1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
#include <Processors/QueryPlan/Optimizations/projectionsCommon.h>
#include <Processors/QueryPlan/Optimizations/actionsDAGUtils.h>
#include <Processors/QueryPlan/AggregatingStep.h>
#include <Processors/QueryPlan/ReadFromMergeTree.h>
#include <Processors/QueryPlan/ExpressionStep.h>
#include <Processors/QueryPlan/FilterStep.h>
#include <Processors/QueryPlan/ReadFromPreparedSource.h>
#include <Processors/Sources/SourceFromSingleChunk.h>
#include <Processors/Sources/NullSource.h>
#include <AggregateFunctions/AggregateFunctionCount.h>
#include <Analyzer/JoinNode.h>
#include <Analyzer/TableNode.h>
#include <Analyzer/QueryTreeBuilder.h>
#include <Analyzer/QueryTreePassManager.h>
#include <Analyzer/QueryNode.h>
#include <Common/logger_useful.h>
#include <Storages/StorageDummy.h>
#include <Planner/PlannerExpressionAnalysis.h>
#include <Interpreters/InterpreterSelectQuery.h>
#include <Interpreters/InterpreterSelectQueryAnalyzer.h>
#include <Storages/MergeTree/MergeTreeDataSelectExecutor.h>
#include <Storages/ProjectionsDescription.h>
#include <Parsers/queryToString.h>
namespace DB::QueryPlanOptimizations
{
using DAGIndex = std::unordered_map<std::string_view, const ActionsDAG::Node *>;
static DAGIndex buildDAGIndex(const ActionsDAG & dag)
{
DAGIndex index;
for (const auto * output : dag.getOutputs())
index.emplace(output->result_name, output);
return index;
}
/// Required analysis info from aggregate projection.
struct AggregateProjectionInfo
{
ActionsDAGPtr before_aggregation;
Names keys;
AggregateDescriptions aggregates;
/// A context copy from interpreter which was used for analysis.
/// Just in case it is used by some function.
ContextPtr context;
};
/// Get required info from aggregate projection.
/// Ideally, this should be pre-calculated and stored inside ProjectionDescription.
static AggregateProjectionInfo getAggregatingProjectionInfo(
const ProjectionDescription & projection,
const ContextPtr & context,
const StorageMetadataPtr & metadata_snapshot,
const Block & key_virtual_columns)
{
/// This is a bad approach.
/// We'd better have a separate interpreter for projections.
/// Now it's not obvious we didn't miss anything here.
///
/// Setting ignoreASTOptimizations is used because some of them are invalid for projections.
/// Example: 'SELECT min(c0), max(c0), count() GROUP BY -c0' for minmax_count projection can be rewritten to
/// 'SELECT min(c0), max(c0), count() GROUP BY c0' which is incorrect cause we store a column '-c0' in projection.
InterpreterSelectQuery interpreter(
projection.query_ast,
context,
Pipe(std::make_shared<SourceFromSingleChunk>(metadata_snapshot->getSampleBlock())),
SelectQueryOptions{QueryProcessingStage::WithMergeableState}.ignoreASTOptimizations().ignoreSettingConstraints());
const auto & analysis_result = interpreter.getAnalysisResult();
const auto & query_analyzer = interpreter.getQueryAnalyzer();
AggregateProjectionInfo info;
info.context = interpreter.getContext();
info.before_aggregation = analysis_result.before_aggregation;
info.keys = query_analyzer->aggregationKeys().getNames();
info.aggregates = query_analyzer->aggregates();
/// Add part/partition virtual columns to projection aggregation keys.
