aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/clickhouse/src/Interpreters/Aggregator.h
blob: 4f2c86606c522fb3bc64d30015937b008e81120b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
#pragma once

#include <functional>
#include <memory>
#include <mutex>
#include <type_traits>


#include <base/StringRef.h>
#include <Common/HashTable/FixedHashMap.h>
#include <Common/HashTable/HashMap.h>
#include <Common/HashTable/TwoLevelHashMap.h>
#include <Common/HashTable/StringHashMap.h>
#include <Common/HashTable/TwoLevelStringHashMap.h>

#include <Common/ThreadPool.h>
#include <Common/ColumnsHashing.h>
#include <Common/assert_cast.h>
#include <Common/filesystemHelpers.h>
#include <Core/ColumnNumbers.h>

#include <QueryPipeline/SizeLimits.h>

#include <Disks/SingleDiskVolume.h>
#include <Disks/TemporaryFileOnDisk.h>

#include <Interpreters/AggregateDescription.h>
#include <Interpreters/AggregationCommon.h>
#include <Interpreters/JIT/compileFunction.h>
#include <Interpreters/TemporaryDataOnDisk.h>

#include <Columns/ColumnString.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnAggregateFunction.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnNullable.h>
#include <Columns/ColumnLowCardinality.h>

#include <Parsers/IAST_fwd.h>

namespace DB
{

namespace ErrorCodes
{
    extern const int UNKNOWN_AGGREGATED_DATA_VARIANT;
}

class Arena;
using ArenaPtr = std::shared_ptr<Arena>;
using Arenas = std::vector<ArenaPtr>;

/** Different data structures that can be used for aggregation
  * For efficiency, the aggregation data itself is put into the pool.
  * Data and pool ownership (states of aggregate functions)
  *  is acquired later - in `convertToBlocks` function, by the ColumnAggregateFunction object.
  *
  * Most data structures exist in two versions: normal and two-level (TwoLevel).
  * A two-level hash table works a little slower with a small number of different keys,
  *  but with a large number of different keys scales better, because it allows
  *  parallelize some operations (merging, post-processing) in a natural way.
  *
  * To ensure efficient work over a wide range of conditions,
  *  first single-level hash tables are used,
  *  and when the number of different keys is large enough,
  *  they are converted to two-level ones.
  *
  * PS. There are many different approaches to the effective implementation of parallel and distributed aggregation,
  *  best suited for different cases, and this approach is just one of them, chosen for a combination of reasons.
  */

using AggregatedDataWithoutKey = AggregateDataPtr;

using AggregatedDataWithUInt8Key = FixedImplicitZeroHashMapWithCalculatedSize<UInt8, AggregateDataPtr>;
using AggregatedDataWithUInt16Key = FixedImplicitZeroHashMap<UInt16, AggregateDataPtr>;

using AggregatedDataWithUInt32Key = HashMap<UInt32, AggregateDataPtr, HashCRC32<UInt32>>;
using AggregatedDataWithUInt64Key = HashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>;

using AggregatedDataWithShortStringKey = StringHashMap<AggregateDataPtr>;

using AggregatedDataWithStringKey = HashMapWithSavedHash<StringRef, AggregateDataPtr>;

using AggregatedDataWithKeys128 = HashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>;
using AggregatedDataWithKeys256 = HashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>;

using AggregatedDataWithUInt32KeyTwoLevel = TwoLevelHashMap<UInt32, AggregateDataPtr, HashCRC32<UInt32>>;
using AggregatedDataWithUInt64KeyTwoLevel = TwoLevelHashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>;

using AggregatedDataWithShortStringKeyTwoLevel = TwoLevelStringHashMap<AggregateDataPtr>;

using AggregatedDataWithStringKeyTwoLevel = TwoLevelHashMapWithSavedHash<StringRef, AggregateDataPtr>;

using AggregatedDataWithKeys128TwoLevel = TwoLevelHashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>;
using AggregatedDataWithKeys256TwoLevel = TwoLevelHashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>;

