1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
|
#include <Interpreters/ComparisonGraph.h>
#include <Parsers/IAST.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/queryToString.h>
#include <Common/FieldVisitorsAccurateComparison.h>
#include <Analyzer/FunctionNode.h>
#include <Analyzer/ConstantNode.h>
#include <Functions/FunctionFactory.h>
namespace DB
{
namespace ErrorCodes
{
extern const int VIOLATED_CONSTRAINT;
}
namespace
{
/// Make function a > b or a >= b
ASTPtr normalizeAtom(const ASTPtr & atom, ContextPtr)
{
static const std::map<std::string, std::string> inverse_relations =
{
{"lessOrEquals", "greaterOrEquals"},
{"less", "greater"},
};
ASTPtr res = atom->clone();
if (const auto * func = res->as<ASTFunction>())
{
if (const auto it = inverse_relations.find(func->name); it != std::end(inverse_relations))
res = makeASTFunction(it->second, func->arguments->children[1]->clone(), func->arguments->children[0]->clone());
}
return res;
}
QueryTreeNodePtr normalizeAtom(const QueryTreeNodePtr & atom, const ContextPtr & context)
{
static const std::map<std::string, std::string> inverse_relations =
{
{"lessOrEquals", "greaterOrEquals"},
{"less", "greater"},
};
if (const auto * function_node = atom->as<FunctionNode>())
{
if (const auto it = inverse_relations.find(function_node->getFunctionName()); it != inverse_relations.end())
{
auto inverted_node = function_node->clone();
auto * inverted_function_node = inverted_node->as<FunctionNode>();
auto function_resolver = FunctionFactory::instance().get(it->second, context);
auto & arguments = inverted_function_node->getArguments().getNodes();
assert(arguments.size() == 2);
std::swap(arguments[0], arguments[1]);
inverted_function_node->resolveAsFunction(function_resolver);
return inverted_node;
}
}
return atom;
}
const FunctionNode * tryGetFunctionNode(const QueryTreeNodePtr & node)
{
return node->as<FunctionNode>();
}
const ASTFunction * tryGetFunctionNode(const ASTPtr & node)
{
return node->as<ASTFunction>();
}
std::string functionName(const QueryTreeNodePtr & node)
{
return node->as<FunctionNode &>().getFunctionName();
}
std::string functionName(const ASTPtr & node)
{
return node->as<ASTFunction &>().name;
}
const Field * tryGetConstantValue(const QueryTreeNodePtr & node)
{
if (const auto * constant = node->as<ConstantNode>())
return &constant->getValue();
return nullptr;
}
const Field * tryGetConstantValue(const ASTPtr & node)
{
if (const auto * constant = node->as<ASTLiteral>())
return &constant->value;
return nullptr;
}
template <typename Node>
const Field & getConstantValue(const Node & node)
{
const auto * constant = tryGetConstantValue(node);
assert(constant);
return *constant;
}
const auto & getNode(const Analyzer::CNF::AtomicFormula & atom)
{
return atom.node_with_hash.node;
}
const auto & getNode(const CNFQuery::AtomicFormula & atom)
{
return atom.ast;
}
std::string nodeToString(const ASTPtr & ast)
{
return queryToString(ast);
}
std::string nodeToString(const QueryTreeNodePtr & node)
{
return queryToString(node->toAST());
}
const auto & getArguments(const ASTFunction * function)
{
return function->arguments->children;
}
const auto & getArguments(const FunctionNode * function)
{
return function->getArguments().getNodes();
}
bool less(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateLess{}, lhs, rhs); }
bool greater(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateLess{}, rhs, lhs); }
bool equals(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateEquals{}, lhs, rhs); }
ComparisonGraphCompareResult functionNameToCompareResult(const std::string & name)
{
using enum ComparisonGraphCompareResult;
static const std::unordered_map<std::string, ComparisonGraphCompareResult> relation_to_compare =
{
{"equals", EQUAL},
{"notEquals", NOT_EQUAL},
{"less", LESS},
{"lessOrEquals", LESS_OR_EQUAL},
{"greaterOrEquals", GREATER_OR_EQUAL},
{"greater", GREATER},
};
const auto it = relation_to_compare.find(name);
return it == std::end(relation_to_compare) ? UNKNOWN : it->second;
}
ComparisonGraphCompareResult inverseCompareResult(ComparisonGraphCompareResult result)
{
using enum ComparisonGraphCompareResult;
static const std::unordered_map<ComparisonGraphCompareResult, ComparisonGraphCompareResult> inverse_relations =
{
{NOT_EQUAL, EQUAL},
{EQUAL, NOT_EQUAL},
{GREATER_OR_EQUAL, LESS},
{GREATER, LESS_OR_EQUAL},
{LESS, GREATER_OR_EQUAL},
{LESS_OR_EQUAL, GREATER},
{UNKNOWN, UNKNOWN},
};
return inverse_relations.at(result);
}
}
template <ComparisonGraphNodeType Node>
ComparisonGraph<Node>::ComparisonGraph(const NodeContainer & atomic_formulas, ContextPtr context)
{
if (atomic_formulas.empty())
return;
static const std::unordered_map<std::string, typename Edge::Type> relation_to_enum =
{
{"equals", Edge::EQUAL},
{"greater", Edge::GREATER},
{"greaterOrEquals", Edge::GREATER_OR_EQUAL},
};
/// Firstly build an intermediate graph,
/// in which each vertex corresponds to one expression.
