RelativeSize relative_sample_offset = 0;
bool final = false;
std::optional<ASTSampleRatio::Rational> sample_size_ratio;
std::optional<ASTSampleRatio::Rational> sample_offset_ratio;
if (select_query_info.table_expression_modifiers)
{
const auto & table_expression_modifiers = *select_query_info.table_expression_modifiers;
final = table_expression_modifiers.hasFinal();
sample_size_ratio = table_expression_modifiers.getSampleSizeRatio();
sample_offset_ratio = table_expression_modifiers.getSampleOffsetRatio();
}
else
{
auto & select = select_query_info.query->as<ASTSelectQuery &>();
final = select.final();
auto select_sample_size = select.sampleSize();
auto select_sample_offset = select.sampleOffset();
if (select_sample_size)
sample_size_ratio = select_sample_size->as<ASTSampleRatio &>().ratio;
if (select_sample_offset)
sample_offset_ratio = select_sample_offset->as<ASTSampleRatio &>().ratio;
}
if (sample_size_ratio)
{
relative_sample_size.assign(sample_size_ratio->numerator, sample_size_ratio->denominator);
if (relative_sample_size < 0)
throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "Negative sample size");
relative_sample_offset = 0;
if (sample_offset_ratio)
relative_sample_offset.assign(sample_offset_ratio->numerator, sample_offset_ratio->denominator);
if (relative_sample_offset < 0)
throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "Negative sample offset");
/// Convert absolute value of the sampling (in form `SAMPLE 1000000` - how many rows to
/// read) into the relative `SAMPLE 0.1` (how much data to read).
size_t approx_total_rows = 0;
if (relative_sample_size > 1 || relative_sample_offset > 1)
approx_total_rows = getApproximateTotalRowsToRead(parts, metadata_snapshot, key_condition, settings, log);
if (relative_sample_size > 1)
{
relative_sample_size = convertAbsoluteSampleSizeToRelative(*sample_size_ratio, approx_total_rows);
LOG_DEBUG(log, "Selected relative sample size: {}", toString(relative_sample_size));
}
/// SAMPLE 1 is the same as the absence of SAMPLE.
if (relative_sample_size == RelativeSize(1))
relative_sample_size = 0;
if (relative_sample_offset > 0 && RelativeSize(0) == relative_sample_size)
throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "Sampling offset is incorrect because no sampling");
if (relative_sample_offset > 1)
{
relative_sample_offset = convertAbsoluteSampleSizeToRelative(*sample_offset_ratio, approx_total_rows);
LOG_DEBUG(log, "Selected relative sample offset: {}", toString(relative_sample_offset));
}
}
/** Which range of sampling key values do I need to read?
* First, in the whole range ("universe") we select the interval
* of relative `relative_sample_size` size, offset from the beginning by `relative_sample_offset`.
*
* Example: SAMPLE 0.4 OFFSET 0.3
*
* [------********------]
* ^ - offset
* <------> - size
*
* If the interval passes through the end of the universe, then cut its right side.
*
* Example: SAMPLE 0.4 OFFSET 0.8
*
* [----------------****]
* ^ - offset
* <------> - size
*
* Next, if the `parallel_replicas_count`, `parallel_replica_offset` settings are set,
* then it is necessary to break the received interval into pieces of the number `parallel_replicas_count`,
* and select a piece with the number `parallel_replica_offset` (from zero).
*
* Example: SAMPLE 0.4 OFFSET 0.3, parallel_replicas_count = 2, parallel_replica_offset = 1
*
* [----------****------]
* ^ - offset
* <------> - size
* <--><--> - pieces for different `parallel_replica_offset`, select the second one.
*
* It is very important that the intervals for different `parallel_replica_offset` cover the entire range without gaps and overlaps.
* It is also important that the entire universe can be covered using SAMPLE 0.1 OFFSET 0, ... OFFSET 0.9 and similar decimals.
*/
auto parallel_replicas_mode = context->getParallelReplicasMode();
/// Parallel replicas has been requested but there is no way to sample data.
/// Select all data from first replica and no data from other replicas.
if (settings.parallel_replicas_count > 1 && parallel_replicas_mode == Context::ParallelReplicasMode::SAMPLE_KEY
&& !data.supportsSampling() && settings.parallel_replica_offset > 0)
{
LOG_DEBUG(
log,
"Will use no data on this replica because parallel replicas processing has been requested"
" (the setting 'max_parallel_replicas') but the table does not support sampling and this replica is not the first.");
sampling.read_nothing = true;
return sampling;
}
sampling.use_sampling = relative_sample_size > 0
|| (settings.parallel_replicas_count > 1 && parallel_replicas_mode == Context::ParallelReplicasMode::SAMPLE_KEY
&& data.supportsSampling());
bool no_data = false; /// There is nothing left after sampling.
if (sampling.use_sampling)
{
if (sample_factor_column_queried && relative_sample_size != RelativeSize(0))
sampling.used_sample_factor = 1.0 / boost::rational_cast<Float64>(relative_sample_size);
RelativeSize size_of_universum = 0;
const auto & sampling_key = metadata_snapshot->getSamplingKey();
DataTypePtr sampling_column_type = sampling_key.data_types[0];
if (sampling_key.data_types.size() == 1)
{
if (typeid_cast<const DataTypeUInt64 *>(sampling_column_type.get()))
size_of_universum = RelativeSize(std::numeric_limits<UInt64>::max()) + RelativeSize(1);
else if (typeid_cast<const DataTypeUInt32 *>(sampling_column_type.get()))
size_of_universum = RelativeSize(std::numeric_limits<UInt32>::max()) + RelativeSize(1);
else if (typeid_cast<const DataTypeUInt16 *>(sampling_column_type.get()))
size_of_universum = RelativeSize(std::numeric_limits<UInt16>::max()) + RelativeSize(1);
else if (typeid_cast<const DataTypeUInt8 *>(sampling_column_type.get()))
size_of_universum = RelativeSize(std::numeric_limits<UInt8>::max()) + RelativeSize(1);
}
if (size_of_universum == RelativeSize(0))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER,
"Invalid sampling column type in storage parameters: {}. Must be one unsigned integer type",
sampling_column_type->getName());
if (settings.parallel_replicas_count > 1)
{
if (relative_sample_size == RelativeSize(0))
relative_sample_size = 1;
relative_sample_size /= settings.parallel_replicas_count.value;
relative_sample_offset += relative_sample_size * RelativeSize(settings.parallel_replica_offset.value);
}
if (relative_sample_offset >= RelativeSize(1))
no_data = true;
/// Calculate the half-interval of `[lower, upper)` column values.