/** Variants with better hash function, using more than 32 bits for hash.
  * Using for merging phase of external aggregation, where number of keys may be far greater than 4 billion,
  *  but we keep in memory and merge only sub-partition of them simultaneously.
  * TODO We need to switch for better hash function not only for external aggregation,
  *  but also for huge aggregation results on machines with terabytes of RAM.
  */

using AggregatedDataWithUInt64KeyHash64 = HashMap<UInt64, AggregateDataPtr, DefaultHash<UInt64>>;
using AggregatedDataWithStringKeyHash64 = HashMapWithSavedHash<StringRef, AggregateDataPtr, StringRefHash64>;
using AggregatedDataWithKeys128Hash64 = HashMap<UInt128, AggregateDataPtr, UInt128Hash>;
using AggregatedDataWithKeys256Hash64 = HashMap<UInt256, AggregateDataPtr, UInt256Hash>;

template <typename Base>
struct AggregationDataWithNullKey : public Base
{
    using Base::Base;

    bool & hasNullKeyData() { return has_null_key_data; }
    AggregateDataPtr & getNullKeyData() { return null_key_data; }
    bool hasNullKeyData() const { return has_null_key_data; }
    const AggregateDataPtr & getNullKeyData() const { return null_key_data; }
    size_t size() const { return Base::size() + (has_null_key_data ? 1 : 0); }
    bool empty() const { return Base::empty() && !has_null_key_data; }
    void clear()
    {
        Base::clear();
        has_null_key_data = false;
    }
    void clearAndShrink()
    {
        Base::clearAndShrink();
        has_null_key_data = false;
    }

private:
    bool has_null_key_data = false;
    AggregateDataPtr null_key_data = nullptr;
};

template <typename Base>
struct AggregationDataWithNullKeyTwoLevel : public Base
{
    using Base::Base;
    using Base::impls;

    AggregationDataWithNullKeyTwoLevel() = default;

    template <typename Other>
    explicit AggregationDataWithNullKeyTwoLevel(const Other & other) : Base(other)
    {
        impls[0].hasNullKeyData() = other.hasNullKeyData();
        impls[0].getNullKeyData() = other.getNullKeyData();
    }

    bool & hasNullKeyData() { return impls[0].hasNullKeyData(); }
    AggregateDataPtr & getNullKeyData() { return impls[0].getNullKeyData(); }
    bool hasNullKeyData() const { return impls[0].hasNullKeyData(); }
    const AggregateDataPtr & getNullKeyData() const { return impls[0].getNullKeyData(); }
};

template <typename ... Types>
using HashTableWithNullKey = AggregationDataWithNullKey<HashMapTable<Types ...>>;
template <typename ... Types>
using StringHashTableWithNullKey = AggregationDataWithNullKey<StringHashMap<Types ...>>;

using AggregatedDataWithNullableUInt8Key = AggregationDataWithNullKey<AggregatedDataWithUInt8Key>;
using AggregatedDataWithNullableUInt16Key = AggregationDataWithNullKey<AggregatedDataWithUInt16Key>;
using AggregatedDataWithNullableUInt32Key = AggregationDataWithNullKey<AggregatedDataWithUInt32Key>;


using AggregatedDataWithNullableUInt64Key = AggregationDataWithNullKey<AggregatedDataWithUInt64Key>;
using AggregatedDataWithNullableStringKey = AggregationDataWithNullKey<AggregatedDataWithStringKey>;
using AggregatedDataWithNullableShortStringKey = AggregationDataWithNullKey<AggregatedDataWithShortStringKey>;


using AggregatedDataWithNullableUInt32KeyTwoLevel = AggregationDataWithNullKeyTwoLevel<
    TwoLevelHashMap<UInt32, AggregateDataPtr, HashCRC32<UInt32>,
                    TwoLevelHashTableGrower<>, HashTableAllocator, HashTableWithNullKey>>;
using AggregatedDataWithNullableUInt64KeyTwoLevel = AggregationDataWithNullKeyTwoLevel<
        TwoLevelHashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>,
        TwoLevelHashTableGrower<>, HashTableAllocator, HashTableWithNullKey>>;