/// That means that if we have edge (A, B) with type GREATER, then always A > B.
/// If we have EQUAL relation, then we add both edges (A, B) and (B, A).
Graph g;
for (const auto & atom_raw : atomic_formulas)
{
const auto atom = normalizeAtom(atom_raw, context);
auto get_index = [](const Node & node, Graph & nodes_graph) -> std::optional<size_t>
{
const auto it = nodes_graph.node_hash_to_component.find(Graph::getHash(node));
if (it != std::end(nodes_graph.node_hash_to_component))
{
if (!std::any_of(
std::cbegin(nodes_graph.vertices[it->second].nodes),
std::cend(nodes_graph.vertices[it->second].nodes),
[node](const Node & constraint_node)
{
if constexpr (with_ast)
return constraint_node->getTreeHash() == node->getTreeHash()
&& constraint_node->getColumnName() == node->getColumnName();
else
return constraint_node->isEqual(*node);
}))
{
return {};
}
return it->second;
}
else
{
nodes_graph.node_hash_to_component[Graph::getHash(node)] = nodes_graph.vertices.size();
nodes_graph.vertices.push_back(EqualComponent{{node}, std::nullopt});
nodes_graph.edges.emplace_back();
return nodes_graph.vertices.size() - 1;
}
};
const auto * function_node = tryGetFunctionNode(atom);
if (function_node)
{
const auto & arguments = getArguments(function_node);
if (arguments.size() == 2)
{
auto index_left = get_index(arguments[0], g);
auto index_right = get_index(arguments[1], g);
if (index_left && index_right)
{
if (const auto it = relation_to_enum.find(functionName(atom)); it != std::end(relation_to_enum))
{
g.edges[*index_left].push_back(Edge{it->second, *index_right});
if (it->second == Edge::EQUAL)
g.edges[*index_right].push_back(Edge{it->second, *index_left});
}
}
}
}
}
/// Now expressions A and B are equal, if and only if
/// we have both paths from A to B and from B to A in graph.
/// That means that equivalence classes of expressions
/// are the same as strongly connected components in graph.
/// So, we find such components and build graph on them.
/// All expressions from one equivalence class will be stored
/// in the corresponding vertex of new graph.
graph = buildGraphFromNodesGraph(g);
dists = buildDistsFromGraph(graph);
std::tie(node_const_lower_bound, node_const_upper_bound) = buildConstBounds();
/// Find expressions that are known to be unequal.
static const std::unordered_set<String> not_equals_functions = {"notEquals", "greater"};
/// Explicitly save unequal components.
