1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
#include <Interpreters/RowRefs.h>
#include <Common/RadixSort.h>
#include <Columns/IColumn.h>
#include <DataTypes/IDataType.h>
#include <Core/Joins.h>
#include <base/types.h>
namespace DB
{
namespace ErrorCodes
{
extern const int BAD_TYPE_OF_FIELD;
extern const int LOGICAL_ERROR;
}
namespace
{
/// maps enum values to types
template <typename F>
void callWithType(TypeIndex type, F && f)
{
WhichDataType which(type);
#define DISPATCH(TYPE) \
if (which.idx == TypeIndex::TYPE) \
return f(TYPE());
FOR_NUMERIC_TYPES(DISPATCH)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Decimal256)
DISPATCH(DateTime64)
#undef DISPATCH
UNREACHABLE();
}
template <typename TKey, ASOFJoinInequality inequality>
class SortedLookupVector : public SortedLookupVectorBase
{
struct Entry
{
TKey value;
uint32_t row_ref_index;
Entry() = delete;
Entry(TKey value_, uint32_t row_ref_index_)
: value(value_)
, row_ref_index(row_ref_index_)
{ }
};
struct LessEntryOperator
{
ALWAYS_INLINE bool operator()(const Entry & lhs, const Entry & rhs) const
{
return lhs.value < rhs.value;
}
};
struct GreaterEntryOperator
{
ALWAYS_INLINE bool operator()(const Entry & lhs, const Entry & rhs) const
{
return lhs.value > rhs.value;
}
};
public:
using Entries = PODArrayWithStackMemory<Entry, sizeof(Entry)>;
using RowRefs = PODArrayWithStackMemory<RowRef, sizeof(RowRef)>;
static constexpr bool is_descending = (inequality == ASOFJoinInequality::Greater || inequality == ASOFJoinInequality::GreaterOrEquals);
static constexpr bool is_strict = (inequality == ASOFJoinInequality::Less) || (inequality == ASOFJoinInequality::Greater);
void insert(const IColumn & asof_column, const Block * block, size_t row_num) override
{
using ColumnType = ColumnVectorOrDecimal<TKey>;
const auto & column = assert_cast<const ColumnType &>(asof_column);
TKey key = column.getElement(row_num);
assert(!sorted.load(std::memory_order_acquire));
entries.emplace_back(key, static_cast<UInt32>(row_refs.size()));
row_refs.emplace_back(RowRef(block, row_num));
}
/// Unrolled version of upper_bound and lower_bound
/// Loosely based on https://academy.realm.io/posts/how-we-beat-cpp-stl-binary-search/
/// In the future it'd interesting to replace it with a B+Tree Layout as described
/// at https://en.algorithmica.org/hpc/data-structures/s-tree/
size_t boundSearch(TKey value)
{
size_t size = entries.size();
size_t low = 0;
/// This is a single binary search iteration as a macro to unroll. Takes into account the inequality:
/// is_strict -> Equal values are not requested
/// is_descending -> The vector is sorted in reverse (for greater or greaterOrEquals)
#define BOUND_ITERATION \
{ \
size_t half = size / 2; \
size_t other_half = size - half; \
size_t probe = low + half; \
size_t other_low = low + other_half; \
TKey & v = entries[probe].value; \
size = half; \
if constexpr (is_descending) \
{ \
if constexpr (is_strict) \
low = value <= v ? other_low : low; \
else \
low = value < v ? other_low : low; \
} \
else \
{ \
if constexpr (is_strict) \
low = value >= v ? other_low : low; \
else \
low = value > v ? other_low : low; \
} \
}
while (size >= 8)
{
BOUND_ITERATION
BOUND_ITERATION
BOUND_ITERATION
}
while (size > 0)
{
BOUND_ITERATION
}
#undef BOUND_ITERATION
return low;
}
RowRef findAsof(const IColumn & asof_column, size_t row_num) override
{
sort();
using ColumnType = ColumnVectorOrDecimal<TKey>;
const auto & column = assert_cast<const ColumnType &>(asof_column);
TKey k = column.getElement(row_num);
size_t pos = boundSearch(k);
if (pos != entries.size())
{
size_t row_ref_index = entries[pos].row_ref_index;
return row_refs[row_ref_index];
}
return {nullptr, 0};
}
private:
std::atomic<bool> sorted = false;
mutable std::mutex lock;
Entries entries;
RowRefs row_refs;
// Double checked locking with SC atomics works in C++
// https://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/
// The first thread that calls one of the lookup methods sorts the data
// After calling the first lookup method it is no longer allowed to insert any data
// the array becomes immutable
void sort()
{
if (!sorted.load(std::memory_order_acquire))
{
std::lock_guard<std::mutex> l(lock);
if (!sorted.load(std::memory_order_relaxed))
{
if constexpr (std::is_arithmetic_v<TKey> && !std::is_floating_point_v<TKey>)
{
if (likely(entries.size() > 256))
{
struct RadixSortTraits : RadixSortNumTraits<TKey>
{
using Element = Entry;
using Result = Element;
static TKey & extractKey(Element & elem) { return elem.value; }
static Result extractResult(Element & elem) { return elem; }
};
if constexpr (is_descending)
RadixSort<RadixSortTraits>::executeLSD(entries.data(), entries.size(), true);
else
RadixSort<RadixSortTraits>::executeLSD(entries.data(), entries.size(), false);
sorted.store(true, std::memory_order_release);
return;
}
}
if constexpr (is_descending)
::sort(entries.begin(), entries.end(), GreaterEntryOperator());
else
::sort(entries.begin(), entries.end(), LessEntryOperator());
sorted.store(true, std::memory_order_release);
}
}
}
};
}
AsofRowRefs createAsofRowRef(TypeIndex type, ASOFJoinInequality inequality)
{
AsofRowRefs result;
auto call = [&](const auto & t)
{
using T = std::decay_t<decltype(t)>;
switch (inequality)
{
case ASOFJoinInequality::LessOrEquals:
result = std::make_unique<SortedLookupVector<T, ASOFJoinInequality::LessOrEquals>>();
break;
case ASOFJoinInequality::Less:
result = std::make_unique<SortedLookupVector<T, ASOFJoinInequality::Less>>();
break;
case ASOFJoinInequality::GreaterOrEquals:
result = std::make_unique<SortedLookupVector<T, ASOFJoinInequality::GreaterOrEquals>>();
break;
case ASOFJoinInequality::Greater:
result = std::make_unique<SortedLookupVector<T, ASOFJoinInequality::Greater>>();
break;
default:
throw Exception(ErrorCodes::LOGICAL_ERROR, "Invalid ASOF Join order");
}
};
callWithType(type, call);
return result;
}
std::optional<TypeIndex> SortedLookupVectorBase::getTypeSize(const IColumn & asof_column, size_t & size)
{
WhichDataType which(asof_column.getDataType());
#define DISPATCH(TYPE) \
if (which.idx == TypeIndex::TYPE) \
{ \
size = sizeof(TYPE); \
return asof_column.getDataType(); \
}
FOR_NUMERIC_TYPES(DISPATCH)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Decimal256)
DISPATCH(DateTime64)
#undef DISPATCH
throw Exception(ErrorCodes::BAD_TYPE_OF_FIELD, "ASOF join not supported for type: {}", std::string(asof_column.getFamilyName()));
}
}
|