/// We can do it because projection is stored for every part separately.
for (const auto & virt_column : key_virtual_columns)
{
const auto * input = &info.before_aggregation->addInput(virt_column);
info.before_aggregation->getOutputs().push_back(input);
info.keys.push_back(virt_column.name);
}
return info;
}
struct AggregateFunctionMatch
{
const AggregateDescription * description = nullptr;
DataTypes argument_types;
};
using AggregateFunctionMatches = std::vector<AggregateFunctionMatch>;
/// Here we try to match aggregate functions from the query to
/// aggregate functions from projection.
std::optional<AggregateFunctionMatches> matchAggregateFunctions(
const AggregateProjectionInfo & info,
const AggregateDescriptions & aggregates,
const MatchedTrees::Matches & matches,
const DAGIndex & query_index,
const DAGIndex & proj_index)
{
AggregateFunctionMatches res;
/// Index (projection agg function name) -> pos
std::unordered_map<std::string, std::vector<size_t>> projection_aggregate_functions;
for (size_t i = 0; i < info.aggregates.size(); ++i)
projection_aggregate_functions[info.aggregates[i].function->getName()].push_back(i);
for (const auto & aggregate : aggregates)
{
/// Get a list of candidates by name first.
auto it = projection_aggregate_functions.find(aggregate.function->getName());
if (it == projection_aggregate_functions.end())
{
// LOG_TRACE(
// &Poco::Logger::get("optimizeUseProjections"),
// "Cannot match agg func {} by name {}",
// aggregate.column_name, aggregate.function->getName());
return {};
}
size_t num_args = aggregate.argument_names.size();
DataTypes argument_types;
argument_types.reserve(num_args);
auto & candidates = it->second;
bool found_match = false;
for (size_t idx : candidates)
{
argument_types.clear();
const auto & candidate = info.aggregates[idx];
/// In some cases it's possible only to check that states are equal,
/// e.g. for quantile(0.3)(...) and quantile(0.5)(...).
///
/// Note we already checked that aggregate function names are equal,
/// so that functions sum(...) and sumIf(...) with equal states will
/// not match.
if (!candidate.function->getStateType()->equals(*aggregate.function->getStateType()))
{
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Cannot match agg func {} vs {} by state {} vs {}",
// aggregate.column_name, candidate.column_name,
// candidate.function->getStateType()->getName(), aggregate.function->getStateType()->getName());
continue;
}
/// This is a special case for the function count().
/// We can assume that 'count(expr) == count()' if expr is not nullable,
/// which can be verified by simply casting to `AggregateFunctionCount *`.
if (typeid_cast<const AggregateFunctionCount *>(aggregate.function.get()))
{
/// we can ignore arguments for count()
found_match = true;
res.push_back({&candidate, DataTypes()});
break;
}
/// Now, function names and types matched.
/// Next, match arguments from DAGs.
if (num_args != candidate.argument_names.size())
continue;
size_t next_arg = 0;
while (next_arg < num_args)
{
const auto & query_name = aggregate.argument_names[next_arg];
const auto & proj_name = candidate.argument_names[next_arg];
auto jt = query_index.find(query_name);
auto kt = proj_index.find(proj_name);
/// This should not happen ideally.
if (jt == query_index.end() || kt == proj_index.end())
break;
const auto * query_node = jt->second;
const auto * proj_node = kt->second;
auto mt = matches.find(query_node);
if (mt == matches.end())
{
// LOG_TRACE(
// &Poco::Logger::get("optimizeUseProjections"),
// "Cannot match agg func {} vs {} : can't match arg {} vs {} : no node in map",
// aggregate.column_name, candidate.column_name, query_name, proj_name);
break;
}
const auto & node_match = mt->second;
if (node_match.node != proj_node || node_match.monotonicity)
{
// LOG_TRACE(
// &Poco::Logger::get("optimizeUseProjections"),
// "Cannot match agg func {} vs {} : can't match arg {} vs {} : no match or monotonicity",
// aggregate.column_name, candidate.column_name, query_name, proj_name);
break;
}
argument_types.push_back(query_node->result_type);
++next_arg;
}
if (next_arg < aggregate.argument_names.size())
continue;
found_match = true;
res.push_back({&candidate, std::move(argument_types)});
break;
}
if (!found_match)
return {};
}
return res;
}
static void appendAggregateFunctions(
ActionsDAG & proj_dag,
const AggregateDescriptions & aggregates,
const AggregateFunctionMatches & matched_aggregates)
{
std::unordered_map<const AggregateDescription *, const ActionsDAG::Node *> inputs;
/// Just add all the aggregates to dag inputs.