/// TODO: Build a graph for unequal components.
for (const auto & atom_raw : atomic_formulas)
{
const auto atom = normalizeAtom(atom_raw, context);
const auto * function_node = tryGetFunctionNode(atom);
if (function_node && not_equals_functions.contains(functionName(atom)))
{
const auto & arguments = getArguments(function_node);
if (arguments.size() == 2)
{
auto index_left = graph.node_hash_to_component.at(Graph::getHash(arguments[0]));
auto index_right = graph.node_hash_to_component.at(Graph::getHash(arguments[1]));
if (index_left == index_right)
{
throw Exception(ErrorCodes::VIOLATED_CONSTRAINT,
"Found expression '{}', but its arguments considered equal according to constraints",
nodeToString(atom));
}
not_equal.emplace(index_left, index_right);
not_equal.emplace(index_right, index_left);
}
}
}
}
template <ComparisonGraphNodeType Node>
ComparisonGraphCompareResult ComparisonGraph<Node>::pathToCompareResult(Path path, bool inverse)
{
switch (path)
{
case Path::GREATER: return inverse ? ComparisonGraphCompareResult::LESS : ComparisonGraphCompareResult::GREATER;
case Path::GREATER_OR_EQUAL: return inverse ? ComparisonGraphCompareResult::LESS_OR_EQUAL : ComparisonGraphCompareResult::GREATER_OR_EQUAL;
}
UNREACHABLE();
}
template <ComparisonGraphNodeType Node>
std::optional<typename ComparisonGraph<Node>::Path> ComparisonGraph<Node>::findPath(size_t start, size_t finish) const
{
const auto it = dists.find(std::make_pair(start, finish));
if (it == std::end(dists))
return {};
/// Since path can be only GREATER or GREATER_OR_EQUALS,
/// we can strengthen the condition.
return not_equal.contains({start, finish}) ? Path::GREATER : it->second;
}
template <ComparisonGraphNodeType Node>
ComparisonGraphCompareResult ComparisonGraph<Node>::compare(const Node & left, const Node & right) const
{
size_t start = 0;
size_t finish = 0;
/// TODO: check full ast
const auto it_left = graph.node_hash_to_component.find(Graph::getHash(left));
const auto it_right = graph.node_hash_to_component.find(Graph::getHash(right));
if (it_left == std::end(graph.node_hash_to_component) || it_right == std::end(graph.node_hash_to_component))
{
auto result = ComparisonGraphCompareResult::UNKNOWN;
{
const auto left_bound = getConstLowerBound(left);
const auto right_bound = getConstUpperBound(right);
if (left_bound && right_bound)
{
if (greater(left_bound->first, right_bound->first))
result = ComparisonGraphCompareResult::GREATER;
else if (equals(left_bound->first, right_bound->first))
result = left_bound->second || right_bound->second
? ComparisonGraphCompareResult::GREATER : ComparisonGraphCompareResult::GREATER_OR_EQUAL;
}
}
{
const auto left_bound = getConstUpperBound(left);
const auto right_bound = getConstLowerBound(right);
if (left_bound && right_bound)
{
if (less(left_bound->first, right_bound->first))
result = ComparisonGraphCompareResult::LESS;
else if (equals(left_bound->first, right_bound->first))
result = left_bound->second || right_bound->second
? ComparisonGraphCompareResult::LESS : ComparisonGraphCompareResult::LESS_OR_EQUAL;
}
}
return result;
}
else
{
start = it_left->second;
finish = it_right->second;
}
if (start == finish)
return ComparisonGraphCompareResult::EQUAL;
if (auto path = findPath(start, finish))
return pathToCompareResult(*path, /*inverse=*/ false);
if (auto path = findPath(finish, start))
return pathToCompareResult(*path, /*inverse=*/ true);
if (not_equal.contains({start, finish}))
return ComparisonGraphCompareResult::NOT_EQUAL;
return ComparisonGraphCompareResult::UNKNOWN;
}
template <ComparisonGraphNodeType Node>
bool ComparisonGraph<Node>::isPossibleCompare(ComparisonGraphCompareResult expected, const Node & left, const Node & right) const
