1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
#include <Processors/Merges/Algorithms/FinishAggregatingInOrderAlgorithm.h>
#include <Processors/Transforms/MergingAggregatedMemoryEfficientTransform.h>
#include <Processors/Transforms/AggregatingTransform.h>
#include <Processors/Transforms/AggregatingInOrderTransform.h>
#include <Core/SortCursor.h>
#include <base/range.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
}
FinishAggregatingInOrderAlgorithm::State::State(const Chunk & chunk, const SortDescriptionWithPositions & desc, Int64 total_bytes_)
: all_columns(chunk.getColumns()), num_rows(chunk.getNumRows()), total_bytes(total_bytes_)
{
if (!chunk)
return;
sorting_columns.reserve(desc.size());
for (const auto & column_desc : desc)
sorting_columns.emplace_back(all_columns[column_desc.column_number].get());
}
FinishAggregatingInOrderAlgorithm::FinishAggregatingInOrderAlgorithm(
const Block & header_,
size_t num_inputs_,
AggregatingTransformParamsPtr params_,
const SortDescription & description_,
size_t max_block_size_rows_,
size_t max_block_size_bytes_)
: header(header_), num_inputs(num_inputs_), params(params_), max_block_size_rows(max_block_size_rows_), max_block_size_bytes(max_block_size_bytes_)
{
for (const auto & column_description : description_)
description.emplace_back(column_description, header_.getPositionByName(column_description.column_name));
}
void FinishAggregatingInOrderAlgorithm::initialize(Inputs inputs)
{
current_inputs = std::move(inputs);
states.resize(num_inputs);
for (size_t i = 0; i < num_inputs; ++i)
consume(current_inputs[i], i);
}
void FinishAggregatingInOrderAlgorithm::consume(Input & input, size_t source_num)
{
if (!input.chunk.hasRows())
return;
const auto & info = input.chunk.getChunkInfo();
if (!info)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Chunk info was not set for chunk in FinishAggregatingInOrderAlgorithm");
Int64 allocated_bytes = 0;
/// Will be set by AggregatingInOrderTransform during local aggregation; will be nullptr during merging on initiator.
if (const auto * arenas_info = typeid_cast<const ChunkInfoWithAllocatedBytes *>(info.get()))
allocated_bytes = arenas_info->allocated_bytes;
states[source_num] = State{input.chunk, description, allocated_bytes};
}
IMergingAlgorithm::Status FinishAggregatingInOrderAlgorithm::merge()
{
if (!inputs_to_update.empty())
{
Status status(inputs_to_update.back());
inputs_to_update.pop_back();
return status;
}
/// Find the input with smallest last row.
std::optional<size_t> best_input;
for (size_t i = 0; i < num_inputs; ++i)
{
if (!states[i].isValid())
continue;
if (!best_input
|| less(states[i].sorting_columns, states[*best_input].sorting_columns,
states[i].num_rows - 1, states[*best_input].num_rows - 1, description))
{
best_input = i;
}
}
if (!best_input)
return Status(prepareToMerge(), true);
/// Chunk at best_input will be aggregated entirely.
auto & best_state = states[*best_input];
best_state.to_row = states[*best_input].num_rows;
/// Find the positions up to which need to aggregate in other chunks.
for (size_t i = 0; i < num_inputs; ++i)
{
if (!states[i].isValid() || i == *best_input)
continue;
auto indices = collections::range(states[i].current_row, states[i].num_rows);
auto it = std::upper_bound(indices.begin(), indices.end(), best_state.num_rows - 1,
[&](size_t lhs_pos, size_t rhs_pos)
{
return less(best_state.sorting_columns, states[i].sorting_columns, lhs_pos, rhs_pos, description);
});
states[i].to_row = (it == indices.end() ? states[i].num_rows : *it);
}
addToAggregation();
/// At least one chunk should be fully aggregated.
assert(!inputs_to_update.empty());
Status status(inputs_to_update.back());
inputs_to_update.pop_back();
/// Do not merge blocks, if there are too few rows or bytes.
if (accumulated_rows >= max_block_size_rows || accumulated_bytes >= max_block_size_bytes)
status.chunk = prepareToMerge();
return status;
}
Chunk FinishAggregatingInOrderAlgorithm::prepareToMerge()
{
accumulated_rows = 0;
accumulated_bytes = 0;
auto info = std::make_shared<ChunksToMerge>();
info->chunks = std::make_unique<Chunks>(std::move(chunks));
info->chunk_num = chunk_num++;
Chunk chunk;
chunk.setChunkInfo(std::move(info));
return chunk;
}
void FinishAggregatingInOrderAlgorithm::addToAggregation()
{
for (size_t i = 0; i < num_inputs; ++i)
{
const auto & state = states[i];
if (!state.isValid() || state.current_row == state.to_row)
continue;
size_t current_rows = state.to_row - state.current_row;
if (current_rows == state.num_rows)
{
chunks.emplace_back(state.all_columns, current_rows);
}
else
{
Columns new_columns;
new_columns.reserve(state.all_columns.size());
for (const auto & column : state.all_columns)
new_columns.emplace_back(column->cut(state.current_row, current_rows));
chunks.emplace_back(std::move(new_columns), current_rows);
}
chunks.back().setChunkInfo(std::make_shared<AggregatedChunkInfo>());
states[i].current_row = states[i].to_row;
/// We assume that sizes in bytes of rows are almost the same.
accumulated_bytes += static_cast<size_t>(static_cast<double>(states[i].total_bytes) * current_rows / states[i].num_rows);
accumulated_rows += current_rows;
if (!states[i].isValid())
inputs_to_update.push_back(i);
}
}
}
|