auto & proj_dag_outputs = proj_dag.getOutputs();
size_t num_aggregates = aggregates.size();
for (size_t i = 0; i < num_aggregates; ++i)
{
const auto & aggregate = aggregates[i];
const auto & match = matched_aggregates[i];
auto type = std::make_shared<DataTypeAggregateFunction>(aggregate.function, match.argument_types, aggregate.parameters);
auto & input = inputs[match.description];
if (!input)
input = &proj_dag.addInput(match.description->column_name, type);
const auto * node = input;
if (node->result_name != aggregate.column_name)
{
if (DataTypeAggregateFunction::strictEquals(type, node->result_type))
{
node = &proj_dag.addAlias(*node, aggregate.column_name);
}
else
{
/// Cast to aggregate types specified in query if it's not
/// strictly the same as the one specified in projection. This
/// is required to generate correct results during finalization.
node = &proj_dag.addCast(*node, type, aggregate.column_name);
}
}
proj_dag_outputs.push_back(node);
}
}
ActionsDAGPtr analyzeAggregateProjection(
const AggregateProjectionInfo & info,
const QueryDAG & query,
const DAGIndex & query_index,
const Names & keys,
const AggregateDescriptions & aggregates)
{
auto proj_index = buildDAGIndex(*info.before_aggregation);
MatchedTrees::Matches matches = matchTrees(*info.before_aggregation, *query.dag, false /* check_monotonicity */);
// for (const auto & [node, match] : matches)
// {
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Match {} {} -> {} {} (with monotonicity : {})",
// static_cast<const void *>(node), node->result_name,
// static_cast<const void *>(match.node), (match.node ? match.node->result_name : ""), match.monotonicity != std::nullopt);
// }
auto matched_aggregates = matchAggregateFunctions(info, aggregates, matches, query_index, proj_index);
if (!matched_aggregates)
return {};
ActionsDAG::NodeRawConstPtrs query_key_nodes;
std::unordered_set<const ActionsDAG::Node *> proj_key_nodes;
{
/// Just, filling the set above.
for (const auto & key : info.keys)
{
auto it = proj_index.find(key);
/// This should not happen ideally.
if (it == proj_index.end())
return {};
proj_key_nodes.insert(it->second);
}
query_key_nodes.reserve(keys.size() + 1);
/// We need to add filter column to keys set.
/// It should be computable from projection keys.
/// It will be removed in FilterStep.
if (query.filter_node)
query_key_nodes.push_back(query.filter_node);
for (const auto & key : keys)
{
auto it = query_index.find(key);
/// This should not happen ideally.
if (it == query_index.end())
return {};
query_key_nodes.push_back(it->second);
}
}
/// Here we want to match query keys with projection keys.
/// Query key can be any expression depending on projection keys.
struct Frame
{
const ActionsDAG::Node * node;
size_t next_child_to_visit = 0;
};
std::stack<Frame> stack;
std::unordered_set<const ActionsDAG::Node *> visited;
std::unordered_map<const ActionsDAG::Node *, const ActionsDAG::Node *> new_inputs;
for (const auto * key_node : query_key_nodes)
{
if (visited.contains(key_node))
continue;
stack.push({.node = key_node});
while (!stack.empty())
{
auto & frame = stack.top();
if (frame.next_child_to_visit == 0)
{
auto jt = matches.find(frame.node);
if (jt != matches.end())
{
auto & match = jt->second;
if (match.node && !match.monotonicity && proj_key_nodes.contains(match.node))
{
visited.insert(frame.node);
new_inputs[frame.node] = match.node;
stack.pop();
continue;
}
}
}
if (frame.next_child_to_visit < frame.node->children.size())
{
stack.push({.node = frame.node->children[frame.next_child_to_visit]});
++frame.next_child_to_visit;
continue;
}
/// Not a match and there is no matched child.