bool has_lower_limit = false;
bool has_upper_limit = false;
RelativeSize lower_limit_rational = relative_sample_offset * size_of_universum;
RelativeSize upper_limit_rational = (relative_sample_offset + relative_sample_size) * size_of_universum;
UInt64 lower = boost::rational_cast<ASTSampleRatio::BigNum>(lower_limit_rational);
UInt64 upper = boost::rational_cast<ASTSampleRatio::BigNum>(upper_limit_rational);
if (lower > 0)
has_lower_limit = true;
if (upper_limit_rational < size_of_universum)
has_upper_limit = true;
/*std::cerr << std::fixed << std::setprecision(100)
<< "relative_sample_size: " << relative_sample_size << "\n"
<< "relative_sample_offset: " << relative_sample_offset << "\n"
<< "lower_limit_float: " << lower_limit_rational << "\n"
<< "upper_limit_float: " << upper_limit_rational << "\n"
<< "lower: " << lower << "\n"
<< "upper: " << upper << "\n";*/
if ((has_upper_limit && upper == 0)
|| (has_lower_limit && has_upper_limit && lower == upper))
no_data = true;
if (no_data || (!has_lower_limit && !has_upper_limit))
{
sampling.use_sampling = false;
}
else
{
/// Let's add the conditions to cut off something else when the index is scanned again and when the request is processed.
std::shared_ptr<ASTFunction> lower_function;
std::shared_ptr<ASTFunction> upper_function;
/// If sample and final are used together no need to calculate sampling expression twice.
/// The first time it was calculated for final, because sample key is a part of the PK.
/// So, assume that we already have calculated column.
ASTPtr sampling_key_ast = metadata_snapshot->getSamplingKeyAST();
if (final)
{
sampling_key_ast = std::make_shared<ASTIdentifier>(sampling_key.column_names[0]);
/// We do spoil available_real_columns here, but it is not used later.
available_real_columns.emplace_back(sampling_key.column_names[0], std::move(sampling_column_type));
}
if (has_lower_limit)
{
if (!key_condition.addCondition(
sampling_key.column_names[0], Range::createLeftBounded(lower, true, sampling_key.data_types[0]->isNullable())))
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Sampling column not in primary key");
ASTPtr args = std::make_shared<ASTExpressionList>();
args->children.push_back(sampling_key_ast);
args->children.push_back(std::make_shared<ASTLiteral>(lower));
lower_function = std::make_shared<ASTFunction>();
lower_function->name = "greaterOrEquals";
lower_function->arguments = args;
lower_function->children.push_back(lower_function->arguments);
sampling.filter_function = lower_function;
}
if (has_upper_limit)
{
if (!key_condition.addCondition(
sampling_key.column_names[0], Range::createRightBounded(upper, false, sampling_key.data_types[0]->isNullable())))
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Sampling column not in primary key");
ASTPtr args = std::make_shared<ASTExpressionList>();
args->children.push_back(sampling_key_ast);
args->children.push_back(std::make_shared<ASTLiteral>(upper));
upper_function = std::make_shared<ASTFunction>();
upper_function->name = "less";
upper_function->arguments = args;
upper_function->children.push_back(upper_function->arguments);
sampling.filter_function = upper_function;
}
if (has_lower_limit && has_upper_limit)
{
ASTPtr args = std::make_shared<ASTExpressionList>();
args->children.push_back(lower_function);
args->children.push_back(upper_function);
sampling.filter_function = std::make_shared<ASTFunction>();
sampling.filter_function->name = "and";
sampling.filter_function->arguments = args;
sampling.filter_function->children.push_back(sampling.filter_function->arguments);
}
ASTPtr query = sampling.filter_function;
auto syntax_result = TreeRewriter(context).analyze(query, available_real_columns);
sampling.filter_expression = ExpressionAnalyzer(sampling.filter_function, syntax_result, context).getActionsDAG(false);
}
}
if (no_data)
{
LOG_DEBUG(log, "Sampling yields no data.");
sampling.read_nothing = true;
}
return sampling;
}
std::optional<std::unordered_set<String>> MergeTreeDataSelectExecutor::filterPartsByVirtualColumns(
const MergeTreeData & data,
const MergeTreeData::DataPartsVector & parts,
const ASTPtr & query,
ContextPtr context)
{
std::unordered_set<String> part_values;
ASTPtr expression_ast;
auto virtual_columns_block = data.getBlockWithVirtualPartColumns(parts, true /* one_part */);
// Generate valid expressions for filtering
VirtualColumnUtils::prepareFilterBlockWithQuery(query, context, virtual_columns_block, expression_ast);
// If there is still something left, fill the virtual block and do the filtering.