{
const auto result = compare(left, right);
using enum ComparisonGraphCompareResult;
if (expected == UNKNOWN || result == UNKNOWN)
return true;
if (expected == result)
return true;
static const std::set<std::pair<ComparisonGraphCompareResult, ComparisonGraphCompareResult>> possible_pairs =
{
{EQUAL, LESS_OR_EQUAL},
{EQUAL, GREATER_OR_EQUAL},
{LESS_OR_EQUAL, LESS},
{LESS_OR_EQUAL, EQUAL},
{LESS_OR_EQUAL, NOT_EQUAL},
{GREATER_OR_EQUAL, GREATER},
{GREATER_OR_EQUAL, EQUAL},
{GREATER_OR_EQUAL, NOT_EQUAL},
{LESS, LESS},
{LESS, LESS_OR_EQUAL},
{LESS, NOT_EQUAL},
{GREATER, GREATER},
{GREATER, GREATER_OR_EQUAL},
{GREATER, NOT_EQUAL},
{NOT_EQUAL, LESS},
{NOT_EQUAL, GREATER},
{NOT_EQUAL, LESS_OR_EQUAL},
{NOT_EQUAL, GREATER_OR_EQUAL},
};
return possible_pairs.contains({expected, result});
}
template <ComparisonGraphNodeType Node>
bool ComparisonGraph<Node>::isAlwaysCompare(ComparisonGraphCompareResult expected, const Node & left, const Node & right) const
{
const auto result = compare(left, right);
using enum ComparisonGraphCompareResult;
if (expected == UNKNOWN || result == UNKNOWN)
return false;
if (expected == result)
return true;
static const std::set<std::pair<ComparisonGraphCompareResult, ComparisonGraphCompareResult>> possible_pairs =
{
{LESS_OR_EQUAL, LESS},
{LESS_OR_EQUAL, EQUAL},
{GREATER_OR_EQUAL, GREATER},
{GREATER_OR_EQUAL, EQUAL},
{NOT_EQUAL, GREATER},
{NOT_EQUAL, LESS},
};
return possible_pairs.contains({expected, result});
}
template <ComparisonGraphNodeType Node>
typename ComparisonGraph<Node>::NodeContainer ComparisonGraph<Node>::getEqual(const Node & node) const
{
const auto res = getComponentId(node);
if (!res)
return {};
else
return getComponent(res.value());
}
template <ComparisonGraphNodeType Node>
std::optional<size_t> ComparisonGraph<Node>::getComponentId(const Node & node) const
{
const auto hash_it = graph.node_hash_to_component.find(Graph::getHash(node));
if (hash_it == std::end(graph.node_hash_to_component))
return {};
const size_t index = hash_it->second;
if (std::any_of(
std::cbegin(graph.vertices[index].nodes),
std::cend(graph.vertices[index].nodes),
[node](const Node & constraint_node)
{
if constexpr (with_ast)
return constraint_node->getTreeHash() == node->getTreeHash()
&& constraint_node->getColumnName() == node->getColumnName();
else
return constraint_node->getTreeHash() == node->getTreeHash();
}))
{
return index;
}
else
{
return {};
}
}
template <ComparisonGraphNodeType Node>
bool ComparisonGraph<Node>::hasPath(size_t left, size_t right) const
{
return findPath(left, right) || findPath(right, left);
}
template <ComparisonGraphNodeType Node>
typename ComparisonGraph<Node>::NodeContainer ComparisonGraph<Node>::getComponent(size_t id) const
{
return graph.vertices[id].nodes;
}
template <ComparisonGraphNodeType Node>
bool ComparisonGraph<Node>::EqualComponent::hasConstant() const
{
return constant_index.has_value();
}
template <ComparisonGraphNodeType Node>
Node ComparisonGraph<Node>::EqualComponent::getConstant() const
{
assert(constant_index);
return nodes[*constant_index];
}
template <ComparisonGraphNodeType Node>
void ComparisonGraph<Node>::EqualComponent::buildConstants()
{
constant_index.reset();
for (size_t i = 0; i < nodes.size(); ++i)
{
if (tryGetConstantValue(nodes[i]) != nullptr)
{
constant_index = i;
return;
}
}
}
template <ComparisonGraphNodeType Node>
ComparisonGraphCompareResult ComparisonGraph<Node>::atomToCompareResult(const typename CNF::AtomicFormula & atom)
{
const auto & node = getNode(atom);
if (tryGetFunctionNode(node) != nullptr)
{
auto expected = functionNameToCompareResult(functionName(node));
if (atom.negative)