if (frame.node->type == ActionsDAG::ActionType::INPUT)
{
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Cannot find match for {}", frame.node->result_name);
return {};
}
/// Not a match, but all children matched.
visited.insert(frame.node);
stack.pop();
}
}
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Folding actions by projection");
auto proj_dag = query.dag->foldActionsByProjection(new_inputs, query_key_nodes);
appendAggregateFunctions(*proj_dag, aggregates, *matched_aggregates);
return proj_dag;
}
/// Aggregate projection analysis result in case it can be applied.
struct AggregateProjectionCandidate : public ProjectionCandidate
{
AggregateProjectionInfo info;
/// Actions which need to be applied to columns from projection
/// in order to get all the columns required for aggregation.
ActionsDAGPtr dag;
};
struct MinMaxProjectionCandidate
{
AggregateProjectionCandidate candidate;
Block block;
MergeTreeData::DataPartsVector normal_parts;
};
struct AggregateProjectionCandidates
{
std::vector<AggregateProjectionCandidate> real;
std::optional<MinMaxProjectionCandidate> minmax_projection;
/// This flag means that DAG for projection candidate should be used in FilterStep.
bool has_filter = false;
};
AggregateProjectionCandidates getAggregateProjectionCandidates(
QueryPlan::Node & node,
AggregatingStep & aggregating,
ReadFromMergeTree & reading,
const std::shared_ptr<PartitionIdToMaxBlock> & max_added_blocks,
bool allow_implicit_projections)
{
const auto & keys = aggregating.getParams().keys;
const auto & aggregates = aggregating.getParams().aggregates;
Block key_virtual_columns = reading.getMergeTreeData().getSampleBlockWithVirtualColumns();
AggregateProjectionCandidates candidates;
const auto & parts = reading.getParts();
const auto & query_info = reading.getQueryInfo();
const auto metadata = reading.getStorageMetadata();
ContextPtr context = reading.getContext();
const auto & projections = metadata->projections;
std::vector<const ProjectionDescription *> agg_projections;
for (const auto & projection : projections)
if (projection.type == ProjectionDescription::Type::Aggregate)
agg_projections.push_back(&projection);
bool can_use_minmax_projection = allow_implicit_projections && metadata->minmax_count_projection
&& !reading.getMergeTreeData().has_lightweight_delete_parts.load();
if (!can_use_minmax_projection && agg_projections.empty())
return candidates;
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Has agg projection");
QueryDAG dag;
if (!dag.build(*node.children.front()))
return candidates;
auto query_index = buildDAGIndex(*dag.dag);
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Query DAG: {}", dag.dag->dumpDAG());
candidates.has_filter = dag.filter_node;
if (can_use_minmax_projection)
{
const auto * projection = &*(metadata->minmax_count_projection);
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Try projection {}", projection->name);
auto info = getAggregatingProjectionInfo(*projection, context, metadata, key_virtual_columns);
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection DAG {}", info.before_aggregation->dumpDAG());
if (auto proj_dag = analyzeAggregateProjection(info, dag, query_index, keys, aggregates))
{
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection analyzed DAG {}", proj_dag->dumpDAG());
AggregateProjectionCandidate candidate{.info = std::move(info), .dag = std::move(proj_dag)};
MergeTreeData::DataPartsVector minmax_projection_normal_parts;
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection sample block {}", sample_block.dumpStructure());
auto block = reading.getMergeTreeData().getMinMaxCountProjectionBlock(
metadata,
candidate.dag->getRequiredColumnsNames(),
dag.filter_node != nullptr,
query_info,
parts,
minmax_projection_normal_parts,
max_added_blocks.get(),
context);
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection sample block 2 {}", block.dumpStructure());
// minmax_count_projection cannot be used used when there is no data to process, because
// it will produce incorrect result during constant aggregation.