if (expression_ast)
{
virtual_columns_block = data.getBlockWithVirtualPartColumns(parts, false /* one_part */);
VirtualColumnUtils::filterBlockWithQuery(query, virtual_columns_block, context, expression_ast);
return VirtualColumnUtils::extractSingleValueFromBlock<String>(virtual_columns_block, "_part");
}
return {};
}
void MergeTreeDataSelectExecutor::filterPartsByPartition(
std::optional<PartitionPruner> & partition_pruner,
std::optional<KeyCondition> & minmax_idx_condition,
MergeTreeData::DataPartsVector & parts,
std::vector<AlterConversionsPtr> & alter_conversions,
const std::optional<std::unordered_set<String>> & part_values,
const StorageMetadataPtr & metadata_snapshot,
const MergeTreeData & data,
const ContextPtr & context,
const PartitionIdToMaxBlock * max_block_numbers_to_read,
Poco::Logger * log,
ReadFromMergeTree::IndexStats & index_stats)
{
chassert(alter_conversions.empty() || parts.size() == alter_conversions.size());
const Settings & settings = context->getSettingsRef();
DataTypes minmax_columns_types;
if (metadata_snapshot->hasPartitionKey())
{
const auto & partition_key = metadata_snapshot->getPartitionKey();
minmax_columns_types = data.getMinMaxColumnsTypes(partition_key);
if (settings.force_index_by_date && (minmax_idx_condition->alwaysUnknownOrTrue() && partition_pruner->isUseless()))
{
auto minmax_columns_names = data.getMinMaxColumnsNames(partition_key);
throw Exception(ErrorCodes::INDEX_NOT_USED,
"Neither MinMax index by columns ({}) nor partition expr is used and setting 'force_index_by_date' is set",
fmt::join(minmax_columns_names, ", "));
}
}
auto query_context = context->hasQueryContext() ? context->getQueryContext() : context;
PartFilterCounters part_filter_counters;
if (query_context->getSettingsRef().allow_experimental_query_deduplication)
selectPartsToReadWithUUIDFilter(
parts,
alter_conversions,
part_values,
data.getPinnedPartUUIDs(),
minmax_idx_condition,
minmax_columns_types,
partition_pruner,
max_block_numbers_to_read,
query_context,
part_filter_counters,
log);
else
selectPartsToRead(
parts,
alter_conversions,
part_values,
minmax_idx_condition,
minmax_columns_types,
partition_pruner,
max_block_numbers_to_read,
part_filter_counters);
index_stats.emplace_back(ReadFromMergeTree::IndexStat{
.type = ReadFromMergeTree::IndexType::None,
.num_parts_after = part_filter_counters.num_initial_selected_parts,
.num_granules_after = part_filter_counters.num_initial_selected_granules});
if (minmax_idx_condition)
{
auto description = minmax_idx_condition->getDescription();
index_stats.emplace_back(ReadFromMergeTree::IndexStat{
.type = ReadFromMergeTree::IndexType::MinMax,
.condition = std::move(description.condition),
.used_keys = std::move(description.used_keys),
.num_parts_after = part_filter_counters.num_parts_after_minmax,
.num_granules_after = part_filter_counters.num_granules_after_minmax});
LOG_DEBUG(log, "MinMax index condition: {}", minmax_idx_condition->toString());
}
if (partition_pruner)
{
auto description = partition_pruner->getKeyCondition().getDescription();
index_stats.emplace_back(ReadFromMergeTree::IndexStat{
.type = ReadFromMergeTree::IndexType::Partition,
.condition = std::move(description.condition),
.used_keys = std::move(description.used_keys),
.num_parts_after = part_filter_counters.num_parts_after_partition_pruner,
.num_granules_after = part_filter_counters.num_granules_after_partition_pruner});
}
}
RangesInDataParts MergeTreeDataSelectExecutor::filterPartsByPrimaryKeyAndSkipIndexes(
MergeTreeData::DataPartsVector && parts,
std::vector<AlterConversionsPtr> && alter_conversions,
StorageMetadataPtr metadata_snapshot,
const ContextPtr & context,
const KeyCondition & key_condition,
const UsefulSkipIndexes & skip_indexes,
const MergeTreeReaderSettings & reader_settings,
Poco::Logger * log,
size_t num_streams,
ReadFromMergeTree::IndexStats & index_stats,
bool use_skip_indexes)
{
chassert(alter_conversions.empty() || parts.size() == alter_conversions.size());
RangesInDataParts parts_with_ranges;
parts_with_ranges.resize(parts.size());
const Settings & settings = context->getSettingsRef();
if (use_skip_indexes && settings.force_data_skipping_indices.changed)
{
const auto & indices = settings.force_data_skipping_indices.toString();
Strings forced_indices;
{
Tokens tokens(indices.data(), &indices[indices.size()], settings.max_query_size);
IParser::Pos pos(tokens, static_cast<unsigned>(settings.max_parser_depth));
Expected expected;
if (!parseIdentifiersOrStringLiterals(pos, expected, forced_indices))
throw Exception(ErrorCodes::CANNOT_PARSE_TEXT, "Cannot parse force_data_skipping_indices ('{}')", indices);
}
if (forced_indices.empty())
throw Exception(ErrorCodes::CANNOT_PARSE_TEXT, "No indices parsed from force_data_skipping_indices ('{}')", indices);
std::unordered_set<std::string> useful_indices_names;
for (const auto & useful_index : skip_indexes.useful_indices)
useful_indices_names.insert(useful_index.index->index.name);
for (const auto & index_name : forced_indices)
{
if (!useful_indices_names.contains(index_name))
{
throw Exception(
ErrorCodes::INDEX_NOT_USED,
"Index {} is not used and setting 'force_data_skipping_indices' contains it",
backQuote(index_name));
}
}
}
struct IndexStat
{
std::atomic<size_t> total_granules{0};
std::atomic<size_t> granules_dropped{0};
std::atomic<size_t> total_parts{0};
std::atomic<size_t> parts_dropped{0};
};
std::vector<IndexStat> useful_indices_stat(skip_indexes.useful_indices.size());
std::vector<IndexStat> merged_indices_stat(skip_indexes.merged_indices.size());
std::atomic<size_t> sum_marks_pk = 0;
std::atomic<size_t> sum_parts_pk = 0;
/// Let's find what range to read from each part.