expected = inverseCompareResult(expected);
return expected;
}
return ComparisonGraphCompareResult::UNKNOWN;
}
template <ComparisonGraphNodeType Node>
std::optional<Node> ComparisonGraph<Node>::getEqualConst(const Node & node) const
{
const auto hash_it = graph.node_hash_to_component.find(Graph::getHash(node));
if (hash_it == std::end(graph.node_hash_to_component))
return std::nullopt;
const size_t index = hash_it->second;
if (!graph.vertices[index].hasConstant())
return std::nullopt;
if constexpr (with_ast)
return graph.vertices[index].getConstant();
else
{
const auto & constant = getConstantValue(graph.vertices[index].getConstant());
auto constant_node = std::make_shared<ConstantNode>(constant, node->getResultType());
return constant_node;
}
}
template <ComparisonGraphNodeType Node>
std::optional<std::pair<Field, bool>> ComparisonGraph<Node>::getConstUpperBound(const Node & node) const
{
if (const auto * constant = tryGetConstantValue(node))
return std::make_pair(*constant, false);
const auto it = graph.node_hash_to_component.find(Graph::getHash(node));
if (it == std::end(graph.node_hash_to_component))
return std::nullopt;
const size_t to = it->second;
const ssize_t from = node_const_upper_bound[to];
if (from == -1)
return std::nullopt;
return std::make_pair(getConstantValue(graph.vertices[from].getConstant()), dists.at({from, to}) == Path::GREATER);
}
template <ComparisonGraphNodeType Node>
std::optional<std::pair<Field, bool>> ComparisonGraph<Node>::getConstLowerBound(const Node & node) const
{
if (const auto * constant = tryGetConstantValue(node))
return std::make_pair(*constant, false);
const auto it = graph.node_hash_to_component.find(Graph::getHash(node));
if (it == std::end(graph.node_hash_to_component))
return std::nullopt;
const size_t from = it->second;
const ssize_t to = node_const_lower_bound[from];
if (to == -1)
return std::nullopt;
return std::make_pair(getConstantValue(graph.vertices[to].getConstant()), dists.at({from, to}) == Path::GREATER);
}
template <ComparisonGraphNodeType Node>
void ComparisonGraph<Node>::dfsOrder(const Graph & nodes_graph, size_t v, std::vector<bool> & visited, std::vector<size_t> & order)
{
visited[v] = true;
for (const auto & edge : nodes_graph.edges[v])
if (!visited[edge.to])
dfsOrder(nodes_graph, edge.to, visited, order);
order.push_back(v);
}
template <ComparisonGraphNodeType Node>
typename ComparisonGraph<Node>::Graph ComparisonGraph<Node>::reverseGraph(const Graph & nodes_graph)
{
Graph g;
g.node_hash_to_component = nodes_graph.node_hash_to_component;
g.vertices = nodes_graph.vertices;
g.edges.resize(g.vertices.size());
for (size_t v = 0; v < nodes_graph.vertices.size(); ++v)
for (const auto & edge : nodes_graph.edges[v])
g.edges[edge.to].push_back(Edge{edge.type, v});
return g;
}
template <ComparisonGraphNodeType Node>
std::vector<typename ComparisonGraph<Node>::NodeContainer> ComparisonGraph<Node>::getVertices() const
{
std::vector<NodeContainer> result;
for (const auto & vertex : graph.vertices)
{
result.emplace_back();
for (const auto & node : vertex.nodes)
result.back().push_back(node);
}
return result;
}
template <ComparisonGraphNodeType Node>
void ComparisonGraph<Node>::dfsComponents(
const Graph & reversed_graph, size_t v,
OptionalIndices & components, size_t component)
{
components[v] = component;
for (const auto & edge : reversed_graph.edges[v])
if (!components[edge.to])
dfsComponents(reversed_graph, edge.to, components, component);
}
template <ComparisonGraphNodeType Node>
typename ComparisonGraph<Node>::Graph ComparisonGraph<Node>::buildGraphFromNodesGraph(const Graph & nodes_graph)
{
/// Find strongly connected component by using 2 dfs traversals.