using AggregatedDataWithNullableShortStringKeyTwoLevel = AggregationDataWithNullKeyTwoLevel<
        TwoLevelStringHashMap<AggregateDataPtr, HashTableAllocator, StringHashTableWithNullKey>>;

using AggregatedDataWithNullableStringKeyTwoLevel = AggregationDataWithNullKeyTwoLevel<
        TwoLevelHashMapWithSavedHash<StringRef, AggregateDataPtr, DefaultHash<StringRef>,
        TwoLevelHashTableGrower<>, HashTableAllocator, HashTableWithNullKey>>;

/// For the case where there is one numeric key.
/// FieldType is UInt8/16/32/64 for any type with corresponding bit width.
template <typename FieldType, typename TData,
        bool consecutive_keys_optimization = true, bool nullable = false>
struct AggregationMethodOneNumber
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;

    Data data;

    AggregationMethodOneNumber() = default;

    explicit AggregationMethodOneNumber(size_t size_hint) : data(size_hint) { }

    template <typename Other>
    explicit AggregationMethodOneNumber(const Other & other) : data(other.data)
    {
    }

    /// To use one `Method` in different threads, use different `State`.
    using State = ColumnsHashing::HashMethodOneNumber<typename Data::value_type,
        Mapped, FieldType, consecutive_keys_optimization, false, nullable>;

    /// Use optimization for low cardinality.
    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = nullable;

    /// Shuffle key columns before `insertKeyIntoColumns` call if needed.
    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    // Insert the key from the hash table into columns.
    static void insertKeyIntoColumns(const Key & key, std::vector<IColumn *> & key_columns, const Sizes & /*key_sizes*/)
    {
        ColumnVectorHelper * column;
        if constexpr (nullable)
        {
            ColumnNullable & nullable_col = assert_cast<ColumnNullable &>(*key_columns[0]);
            ColumnUInt8 * null_map = assert_cast<ColumnUInt8 *>(&nullable_col.getNullMapColumn());
            null_map->insertDefault();
            column = static_cast<ColumnVectorHelper *>(&nullable_col.getNestedColumn());
        }
        else
        {
            column = static_cast<ColumnVectorHelper *>(key_columns[0]);
        }
        static_assert(sizeof(FieldType) <= sizeof(Key));
        const auto * key_holder = reinterpret_cast<const char *>(&key);
        if constexpr (sizeof(FieldType) < sizeof(Key) && std::endian::native == std::endian::big)
            column->insertRawData<sizeof(FieldType)>(key_holder + (sizeof(Key) - sizeof(FieldType)));
        else
            column->insertRawData<sizeof(FieldType)>(key_holder);
    }
};


/// For the case where there is one string key.
template <typename TData>
struct AggregationMethodString
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;

    Data data;

    AggregationMethodString() = default;

    template <typename Other>
    explicit AggregationMethodString(const Other & other) : data(other.data)
    {
    }

    explicit AggregationMethodString(size_t size_hint) : data(size_hint) { }

    using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped>;

    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = false;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    static void insertKeyIntoColumns(StringRef key, std::vector<IColumn *> & key_columns, const Sizes &)
    {
        static_cast<ColumnString *>(key_columns[0])->insertData(key.data, key.size);
    }
};


/// Same as above but without cache
template <typename TData, bool nullable = false>
struct AggregationMethodStringNoCache
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;

    Data data;

    AggregationMethodStringNoCache() = default;

    explicit AggregationMethodStringNoCache(size_t size_hint) : data(size_hint) { }

    template <typename Other>
    explicit AggregationMethodStringNoCache(const Other & other) : data(other.data)
    {
    }

    using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped, true, false, false, nullable>;