{
auto mark_cache = context->getIndexMarkCache();
auto uncompressed_cache = context->getIndexUncompressedCache();
auto process_part = [&](size_t part_index)
{
auto & part = parts[part_index];
auto alter_conversions_for_part = !alter_conversions.empty()
? alter_conversions[part_index]
: std::make_shared<AlterConversions>();
RangesInDataPart ranges(part, alter_conversions_for_part, part_index);
size_t total_marks_count = part->index_granularity.getMarksCountWithoutFinal();
if (metadata_snapshot->hasPrimaryKey())
ranges.ranges = markRangesFromPKRange(part, metadata_snapshot, key_condition, settings, log);
else if (total_marks_count)
ranges.ranges = MarkRanges{{MarkRange{0, total_marks_count}}};
sum_marks_pk.fetch_add(ranges.getMarksCount(), std::memory_order_relaxed);
if (!ranges.ranges.empty())
sum_parts_pk.fetch_add(1, std::memory_order_relaxed);
for (size_t idx = 0; idx < skip_indexes.useful_indices.size(); ++idx)
{
if (ranges.ranges.empty())
break;
const auto & index_and_condition = skip_indexes.useful_indices[idx];
auto & stat = useful_indices_stat[idx];
stat.total_parts.fetch_add(1, std::memory_order_relaxed);
size_t total_granules = ranges.ranges.getNumberOfMarks();
stat.total_granules.fetch_add(total_granules, std::memory_order_relaxed);
ranges.ranges = filterMarksUsingIndex(
index_and_condition.index,
index_and_condition.condition,
part,
ranges.ranges,
settings,
reader_settings,
mark_cache.get(),
uncompressed_cache.get(),
log);
stat.granules_dropped.fetch_add(total_granules - ranges.ranges.getNumberOfMarks(), std::memory_order_relaxed);
if (ranges.ranges.empty())
stat.parts_dropped.fetch_add(1, std::memory_order_relaxed);
}
for (size_t idx = 0; idx < skip_indexes.merged_indices.size(); ++idx)
{
if (ranges.ranges.empty())
break;
const auto & indices_and_condition = skip_indexes.merged_indices[idx];
auto & stat = merged_indices_stat[idx];
stat.total_parts.fetch_add(1, std::memory_order_relaxed);
size_t total_granules = ranges.ranges.getNumberOfMarks();
ranges.ranges = filterMarksUsingMergedIndex(
indices_and_condition.indices, indices_and_condition.condition,
part, ranges.ranges,
settings, reader_settings,
mark_cache.get(), uncompressed_cache.get(), log);
stat.total_granules.fetch_add(total_granules, std::memory_order_relaxed);
stat.granules_dropped.fetch_add(total_granules - ranges.ranges.getNumberOfMarks(), std::memory_order_relaxed);
if (ranges.ranges.empty())
stat.parts_dropped.fetch_add(1, std::memory_order_relaxed);
}
if (!ranges.ranges.empty())
parts_with_ranges[part_index] = std::move(ranges);
};
size_t num_threads = std::min<size_t>(num_streams, parts.size());
if (settings.max_threads_for_indexes)
{
num_threads = std::min<size_t>(num_streams, settings.max_threads_for_indexes);
}
if (num_threads <= 1)
{
for (size_t part_index = 0; part_index < parts.size(); ++part_index)
process_part(part_index);
}
else
{
/// Parallel loading of data parts.
ThreadPool pool(
CurrentMetrics::MergeTreeDataSelectExecutorThreads,
CurrentMetrics::MergeTreeDataSelectExecutorThreadsActive,
num_threads);
for (size_t part_index = 0; part_index < parts.size(); ++part_index)
pool.scheduleOrThrowOnError([&, part_index, thread_group = CurrentThread::getGroup()]
{
SCOPE_EXIT_SAFE(
if (thread_group)
CurrentThread::detachFromGroupIfNotDetached();
);
if (thread_group)
CurrentThread::attachToGroupIfDetached(thread_group);
process_part(part_index);
});
pool.wait();
}
/// Skip empty ranges.
size_t next_part = 0;
for (size_t part_index = 0; part_index < parts.size(); ++part_index)
{
auto & part = parts_with_ranges[part_index];
if (!part.data_part)
continue;
if (next_part != part_index)
std::swap(parts_with_ranges[next_part], part);
++next_part;
}
parts_with_ranges.resize(next_part);
}
if (metadata_snapshot->hasPrimaryKey())
{
auto description = key_condition.getDescription();
index_stats.emplace_back(ReadFromMergeTree::IndexStat{
.type = ReadFromMergeTree::IndexType::PrimaryKey,
.condition = std::move(description.condition),
.used_keys = std::move(description.used_keys),
.num_parts_after = sum_parts_pk.load(std::memory_order_relaxed),
.num_granules_after = sum_marks_pk.load(std::memory_order_relaxed)});
}
for (size_t idx = 0; idx < skip_indexes.useful_indices.size(); ++idx)
{
const auto & index_and_condition = skip_indexes.useful_indices[idx];
const auto & stat = useful_indices_stat[idx];
const auto & index_name = index_and_condition.index->index.name;
LOG_DEBUG(
log,
"Index {} has dropped {}/{} granules.",
backQuote(index_name),
stat.granules_dropped,
stat.total_granules);
std::string description
= index_and_condition.index->index.type + " GRANULARITY " + std::to_string(index_and_condition.index->index.granularity);
index_stats.emplace_back(ReadFromMergeTree::IndexStat{
.type = ReadFromMergeTree::IndexType::Skip,
.name = index_name,
.description = std::move(description),
.num_parts_after = stat.total_parts - stat.parts_dropped,
.num_granules_after = stat.total_granules - stat.granules_dropped});
}
for (size_t idx = 0; idx < skip_indexes.merged_indices.size(); ++idx)
{
const auto & index_and_condition = skip_indexes.merged_indices[idx];
const auto & stat = merged_indices_stat[idx];
const auto & index_name = "Merged";
LOG_DEBUG(log, "Index {} has dropped {}/{} granules.",
backQuote(index_name),
stat.granules_dropped, stat.total_granules);
std::string description = "MERGED GRANULARITY " + std::to_string(index_and_condition.indices.at(0)->index.granularity);
index_stats.emplace_back(ReadFromMergeTree::IndexStat{
.type = ReadFromMergeTree::IndexType::Skip,
.name = index_name,
.description = std::move(description),
.num_parts_after = stat.total_parts - stat.parts_dropped,
.num_granules_after = stat.total_granules - stat.granules_dropped});
}
return parts_with_ranges;
}
std::shared_ptr<QueryIdHolder> MergeTreeDataSelectExecutor::checkLimits(
const MergeTreeData & data,
const ReadFromMergeTree::AnalysisResult & result,
const ContextPtr & context)
{
const auto & settings = context->getSettingsRef();
const auto data_settings = data.getSettings();
auto max_partitions_to_read
= settings.max_partitions_to_read.changed ? settings.max_partitions_to_read : data_settings->max_partitions_to_read;
if (max_partitions_to_read > 0)
{
std::set<String> partitions;
for (const auto & part_with_ranges : result.parts_with_ranges)