// See https://github.com/ClickHouse/ClickHouse/issues/36728
if (block)
{
MinMaxProjectionCandidate minmax;
minmax.candidate = std::move(candidate);
minmax.block = std::move(block);
minmax.normal_parts = std::move(minmax_projection_normal_parts);
minmax.candidate.projection = projection;
candidates.minmax_projection.emplace(std::move(minmax));
}
}
}
if (!candidates.minmax_projection)
{
candidates.real.reserve(agg_projections.size());
for (const auto * projection : agg_projections)
{
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Try projection {}", projection->name);
auto info = getAggregatingProjectionInfo(*projection, context, metadata, key_virtual_columns);
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection DAG {}", info.before_aggregation->dumpDAG());
if (auto proj_dag = analyzeAggregateProjection(info, dag, query_index, keys, aggregates))
{
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection analyzed DAG {}", proj_dag->dumpDAG());
AggregateProjectionCandidate candidate{.info = std::move(info), .dag = std::move(proj_dag)};
candidate.projection = projection;
candidates.real.emplace_back(std::move(candidate));
}
}
}
return candidates;
}
static QueryPlan::Node * findReadingStep(QueryPlan::Node & node)
{
IQueryPlanStep * step = node.step.get();
if (auto * reading = typeid_cast<ReadFromMergeTree *>(step))
return &node;
if (node.children.size() != 1)
return nullptr;
if (typeid_cast<ExpressionStep *>(step) || typeid_cast<FilterStep *>(step))
return findReadingStep(*node.children.front());
return nullptr;
}
bool optimizeUseAggregateProjections(QueryPlan::Node & node, QueryPlan::Nodes & nodes, bool allow_implicit_projections)
{
if (node.children.size() != 1)
return false;
auto * aggregating = typeid_cast<AggregatingStep *>(node.step.get());
if (!aggregating)
return false;
if (!aggregating->canUseProjection())
return false;
QueryPlan::Node * reading_node = findReadingStep(*node.children.front());
if (!reading_node)
return false;
auto * reading = typeid_cast<ReadFromMergeTree *>(reading_node->step.get());
if (!reading)
return false;
if (!canUseProjectionForReadingStep(reading))
return false;
std::shared_ptr<PartitionIdToMaxBlock> max_added_blocks = getMaxAddedBlocks(reading);
auto candidates = getAggregateProjectionCandidates(node, *aggregating, *reading, max_added_blocks, allow_implicit_projections);
AggregateProjectionCandidate * best_candidate = nullptr;
if (candidates.minmax_projection)
best_candidate = &candidates.minmax_projection->candidate;
else if (candidates.real.empty())
return false;
const auto & parts = reading->getParts();
const auto & query_info = reading->getQueryInfo();
const auto metadata = reading->getStorageMetadata();
ContextPtr context = reading->getContext();
MergeTreeDataSelectExecutor reader(reading->getMergeTreeData());
auto ordinary_reading_select_result = reading->selectRangesToRead(parts, /* alter_conversions = */ {});
size_t ordinary_reading_marks = ordinary_reading_select_result->marks();
/// Selecting best candidate.
for (auto & candidate : candidates.real)
{
auto required_column_names = candidate.dag->getRequiredColumnsNames();
ActionDAGNodes added_filter_nodes;
if (candidates.has_filter)
added_filter_nodes.nodes.push_back(candidate.dag->getOutputs().front());
bool analyzed = analyzeProjectionCandidate(
candidate, *reading, reader, required_column_names, parts,
metadata, query_info, context, max_added_blocks, added_filter_nodes);
if (!analyzed)
continue;
if (candidate.sum_marks > ordinary_reading_marks)
continue;
if (best_candidate == nullptr || best_candidate->sum_marks > candidate.sum_marks)
best_candidate = &candidate;
}
if (!best_candidate)
{
reading->setAnalyzedResult(std::move(ordinary_reading_select_result));
return false;
}
QueryPlanStepPtr projection_reading;
bool has_ordinary_parts;
/// Add reading from projection step.