    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = nullable;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    static void insertKeyIntoColumns(StringRef key, std::vector<IColumn *> & key_columns, const Sizes &)
    {
        if constexpr (nullable)
        {
            ColumnNullable & column_nullable = assert_cast<ColumnNullable &>(*key_columns[0]);
            assert_cast<ColumnString &>(column_nullable.getNestedColumn()).insertData(key.data, key.size);
            column_nullable.getNullMapData().push_back(0);
        }
        else
        {
            assert_cast<ColumnString &>(*key_columns[0]).insertData(key.data, key.size);
        }
    }
};


/// For the case where there is one fixed-length string key.
template <typename TData>
struct AggregationMethodFixedString
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;

    Data data;

    AggregationMethodFixedString() = default;

    explicit AggregationMethodFixedString(size_t size_hint) : data(size_hint) { }

    template <typename Other>
    explicit AggregationMethodFixedString(const Other & other) : data(other.data)
    {
    }

    using State = ColumnsHashing::HashMethodFixedString<typename Data::value_type, Mapped>;

    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = false;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    static void insertKeyIntoColumns(StringRef key, std::vector<IColumn *> & key_columns, const Sizes &)
    {
        assert_cast<ColumnFixedString &>(*key_columns[0]).insertData(key.data, key.size);
    }
};

/// Same as above but without cache
template <typename TData, bool nullable = false>
struct AggregationMethodFixedStringNoCache
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;

    Data data;

    AggregationMethodFixedStringNoCache() = default;

    explicit AggregationMethodFixedStringNoCache(size_t size_hint) : data(size_hint) { }

    template <typename Other>
    explicit AggregationMethodFixedStringNoCache(const Other & other) : data(other.data)
    {
    }

    using State = ColumnsHashing::HashMethodFixedString<typename Data::value_type, Mapped, true, false, false, nullable>;

    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = nullable;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    static void insertKeyIntoColumns(StringRef key, std::vector<IColumn *> & key_columns, const Sizes &)
    {
        if constexpr (nullable)
        {
            assert_cast<ColumnNullable &>(*key_columns[0]).insertData(key.data, key.size);
        }
        else
        {
            assert_cast<ColumnFixedString &>(*key_columns[0]).insertData(key.data, key.size);
        }
    }
};


/// Single low cardinality column.
template <typename SingleColumnMethod>
struct AggregationMethodSingleLowCardinalityColumn : public SingleColumnMethod
{
    using Base = SingleColumnMethod;
    using BaseState = typename Base::State;

    using Data = typename Base::Data;
    using Key = typename Base::Key;
    using Mapped = typename Base::Mapped;

    using Base::data;

    AggregationMethodSingleLowCardinalityColumn() = default;

    template <typename Other>
    explicit AggregationMethodSingleLowCardinalityColumn(const Other & other) : Base(other) {}

    using State = ColumnsHashing::HashMethodSingleLowCardinalityColumn<BaseState, Mapped, true>;

    static const bool low_cardinality_optimization = true;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    static void insertKeyIntoColumns(const Key & key,
         std::vector<IColumn *> & key_columns_low_cardinality, const Sizes & /*key_sizes*/)
    {
        auto * col = assert_cast<ColumnLowCardinality *>(key_columns_low_cardinality[0]);

        if constexpr (std::is_same_v<Key, StringRef>)
        {
            col->insertData(key.data, key.size);
        }
        else
        {
            col->insertData(reinterpret_cast<const char *>(&key), sizeof(key));
        }
    }
};


/// For the case where all keys are of fixed length, and they fit in N (for example, 128) bits.
template <typename TData, bool has_nullable_keys_ = false, bool has_low_cardinality_ = false, bool use_cache = true>
struct AggregationMethodKeysFixed
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;
    static constexpr bool has_nullable_keys = has_nullable_keys_;
    static constexpr bool has_low_cardinality = has_low_cardinality_;

    Data data;