partitions.insert(part_with_ranges.data_part->info.partition_id);
if (partitions.size() > static_cast<size_t>(max_partitions_to_read))
throw Exception(
ErrorCodes::TOO_MANY_PARTITIONS,
"Too many partitions to read. Current {}, max {}",
partitions.size(),
max_partitions_to_read);
}
if (data_settings->max_concurrent_queries > 0 && data_settings->min_marks_to_honor_max_concurrent_queries > 0
&& result.selected_marks >= data_settings->min_marks_to_honor_max_concurrent_queries)
{
auto query_id = context->getCurrentQueryId();
if (!query_id.empty())
return data.getQueryIdHolder(query_id, data_settings->max_concurrent_queries);
}
return nullptr;
}
static void selectColumnNames(
const Names & column_names_to_return,
const MergeTreeData & data,
Names & real_column_names,
Names & virt_column_names,
bool & sample_factor_column_queried)
{
sample_factor_column_queried = false;
for (const String & name : column_names_to_return)
{
if (name == "_part")
{
virt_column_names.push_back(name);
}
else if (name == "_part_index")
{
virt_column_names.push_back(name);
}
else if (name == "_partition_id")
{
virt_column_names.push_back(name);
}
else if (name == "_part_offset")
{
virt_column_names.push_back(name);
}
else if (name == LightweightDeleteDescription::FILTER_COLUMN.name)
{
virt_column_names.push_back(name);
}
else if (name == "_part_uuid")
{
virt_column_names.push_back(name);
}
else if (name == "_partition_value")
{
if (!typeid_cast<const DataTypeTuple *>(data.getPartitionValueType().get()))
{
throw Exception(
ErrorCodes::NO_SUCH_COLUMN_IN_TABLE,
"Missing column `_partition_value` because there is no partition column in table {}",
data.getStorageID().getTableName());
}
virt_column_names.push_back(name);
}
else if (name == "_sample_factor")
{
sample_factor_column_queried = true;
virt_column_names.push_back(name);
}
else
{
real_column_names.push_back(name);
}
}
}
MergeTreeDataSelectAnalysisResultPtr MergeTreeDataSelectExecutor::estimateNumMarksToRead(
MergeTreeData::DataPartsVector parts,
const PrewhereInfoPtr & prewhere_info,
const Names & column_names_to_return,
const StorageMetadataPtr & metadata_snapshot_base,
const StorageMetadataPtr & metadata_snapshot,
const SelectQueryInfo & query_info,
const ActionDAGNodes & added_filter_nodes,
ContextPtr context,
size_t num_streams,
std::shared_ptr<PartitionIdToMaxBlock> max_block_numbers_to_read) const
{
size_t total_parts = parts.size();
if (total_parts == 0)
return std::make_shared<MergeTreeDataSelectAnalysisResult>(
MergeTreeDataSelectAnalysisResult{.result = ReadFromMergeTree::AnalysisResult()});
Names real_column_names;
Names virt_column_names;
/// If query contains restrictions on the virtual column `_part` or `_part_index`, select only parts suitable for it.
/// The virtual column `_sample_factor` (which is equal to 1 / used sample rate) can be requested in the query.
bool sample_factor_column_queried = false;
selectColumnNames(column_names_to_return, data, real_column_names, virt_column_names, sample_factor_column_queried);
std::optional<ReadFromMergeTree::Indexes> indexes;
return ReadFromMergeTree::selectRangesToRead(
std::move(parts),
/*alter_conversions=*/ {},
prewhere_info,
added_filter_nodes,
metadata_snapshot_base,
metadata_snapshot,
query_info,
context,
num_streams,
max_block_numbers_to_read,
data,
real_column_names,
sample_factor_column_queried,
log,
indexes);
}
QueryPlanStepPtr MergeTreeDataSelectExecutor::readFromParts(
MergeTreeData::DataPartsVector parts,
std::vector<AlterConversionsPtr> alter_conversions,
const Names & column_names_to_return,
const StorageSnapshotPtr & storage_snapshot,
const SelectQueryInfo & query_info,
ContextPtr context,
const UInt64 max_block_size,
const size_t num_streams,
std::shared_ptr<PartitionIdToMaxBlock> max_block_numbers_to_read,
MergeTreeDataSelectAnalysisResultPtr merge_tree_select_result_ptr,
bool enable_parallel_reading) const
{
/// If merge_tree_select_result_ptr != nullptr, we use analyzed result so parts will always be empty.
if (merge_tree_select_result_ptr)
{
if (merge_tree_select_result_ptr->marks() == 0)
return {};
}
else if (parts.empty())
return {};
Names real_column_names;
Names virt_column_names;
/// If query contains restrictions on the virtual column `_part` or `_part_index`, select only parts suitable for it.
/// The virtual column `_sample_factor` (which is equal to 1 / used sample rate) can be requested in the query.
bool sample_factor_column_queried = false;
selectColumnNames(column_names_to_return, data, real_column_names, virt_column_names, sample_factor_column_queried);
return std::make_unique<ReadFromMergeTree>(
std::move(parts),
std::move(alter_conversions),
real_column_names,
virt_column_names,
data,
query_info,
storage_snapshot,
context,
max_block_size,
num_streams,
sample_factor_column_queried,
max_block_numbers_to_read,
log,
merge_tree_select_result_ptr,
enable_parallel_reading
);
}
/// Marks are placed whenever threshold on rows or bytes is met.
/// So we have to return the number of marks on whatever estimate is higher - by rows or by bytes.
size_t MergeTreeDataSelectExecutor::roundRowsOrBytesToMarks(
size_t rows_setting,
size_t bytes_setting,
size_t rows_granularity,
size_t bytes_granularity)
{
size_t res = (rows_setting + rows_granularity - 1) / rows_granularity;
if (bytes_granularity == 0)
return res;
else
return std::max(res, (bytes_setting + bytes_granularity - 1) / bytes_granularity);
}
/// Same as roundRowsOrBytesToMarks() but do not return more then max_marks
size_t MergeTreeDataSelectExecutor::minMarksForConcurrentRead(
size_t rows_setting,
size_t bytes_setting,
size_t rows_granularity,
size_t bytes_granularity,
size_t max_marks)
{
size_t marks = 1;
if (rows_setting + rows_granularity <= rows_setting) /// overflow
marks = max_marks;
else if (rows_setting)
marks = (rows_setting + rows_granularity - 1) / rows_granularity;
if (bytes_granularity == 0)
return marks;
else
{
/// Overflow
if (bytes_setting + bytes_granularity <= bytes_setting) /// overflow
return max_marks;
if (bytes_setting)
return std::max(marks, (bytes_setting + bytes_granularity - 1) / bytes_granularity);
else
return marks;
}
}
/// Calculates a set of mark ranges, that could possibly contain keys, required by condition.
/// In other words, it removes subranges from whole range, that definitely could not contain required keys.
