1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#include <Processors/Executors/ExecutorTasks.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
}
void ExecutorTasks::finish()
{
{
std::lock_guard lock(mutex);
finished = true;
async_task_queue.finish();
}
std::lock_guard guard(executor_contexts_mutex);
for (auto & context : executor_contexts)
context->wakeUp();
}
void ExecutorTasks::rethrowFirstThreadException()
{
for (auto & executor_context : executor_contexts)
executor_context->rethrowExceptionIfHas();
}
void ExecutorTasks::tryWakeUpAnyOtherThreadWithTasks(ExecutionThreadContext & self, std::unique_lock<std::mutex> & lock)
{
if (!task_queue.empty() && !threads_queue.empty() && !finished)
{
size_t next_thread = self.thread_number + 1 >= use_threads ? 0 : (self.thread_number + 1);
auto thread_to_wake = task_queue.getAnyThreadWithTasks(next_thread);
if (threads_queue.has(thread_to_wake))
threads_queue.pop(thread_to_wake);
else
thread_to_wake = threads_queue.popAny();
if (thread_to_wake >= use_threads)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Non-empty queue without allocated thread");
lock.unlock();
executor_contexts[thread_to_wake]->wakeUp();
}
}
void ExecutorTasks::tryGetTask(ExecutionThreadContext & context)
{
{
std::unique_lock lock(mutex);
/// Try get async task assigned to this thread or any other task from queue.
if (auto * async_task = context.tryPopAsyncTask())
{
context.setTask(async_task);
--num_waiting_async_tasks;
}
else if (!task_queue.empty())
context.setTask(task_queue.pop(context.thread_number));
/// Task found.
if (context.hasTask())
{
/// We have to wake up at least one thread if there are pending tasks.
/// That thread will wake up other threads during its `tryGetTask()` call if any.
tryWakeUpAnyOtherThreadWithTasks(context, lock);
return;
}
/// This thread has no tasks to do and is going to wait.
/// Finish execution if this was the last active thread.
if (threads_queue.size() + 1 == use_threads && async_task_queue.empty() && num_waiting_async_tasks == 0)
{
lock.unlock();
finish();
return;
}
#if defined(OS_LINUX)
if (num_threads == 1)
{
/// If we execute in single thread, wait for async tasks here.
auto res = async_task_queue.wait(lock);
if (!res)
{
if (finished)
return;
throw Exception(ErrorCodes::LOGICAL_ERROR, "Empty task was returned from async task queue");
}
context.setTask(static_cast<ExecutingGraph::Node *>(res.data));
return;
}
#endif
/// Enqueue thread into stack of waiting threads.
threads_queue.push(context.thread_number);
}
context.wait(finished);
}
void ExecutorTasks::pushTasks(Queue & queue, Queue & async_queue, ExecutionThreadContext & context)
{
context.setTask(nullptr);
/// Take local task from queue if has one.
if (!queue.empty() && !context.hasAsyncTasks())
{
context.setTask(queue.front());
queue.pop();
}
if (!queue.empty() || !async_queue.empty())
{
std::unique_lock lock(mutex);
#if defined(OS_LINUX)
while (!async_queue.empty() && !finished)
{
int fd = async_queue.front()->processor->schedule();
async_task_queue.addTask(context.thread_number, async_queue.front(), fd);
async_queue.pop();
}
#endif
while (!queue.empty() && !finished)
{
task_queue.push(queue.front(), context.thread_number);
queue.pop();
}
/// Wake up at least one thread that will wake up other threads if required
tryWakeUpAnyOtherThreadWithTasks(context, lock);
}
}
void ExecutorTasks::init(size_t num_threads_, size_t use_threads_, bool profile_processors, bool trace_processors, ReadProgressCallback * callback)
{
num_threads = num_threads_;
use_threads = use_threads_;
threads_queue.init(num_threads);
task_queue.init(num_threads);
{
std::lock_guard guard(executor_contexts_mutex);
executor_contexts.reserve(num_threads);
for (size_t i = 0; i < num_threads; ++i)
executor_contexts.emplace_back(std::make_unique<ExecutionThreadContext>(i, profile_processors, trace_processors, callback));
}
}
void ExecutorTasks::fill(Queue & queue)
{
std::lock_guard lock(mutex);
size_t next_thread = 0;
while (!queue.empty())
{
task_queue.push(queue.front(), next_thread);
queue.pop();
++next_thread;
/// It is important to keep queues empty for threads that are not started yet.
/// Otherwise that thread can be selected by `tryWakeUpAnyOtherThreadWithTasks()`, leading to deadlock.
if (next_thread >= use_threads)
next_thread = 0;
}
}
void ExecutorTasks::upscale(size_t use_threads_)
{
std::lock_guard lock(mutex);
if (use_threads < use_threads_)
use_threads = use_threads_;
}
void ExecutorTasks::processAsyncTasks()
{
#if defined(OS_LINUX)
{
/// Wait for async tasks.
std::unique_lock lock(mutex);
while (auto task = async_task_queue.wait(lock))
{
auto * node = static_cast<ExecutingGraph::Node *>(task.data);
executor_contexts[task.thread_num]->pushAsyncTask(node);
++num_waiting_async_tasks;
if (threads_queue.has(task.thread_num))
{
threads_queue.pop(task.thread_num);
executor_contexts[task.thread_num]->wakeUp();
}
}
}
#endif
}
}
|