    AggregationMethodKeysFixed() = default;

    explicit AggregationMethodKeysFixed(size_t size_hint) : data(size_hint) { }

    template <typename Other>
    explicit AggregationMethodKeysFixed(const Other & other) : data(other.data)
    {
    }

    using State = ColumnsHashing::HashMethodKeysFixed<
        typename Data::value_type,
        Key,
        Mapped,
        has_nullable_keys,
        has_low_cardinality,
        use_cache>;

    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = false;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> & key_columns, const Sizes & key_sizes)
    {
        return State::shuffleKeyColumns(key_columns, key_sizes);
    }

    static void insertKeyIntoColumns(const Key & key, std::vector<IColumn *> & key_columns, const Sizes & key_sizes)
    {
        size_t keys_size = key_columns.size();

        static constexpr auto bitmap_size = has_nullable_keys ? std::tuple_size<KeysNullMap<Key>>::value : 0;
        /// In any hash key value, column values to be read start just after the bitmap, if it exists.
        size_t pos = bitmap_size;

        for (size_t i = 0; i < keys_size; ++i)
        {
            IColumn * observed_column;
            ColumnUInt8 * null_map;

            bool column_nullable = false;
            if constexpr (has_nullable_keys)
                column_nullable = isColumnNullable(*key_columns[i]);

            /// If we have a nullable column, get its nested column and its null map.
            if (column_nullable)
            {
                ColumnNullable & nullable_col = assert_cast<ColumnNullable &>(*key_columns[i]);
                observed_column = &nullable_col.getNestedColumn();
                null_map = assert_cast<ColumnUInt8 *>(&nullable_col.getNullMapColumn());
            }
            else
            {
                observed_column = key_columns[i];
                null_map = nullptr;
            }

            bool is_null = false;
            if (column_nullable)
            {
                /// The current column is nullable. Check if the value of the
                /// corresponding key is nullable. Update the null map accordingly.
                size_t bucket = i / 8;
                size_t offset = i % 8;
                UInt8 val = (reinterpret_cast<const UInt8 *>(&key)[bucket] >> offset) & 1;
                null_map->insertValue(val);
                is_null = val == 1;
            }

            if (has_nullable_keys && is_null)
                observed_column->insertDefault();
            else
            {
                size_t size = key_sizes[i];
                observed_column->insertData(reinterpret_cast<const char *>(&key) + pos, size);
                pos += size;
            }
        }
    }
};


/** Aggregates by concatenating serialized key values.
  * The serialized value differs in that it uniquely allows to deserialize it, having only the position with which it starts.
  * That is, for example, for strings, it contains first the serialized length of the string, and then the bytes.
  * Therefore, when aggregating by several strings, there is no ambiguity.
  */
template <typename TData>
struct AggregationMethodSerialized
{
    using Data = TData;
    using Key = typename Data::key_type;
    using Mapped = typename Data::mapped_type;

    Data data;

    AggregationMethodSerialized() = default;

    explicit AggregationMethodSerialized(size_t size_hint) : data(size_hint) { }

    template <typename Other>
    explicit AggregationMethodSerialized(const Other & other) : data(other.data)
    {
    }

    using State = ColumnsHashing::HashMethodSerialized<typename Data::value_type, Mapped>;

    static const bool low_cardinality_optimization = false;
    static const bool one_key_nullable_optimization = false;

    std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }

    static void insertKeyIntoColumns(StringRef key, std::vector<IColumn *> & key_columns, const Sizes &)
    {
        const auto * pos = key.data;
        for (auto & column : key_columns)
            pos = column->deserializeAndInsertFromArena(pos);
    }
};


class Aggregator;

using ColumnsHashing::HashMethodContext;
using ColumnsHashing::HashMethodContextPtr;