MarkRanges MergeTreeDataSelectExecutor::markRangesFromPKRange(
const MergeTreeData::DataPartPtr & part,
const StorageMetadataPtr & metadata_snapshot,
const KeyCondition & key_condition,
const Settings & settings,
Poco::Logger * log)
{
MarkRanges res;
size_t marks_count = part->index_granularity.getMarksCount();
const auto & index = part->index;
if (marks_count == 0)
return res;
bool has_final_mark = part->index_granularity.hasFinalMark();
/// If index is not used.
if (key_condition.alwaysUnknownOrTrue())
{
if (has_final_mark)
res.push_back(MarkRange(0, marks_count - 1));
else
res.push_back(MarkRange(0, marks_count));
return res;
}
const auto & primary_key = metadata_snapshot->getPrimaryKey();
auto index_columns = std::make_shared<ColumnsWithTypeAndName>();
const auto & key_indices = key_condition.getKeyIndices();
DataTypes key_types;
for (size_t i : key_indices)
{
index_columns->emplace_back(ColumnWithTypeAndName{index[i], primary_key.data_types[i], primary_key.column_names[i]});
key_types.emplace_back(primary_key.data_types[i]);
}
/// If there are no monotonic functions, there is no need to save block reference.
/// Passing explicit field to FieldRef allows to optimize ranges and shows better performance.
std::function<void(size_t, size_t, FieldRef &)> create_field_ref;
if (key_condition.hasMonotonicFunctionsChain())
{
create_field_ref = [index_columns](size_t row, size_t column, FieldRef & field)
{
field = {index_columns.get(), row, column};
// NULL_LAST
if (field.isNull())
field = POSITIVE_INFINITY;
};
}
else
{
create_field_ref = [index_columns](size_t row, size_t column, FieldRef & field)
{
(*index_columns)[column].column->get(row, field);
// NULL_LAST
if (field.isNull())
field = POSITIVE_INFINITY;
};
}
/// NOTE Creating temporary Field objects to pass to KeyCondition.
size_t used_key_size = key_indices.size();
std::vector<FieldRef> index_left(used_key_size);
std::vector<FieldRef> index_right(used_key_size);
auto may_be_true_in_range = [&](MarkRange & range)
{
if (range.end == marks_count && !has_final_mark)
{
for (size_t i = 0; i < used_key_size; ++i)
{
create_field_ref(range.begin, i, index_left[i]);
index_right[i] = POSITIVE_INFINITY;
}
}
else
{
if (has_final_mark && range.end == marks_count)
range.end -= 1; /// Remove final empty mark. It's useful only for primary key condition.
for (size_t i = 0; i < used_key_size; ++i)
{
create_field_ref(range.begin, i, index_left[i]);
create_field_ref(range.end, i, index_right[i]);
}
}
return key_condition.mayBeTrueInRange(used_key_size, index_left.data(), index_right.data(), key_types);
};
const String & part_name = part->isProjectionPart() ? fmt::format("{}.{}", part->name, part->getParentPart()->name) : part->name;
if (!key_condition.matchesExactContinuousRange())
{
// Do exclusion search, where we drop ranges that do not match
if (settings.merge_tree_coarse_index_granularity <= 1)
throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "Setting merge_tree_coarse_index_granularity should be greater than 1");
size_t min_marks_for_seek = roundRowsOrBytesToMarks(
settings.merge_tree_min_rows_for_seek,
settings.merge_tree_min_bytes_for_seek,
part->index_granularity_info.fixed_index_granularity,
part->index_granularity_info.index_granularity_bytes);
/** There will always be disjoint suspicious segments on the stack, the leftmost one at the top (back).
* At each step, take the left segment and check if it fits.
* If fits, split it into smaller ones and put them on the stack. If not, discard it.
* If the segment is already of one mark length, add it to response and discard it.
*/
std::vector<MarkRange> ranges_stack = { {0, marks_count} };
size_t steps = 0;
while (!ranges_stack.empty())
{
MarkRange range = ranges_stack.back();
ranges_stack.pop_back();
steps++;
if (!may_be_true_in_range(range))
continue;
if (range.end == range.begin + 1)
{
/// We saw a useful gap between neighboring marks. Either add it to the last range, or start a new range.
if (res.empty() || range.begin - res.back().end > min_marks_for_seek)
res.push_back(range);
else
res.back().end = range.end;
}
else
{
/// Break the segment and put the result on the stack from right to left.
size_t step = (range.end - range.begin - 1) / settings.merge_tree_coarse_index_granularity + 1;
size_t end;
for (end = range.end; end > range.begin + step; end -= step)
ranges_stack.emplace_back(end - step, end);
ranges_stack.emplace_back(range.begin, end);
}
}
LOG_TRACE(log, "Used generic exclusion search over index for part {} with {} steps", part_name, steps);
}
else
{
/// In case when SELECT's predicate defines a single continuous interval of keys,
/// we can use binary search algorithm to find the left and right endpoint key marks of such interval.
/// The returned value is the minimum range of marks, containing all keys for which KeyCondition holds
LOG_TRACE(log, "Running binary search on index range for part {} ({} marks)", part_name, marks_count);
size_t steps = 0;
MarkRange result_range;
size_t searched_left = 0;
size_t searched_right = marks_count;
while (searched_left + 1 < searched_right)
{
const size_t middle = (searched_left + searched_right) / 2;
MarkRange range(0, middle);
if (may_be_true_in_range(range))
searched_right = middle;
else
searched_left = middle;
++steps;
}
result_range.begin = searched_left;
LOG_TRACE(log, "Found (LEFT) boundary mark: {}", searched_left);
searched_right = marks_count;
while (searched_left + 1 < searched_right)
{
const size_t middle = (searched_left + searched_right) / 2;
MarkRange range(middle, marks_count);
if (may_be_true_in_range(range))
searched_left = middle;
else
searched_right = middle;
++steps;
}
result_range.end = searched_right;
LOG_TRACE(log, "Found (RIGHT) boundary mark: {}", searched_right);
if (result_range.begin < result_range.end && may_be_true_in_range(result_range))
res.emplace_back(std::move(result_range));
LOG_TRACE(log, "Found {} range in {} steps", res.empty() ? "empty" : "continuous", steps);
}
return res;
}
MarkRanges MergeTreeDataSelectExecutor::filterMarksUsingIndex(
MergeTreeIndexPtr index_helper,
MergeTreeIndexConditionPtr condition,
MergeTreeData::DataPartPtr part,
const MarkRanges & ranges,
const Settings & settings,
const MergeTreeReaderSettings & reader_settings,
MarkCache * mark_cache,
UncompressedCache * uncompressed_cache,
Poco::Logger * log)
{
if (!index_helper->getDeserializedFormat(part->getDataPartStorage(), index_helper->getFileName()))
{
LOG_DEBUG(log, "File for index {} does not exist ({}.*). Skipping it.", backQuote(index_helper->index.name),
(fs::path(part->getDataPartStorage().getFullPath()) / index_helper->getFileName()).string());
return ranges;
}
auto index_granularity = index_helper->index.granularity;
const size_t min_marks_for_seek = roundRowsOrBytesToMarks(
settings.merge_tree_min_rows_for_seek,
settings.merge_tree_min_bytes_for_seek,
part->index_granularity_info.fixed_index_granularity,
part->index_granularity_info.index_granularity_bytes);
size_t marks_count = part->getMarksCount();
size_t final_mark = part->index_granularity.hasFinalMark();
size_t index_marks_count = (marks_count - final_mark + index_granularity - 1) / index_granularity;
MarkRanges index_ranges;
for (const auto & range : ranges)
{
MarkRange index_range(
range.begin / index_granularity,
(range.end + index_granularity - 1) / index_granularity);
index_ranges.push_back(index_range);
}
MergeTreeIndexReader reader(
index_helper, part,
index_marks_count,
index_ranges,
mark_cache,
uncompressed_cache,
reader_settings);
MarkRanges res;
/// Some granules can cover two or more ranges,
/// this variable is stored to avoid reading the same granule twice.