if (candidates.minmax_projection)
{
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Minmax proj block {}",
// candidates.minmax_projection->block.dumpStructure());
Pipe pipe(std::make_shared<SourceFromSingleChunk>(std::move(candidates.minmax_projection->block)));
projection_reading = std::make_unique<ReadFromPreparedSource>(
std::move(pipe),
context,
query_info.is_internal
? Context::QualifiedProjectionName{}
: Context::QualifiedProjectionName
{
.storage_id = reading->getMergeTreeData().getStorageID(),
.projection_name = candidates.minmax_projection->candidate.projection->name,
});
has_ordinary_parts = !candidates.minmax_projection->normal_parts.empty();
if (has_ordinary_parts)
reading->resetParts(std::move(candidates.minmax_projection->normal_parts));
}
else
{
auto storage_snapshot = reading->getStorageSnapshot();
auto proj_snapshot = std::make_shared<StorageSnapshot>(
storage_snapshot->storage, storage_snapshot->metadata, storage_snapshot->object_columns);
proj_snapshot->addProjection(best_candidate->projection);
auto query_info_copy = query_info;
query_info_copy.prewhere_info = nullptr;
projection_reading = reader.readFromParts(
/* parts = */ {},
/* alter_conversions = */ {},
best_candidate->dag->getRequiredColumnsNames(),
proj_snapshot,
query_info_copy,
context,
reading->getMaxBlockSize(),
reading->getNumStreams(),
max_added_blocks,
best_candidate->merge_tree_projection_select_result_ptr,
reading->isParallelReadingEnabled());
if (!projection_reading)
{
auto header = proj_snapshot->getSampleBlockForColumns(best_candidate->dag->getRequiredColumnsNames());
Pipe pipe(std::make_shared<NullSource>(std::move(header)));
projection_reading = std::make_unique<ReadFromPreparedSource>(
std::move(pipe),
context,
query_info.is_internal
? Context::QualifiedProjectionName{}
: Context::QualifiedProjectionName
{
.storage_id = reading->getMergeTreeData().getStorageID(),
.projection_name = best_candidate->projection->name,
});
}
has_ordinary_parts = best_candidate->merge_tree_ordinary_select_result_ptr != nullptr;
if (has_ordinary_parts)
reading->setAnalyzedResult(std::move(best_candidate->merge_tree_ordinary_select_result_ptr));
}
// LOG_TRACE(&Poco::Logger::get("optimizeUseProjections"), "Projection reading header {}",
// projection_reading->getOutputStream().header.dumpStructure());
projection_reading->setStepDescription(best_candidate->projection->name);
auto & projection_reading_node = nodes.emplace_back(QueryPlan::Node{.step = std::move(projection_reading)});
auto & expr_or_filter_node = nodes.emplace_back();
if (candidates.has_filter)
{
expr_or_filter_node.step = std::make_unique<FilterStep>(
projection_reading_node.step->getOutputStream(),
best_candidate->dag,
best_candidate->dag->getOutputs().front()->result_name,
true);
}
else
expr_or_filter_node.step = std::make_unique<ExpressionStep>(
projection_reading_node.step->getOutputStream(),
best_candidate->dag);
expr_or_filter_node.children.push_back(&projection_reading_node);
if (!has_ordinary_parts)
{
/// All parts are taken from projection
aggregating->requestOnlyMergeForAggregateProjection(expr_or_filter_node.step->getOutputStream());
node.children.front() = &expr_or_filter_node;
}
else
{
node.step = aggregating->convertToAggregatingProjection(expr_or_filter_node.step->getOutputStream());
node.children.push_back(&expr_or_filter_node);
}
return true;
}
}
|