struct AggregatedDataVariants : private boost::noncopyable
{
    /** Working with states of aggregate functions in the pool is arranged in the following (inconvenient) way:
      * - when aggregating, states are created in the pool using IAggregateFunction::create (inside - `placement new` of arbitrary structure);
      * - they must then be destroyed using IAggregateFunction::destroy (inside - calling the destructor of arbitrary structure);
      * - if aggregation is complete, then, in the Aggregator::convertToBlocks function, pointers to the states of aggregate functions
      *   are written to ColumnAggregateFunction; ColumnAggregateFunction "acquires ownership" of them, that is - calls `destroy` in its destructor.
      * - if during the aggregation, before call to Aggregator::convertToBlocks, an exception was thrown,
      *   then the states of aggregate functions must still be destroyed,
      *   otherwise, for complex states (eg, AggregateFunctionUniq), there will be memory leaks;
      * - in this case, to destroy states, the destructor calls Aggregator::destroyAggregateStates method,
      *   but only if the variable aggregator (see below) is not nullptr;
      * - that is, until you transfer ownership of the aggregate function states in the ColumnAggregateFunction, set the variable `aggregator`,
      *   so that when an exception occurs, the states are correctly destroyed.
      *
      * PS. This can be corrected by making a pool that knows about which states of aggregate functions and in which order are put in it, and knows how to destroy them.
      * But this can hardly be done simply because it is planned to put variable-length strings into the same pool.
      * In this case, the pool will not be able to know with what offsets objects are stored.
      */
    const Aggregator * aggregator = nullptr;

    size_t keys_size{};  /// Number of keys. NOTE do we need this field?
    Sizes key_sizes;     /// Dimensions of keys, if keys of fixed length

    /// Pools for states of aggregate functions. Ownership will be later transferred to ColumnAggregateFunction.
    Arenas aggregates_pools;
    Arena * aggregates_pool{};    /// The pool that is currently used for allocation.

    /** Specialization for the case when there are no keys, and for keys not fitted into max_rows_to_group_by.
      */
    AggregatedDataWithoutKey without_key = nullptr;

    // Disable consecutive key optimization for Uint8/16, because they use a FixedHashMap
    // and the lookup there is almost free, so we don't need to cache the last lookup result
    std::unique_ptr<AggregationMethodOneNumber<UInt8, AggregatedDataWithUInt8Key, false>>           key8;
    std::unique_ptr<AggregationMethodOneNumber<UInt16, AggregatedDataWithUInt16Key, false>>         key16;

    std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64Key>>         key32;
    std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64Key>>         key64;
    std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithShortStringKey>>               key_string;
    std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithShortStringKey>>          key_fixed_string;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt16Key, false, false, false>>  keys16;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt32Key>>                   keys32;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt64Key>>                   keys64;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128>>                   keys128;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256>>                   keys256;
    std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKey>>                serialized;

    std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64KeyTwoLevel>> key32_two_level;
    std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyTwoLevel>> key64_two_level;
    std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithShortStringKeyTwoLevel>>       key_string_two_level;
    std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithShortStringKeyTwoLevel>>  key_fixed_string_two_level;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt32KeyTwoLevel>>           keys32_two_level;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt64KeyTwoLevel>>           keys64_two_level;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel>>           keys128_two_level;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel>>           keys256_two_level;
    std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyTwoLevel>>        serialized_two_level;

    std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyHash64>>   key64_hash64;
    std::unique_ptr<AggregationMethodString<AggregatedDataWithStringKeyHash64>>              key_string_hash64;
    std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKeyHash64>>         key_fixed_string_hash64;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128Hash64>>             keys128_hash64;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256Hash64>>             keys256_hash64;
    std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyHash64>>          serialized_hash64;

    /// Support for nullable keys.
    std::unique_ptr<AggregationMethodOneNumber<UInt8, AggregatedDataWithNullableUInt8Key, false, true>>         nullable_key8;
    std::unique_ptr<AggregationMethodOneNumber<UInt16, AggregatedDataWithNullableUInt16Key, false, true>>         nullable_key16;
    std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithNullableUInt32Key, true, true>>         nullable_key32;
    std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithNullableUInt64Key, true, true>>         nullable_key64;
    std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithNullableUInt32KeyTwoLevel, true, true>>         nullable_key32_two_level;
    std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithNullableUInt64KeyTwoLevel, true, true>>         nullable_key64_two_level;

    std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithNullableShortStringKey, true>> nullable_key_string;
    std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithNullableShortStringKey, true>> nullable_key_fixed_string;
    std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithNullableShortStringKeyTwoLevel, true>> nullable_key_string_two_level;
    std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithNullableShortStringKeyTwoLevel, true>> nullable_key_fixed_string_two_level;