MergeTreeIndexGranulePtr granule = nullptr;
size_t last_index_mark = 0;
PostingsCacheForStore cache_in_store;
if (dynamic_cast<const MergeTreeIndexInverted *>(&*index_helper) != nullptr)
cache_in_store.store = GinIndexStoreFactory::instance().get(index_helper->getFileName(), part->getDataPartStoragePtr());
for (size_t i = 0; i < ranges.size(); ++i)
{
const MarkRange & index_range = index_ranges[i];
if (last_index_mark != index_range.begin || !granule)
reader.seek(index_range.begin);
for (size_t index_mark = index_range.begin; index_mark < index_range.end; ++index_mark)
{
if (index_mark != index_range.begin || !granule || last_index_mark != index_range.begin)
granule = reader.read();
auto ann_condition = std::dynamic_pointer_cast<IMergeTreeIndexConditionApproximateNearestNeighbor>(condition);
if (ann_condition != nullptr)
{
// vector of indexes of useful ranges
auto result = ann_condition->getUsefulRanges(granule);
for (auto range : result)
{
// range for corresponding index
MarkRange data_range(
std::max(ranges[i].begin, index_mark * index_granularity + range),
std::min(ranges[i].end, index_mark * index_granularity + range + 1));
if (res.empty() || res.back().end - data_range.begin > min_marks_for_seek)
res.push_back(data_range);
else
res.back().end = data_range.end;
}
continue;
}
bool result = false;
const auto * gin_filter_condition = dynamic_cast<const MergeTreeConditionInverted *>(&*condition);
if (!gin_filter_condition)
result = condition->mayBeTrueOnGranule(granule);
else
result = cache_in_store.store ? gin_filter_condition->mayBeTrueOnGranuleInPart(granule, cache_in_store) : true;
if (!result)
continue;
MarkRange data_range(
std::max(ranges[i].begin, index_mark * index_granularity),
std::min(ranges[i].end, (index_mark + 1) * index_granularity));
if (res.empty() || data_range.begin - res.back().end > min_marks_for_seek)
res.push_back(data_range);
else
res.back().end = data_range.end;
}
last_index_mark = index_range.end - 1;
}
return res;
}
MarkRanges MergeTreeDataSelectExecutor::filterMarksUsingMergedIndex(
MergeTreeIndices indices,
MergeTreeIndexMergedConditionPtr condition,
MergeTreeData::DataPartPtr part,
const MarkRanges & ranges,
const Settings & settings,
const MergeTreeReaderSettings & reader_settings,
MarkCache * mark_cache,
UncompressedCache * uncompressed_cache,
Poco::Logger * log)
{
for (const auto & index_helper : indices)
{
if (!part->getDataPartStorage().exists(index_helper->getFileName() + ".idx"))
{
LOG_DEBUG(log, "File for index {} does not exist. Skipping it.", backQuote(index_helper->index.name));
return ranges;
}
}
auto index_granularity = indices.front()->index.granularity;
const size_t min_marks_for_seek = roundRowsOrBytesToMarks(
settings.merge_tree_min_rows_for_seek,
settings.merge_tree_min_bytes_for_seek,
part->index_granularity_info.fixed_index_granularity,
part->index_granularity_info.index_granularity_bytes);
size_t marks_count = part->getMarksCount();
size_t final_mark = part->index_granularity.hasFinalMark();
size_t index_marks_count = (marks_count - final_mark + index_granularity - 1) / index_granularity;
std::vector<std::unique_ptr<MergeTreeIndexReader>> readers;
for (const auto & index_helper : indices)
{
readers.emplace_back(
std::make_unique<MergeTreeIndexReader>(
index_helper,
part,
index_marks_count,
ranges,
mark_cache,
uncompressed_cache,
reader_settings));
}
MarkRanges res;
/// Some granules can cover two or more ranges,
/// this variable is stored to avoid reading the same granule twice.