/// https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
const auto n = nodes_graph.vertices.size();
std::vector<size_t> order;
{
std::vector<bool> visited(n, false);
for (size_t v = 0; v < n; ++v)
{
if (!visited[v])
dfsOrder(nodes_graph, v, visited, order);
}
}
OptionalIndices components(n);
size_t component = 0;
{
const Graph reversed_graph = reverseGraph(nodes_graph);
for (auto it = order.rbegin(); it != order.rend(); ++it)
{
if (!components[*it])
{
dfsComponents(reversed_graph, *it, components, component);
++component;
}
}
}
Graph result;
result.vertices.resize(component);
result.edges.resize(component);
for (const auto & [hash, index] : nodes_graph.node_hash_to_component)
{
assert(components[index]);
result.node_hash_to_component[hash] = *components[index];
result.vertices[*components[index]].nodes.insert(
std::end(result.vertices[*components[index]].nodes),
std::begin(nodes_graph.vertices[index].nodes),
std::end(nodes_graph.vertices[index].nodes)); // asts_graph has only one ast per vertex
}
/// Calculate constants
for (auto & vertex : result.vertices)
vertex.buildConstants();
/// For each edge in initial graph, we add an edge between components in condensation graph.
for (size_t v = 0; v < n; ++v)
{
for (const auto & edge : nodes_graph.edges[v])
result.edges[*components[v]].push_back(Edge{edge.type, *components[edge.to]});
/// TODO: make edges unique (left most strict)
}
/// If we have constansts in two components, we can compare them and add and extra edge.
for (size_t v = 0; v < result.vertices.size(); ++v)
{
for (size_t u = 0; u < result.vertices.size(); ++u)
{
if (v != u && result.vertices[v].hasConstant() && result.vertices[u].hasConstant())
{
const auto & left = getConstantValue(result.vertices[v].getConstant());
const auto & right = getConstantValue(result.vertices[u].getConstant());
/// Only GREATER. Equal constant fields = equal literals so it was already considered above.
if (greater(left, right))
result.edges[v].push_back(Edge{Edge::GREATER, u});
}
}
}
return result;
}
template <ComparisonGraphNodeType Node>
std::map<std::pair<size_t, size_t>, typename ComparisonGraph<Node>::Path> ComparisonGraph<Node>::buildDistsFromGraph(const Graph & g)
{
/// Min path : -1 means GREATER, 0 means GREATER_OR_EQUALS.
/// We use Floyd–Warshall algorithm to find distances between all pairs of vertices.
/// https://en.wikipedia.org/wiki/Floyd–Warshall_algorithm
constexpr auto inf = std::numeric_limits<Int8>::max();
const size_t n = g.vertices.size();
std::vector<std::vector<Int8>> results(n, std::vector<Int8>(n, inf));
for (size_t v = 0; v < n; ++v)
{
results[v][v] = 0;
for (const auto & edge : g.edges[v])
results[v][edge.to] = std::min(results[v][edge.to], static_cast<Int8>(edge.type == Edge::GREATER ? -1 : 0));
}
for (size_t k = 0; k < n; ++k)
for (size_t v = 0; v < n; ++v)
for (size_t u = 0; u < n; ++u)
if (results[v][k] != inf && results[k][u] != inf)
results[v][u] = std::min(results[v][u], std::min(results[v][k], results[k][u]));
std::map<std::pair<size_t, size_t>, Path> path;
for (size_t v = 0; v < n; ++v)
for (size_t u = 0; u < n; ++u)
if (results[v][u] != inf)
path[std::make_pair(v, u)] = (results[v][u] == -1 ? Path::GREATER : Path::GREATER_OR_EQUAL);
return path;
}
template <ComparisonGraphNodeType Node>
std::pair<std::vector<ssize_t>, std::vector<ssize_t>> ComparisonGraph<Node>::buildConstBounds() const
{
const size_t n = graph.vertices.size();
std::vector<ssize_t> lower(n, -1);
std::vector<ssize_t> upper(n, -1);
auto get_value = [this](const size_t vertex) -> Field
{
return getConstantValue(graph.vertices[vertex].getConstant());
};
for (const auto & [edge, path] : dists)
{
const auto [from, to] = edge;
if (graph.vertices[to].hasConstant())
{
if (lower[from] == -1
|| greater(get_value(to), get_value(lower[from]))
|| (equals(get_value(to), get_value(lower[from])) && path == Path::GREATER))
lower[from] = to;
}
if (graph.vertices[from].hasConstant())
{
if (upper[to] == -1
|| less(get_value(from), get_value(upper[to]))
|| (equals(get_value(from), get_value(upper[to])) && path == Path::GREATER))
upper[to] = from;
}
}
return {std::move(lower), std::move(upper)};
}
template class ComparisonGraph<ASTPtr>;
template class ComparisonGraph<QueryTreeNodePtr>;
}
|