MergeTreeIndexGranules granules(indices.size(), nullptr);
bool granules_filled = false;
size_t last_index_mark = 0;
for (const auto & range : ranges)
{
MarkRange index_range(
range.begin / index_granularity,
(range.end + index_granularity - 1) / index_granularity);
if (last_index_mark != index_range.begin || !granules_filled)
for (auto & reader : readers)
reader->seek(index_range.begin);
for (size_t index_mark = index_range.begin; index_mark < index_range.end; ++index_mark)
{
if (index_mark != index_range.begin || !granules_filled || last_index_mark != index_range.begin)
{
for (size_t i = 0; i < readers.size(); ++i)
{
granules[i] = readers[i]->read();
granules_filled = true;
}
}
if (!condition->mayBeTrueOnGranule(granules))
continue;
MarkRange data_range(
std::max(range.begin, index_mark * index_granularity),
std::min(range.end, (index_mark + 1) * index_granularity));
if (res.empty() || data_range.begin - res.back().end > min_marks_for_seek)
res.push_back(data_range);
else
res.back().end = data_range.end;
}
last_index_mark = index_range.end - 1;
}
return res;
}
void MergeTreeDataSelectExecutor::selectPartsToRead(
MergeTreeData::DataPartsVector & parts,
std::vector<AlterConversionsPtr> & alter_conversions,
const std::optional<std::unordered_set<String>> & part_values,
const std::optional<KeyCondition> & minmax_idx_condition,
const DataTypes & minmax_columns_types,
std::optional<PartitionPruner> & partition_pruner,
const PartitionIdToMaxBlock * max_block_numbers_to_read,
PartFilterCounters & counters)
{
MergeTreeData::DataPartsVector prev_parts;
std::vector<AlterConversionsPtr> prev_conversions;
std::swap(prev_parts, parts);
std::swap(prev_conversions, alter_conversions);
for (size_t i = 0; i < prev_parts.size(); ++i)
{
const auto * part = prev_parts[i]->isProjectionPart() ? prev_parts[i]->getParentPart() : prev_parts[i].get();
if (part_values && part_values->find(part->name) == part_values->end())
continue;
if (part->isEmpty())
continue;
if (max_block_numbers_to_read)
{
auto blocks_iterator = max_block_numbers_to_read->find(part->info.partition_id);
if (blocks_iterator == max_block_numbers_to_read->end() || part->info.max_block > blocks_iterator->second)
continue;
}
size_t num_granules = part->getMarksCount();
if (num_granules && part->index_granularity.hasFinalMark())
--num_granules;
counters.num_initial_selected_parts += 1;
counters.num_initial_selected_granules += num_granules;
if (minmax_idx_condition && !minmax_idx_condition->checkInHyperrectangle(
part->minmax_idx->hyperrectangle, minmax_columns_types).can_be_true)
continue;
counters.num_parts_after_minmax += 1;
counters.num_granules_after_minmax += num_granules;
if (partition_pruner)
{
if (partition_pruner->canBePruned(*part))
continue;
}
counters.num_parts_after_partition_pruner += 1;
counters.num_granules_after_partition_pruner += num_granules;
parts.push_back(prev_parts[i]);
if (!prev_conversions.empty())
alter_conversions.push_back(prev_conversions[i]);
}
}
void MergeTreeDataSelectExecutor::selectPartsToReadWithUUIDFilter(
MergeTreeData::DataPartsVector & parts,
std::vector<AlterConversionsPtr> & alter_conversions,
const std::optional<std::unordered_set<String>> & part_values,
MergeTreeData::PinnedPartUUIDsPtr pinned_part_uuids,
const std::optional<KeyCondition> & minmax_idx_condition,
const DataTypes & minmax_columns_types,
std::optional<PartitionPruner> & partition_pruner,
const PartitionIdToMaxBlock * max_block_numbers_to_read,
ContextPtr query_context,
PartFilterCounters & counters,
Poco::Logger * log)
{
/// process_parts prepare parts that have to be read for the query,
/// returns false if duplicated parts' UUID have been met
auto select_parts = [&] (
MergeTreeData::DataPartsVector & selected_parts,
std::vector<AlterConversionsPtr> & selected_conversions) -> bool
{
auto ignored_part_uuids = query_context->getIgnoredPartUUIDs();
std::unordered_set<UUID> temp_part_uuids;
MergeTreeData::DataPartsVector prev_parts;
std::vector<AlterConversionsPtr> prev_conversions;
std::swap(prev_parts, selected_parts);
std::swap(prev_conversions, selected_conversions);
for (size_t i = 0; i < prev_parts.size(); ++i)
{
const auto * part = prev_parts[i]->isProjectionPart() ? prev_parts[i]->getParentPart() : prev_parts[i].get();
if (part_values && part_values->find(part->name) == part_values->end())
continue;
if (part->isEmpty())
continue;
if (max_block_numbers_to_read)
{
auto blocks_iterator = max_block_numbers_to_read->find(part->info.partition_id);
if (blocks_iterator == max_block_numbers_to_read->end() || part->info.max_block > blocks_iterator->second)
continue;
}
/// Skip the part if its uuid is meant to be excluded
if (part->uuid != UUIDHelpers::Nil && ignored_part_uuids->has(part->uuid))
continue;
size_t num_granules = part->getMarksCount();
if (num_granules && part->index_granularity.hasFinalMark())
--num_granules;
counters.num_initial_selected_parts += 1;
counters.num_initial_selected_granules += num_granules;
if (minmax_idx_condition
&& !minmax_idx_condition->checkInHyperrectangle(part->minmax_idx->hyperrectangle, minmax_columns_types)
.can_be_true)
continue;
counters.num_parts_after_minmax += 1;
counters.num_granules_after_minmax += num_granules;
if (partition_pruner)
{
if (partition_pruner->canBePruned(*part))
continue;
}
counters.num_parts_after_partition_pruner += 1;
counters.num_granules_after_partition_pruner += num_granules;
/// populate UUIDs and exclude ignored parts if enabled
if (part->uuid != UUIDHelpers::Nil && pinned_part_uuids->contains(part->uuid))
{
auto result = temp_part_uuids.insert(part->uuid);
if (!result.second)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Found a part with the same UUID on the same replica.");
}
selected_parts.push_back(prev_parts[i]);
if (!prev_conversions.empty())
selected_conversions.push_back(prev_conversions[i]);
}
if (!temp_part_uuids.empty())
{
auto duplicates = query_context->getPartUUIDs()->add(std::vector<UUID>{temp_part_uuids.begin(), temp_part_uuids.end()});
if (!duplicates.empty())
{
/// on a local replica with prefer_localhost_replica=1 if any duplicates appeared during the first pass,
/// adding them to the exclusion, so they will be skipped on second pass
query_context->getIgnoredPartUUIDs()->add(duplicates);
return false;
}
}
return true;
};
/// Process parts that have to be read for a query.
auto needs_retry = !select_parts(parts, alter_conversions);
/// If any duplicated part UUIDs met during the first step, try to ignore them in second pass.
/// This may happen when `prefer_localhost_replica` is set and "distributed" stage runs in the same process with "remote" stage.
if (needs_retry)
{
LOG_DEBUG(log, "Found duplicate uuids locally, will retry part selection without them");
counters = PartFilterCounters();
/// Second attempt didn't help, throw an exception
if (!select_parts(parts, alter_conversions))
throw Exception(ErrorCodes::DUPLICATED_PART_UUIDS, "Found duplicate UUIDs while processing query.");
}
}
}
|