    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128, true>>             nullable_keys128;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256, true>>             nullable_keys256;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel, true>>     nullable_keys128_two_level;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel, true>>     nullable_keys256_two_level;

    /// Support for low cardinality.
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt8, AggregatedDataWithNullableUInt8Key, false>>> low_cardinality_key8;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt16, AggregatedDataWithNullableUInt16Key, false>>> low_cardinality_key16;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt32, AggregatedDataWithNullableUInt64Key>>> low_cardinality_key32;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt64, AggregatedDataWithNullableUInt64Key>>> low_cardinality_key64;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodString<AggregatedDataWithNullableStringKey>>> low_cardinality_key_string;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodFixedString<AggregatedDataWithNullableStringKey>>> low_cardinality_key_fixed_string;

    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt32, AggregatedDataWithNullableUInt64KeyTwoLevel>>> low_cardinality_key32_two_level;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodOneNumber<UInt64, AggregatedDataWithNullableUInt64KeyTwoLevel>>> low_cardinality_key64_two_level;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodString<AggregatedDataWithNullableStringKeyTwoLevel>>> low_cardinality_key_string_two_level;
    std::unique_ptr<AggregationMethodSingleLowCardinalityColumn<AggregationMethodFixedString<AggregatedDataWithNullableStringKeyTwoLevel>>> low_cardinality_key_fixed_string_two_level;

    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128, false, true>>      low_cardinality_keys128;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256, false, true>>      low_cardinality_keys256;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel, false, true>> low_cardinality_keys128_two_level;
    std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel, false, true>> low_cardinality_keys256_two_level;

    /// In this and similar macros, the option without_key is not considered.
    #define APPLY_FOR_AGGREGATED_VARIANTS(M) \
        M(key8,                       false) \
        M(key16,                      false) \
        M(key32,                      false) \
        M(key64,                      false) \
        M(key_string,                 false) \
        M(key_fixed_string,           false) \
        M(keys16,                    false) \
        M(keys32,                    false) \
        M(keys64,                    false) \
        M(keys128,                    false) \
        M(keys256,                    false) \
        M(serialized,                 false) \
        M(key32_two_level,            true) \
        M(key64_two_level,            true) \
        M(key_string_two_level,       true) \
        M(key_fixed_string_two_level, true) \
        M(keys32_two_level,          true) \
        M(keys64_two_level,          true) \
        M(keys128_two_level,          true) \
        M(keys256_two_level,          true) \
        M(serialized_two_level,       true) \
        M(key64_hash64,               false) \
        M(key_string_hash64,          false) \
        M(key_fixed_string_hash64,    false) \
        M(keys128_hash64,             false) \
        M(keys256_hash64,             false) \
        M(serialized_hash64,          false) \
        M(nullable_key8,             false) \
        M(nullable_key16,             false) \
        M(nullable_key32,             false) \
        M(nullable_key64,             false) \
        M(nullable_key32_two_level,   true) \
        M(nullable_key64_two_level,   true) \
        M(nullable_key_string,        false) \
        M(nullable_key_fixed_string,  false) \
        M(nullable_key_string_two_level, true) \
        M(nullable_key_fixed_string_two_level, true) \
        M(nullable_keys128,           false) \
        M(nullable_keys256,           false) \
        M(nullable_keys128_two_level, true) \
        M(nullable_keys256_two_level, true) \
        M(low_cardinality_key8, false) \
        M(low_cardinality_key16, false) \
        M(low_cardinality_key32, false) \
        M(low_cardinality_key64, false) \
        M(low_cardinality_keys128, false) \
        M(low_cardinality_keys256, false) \
        M(low_cardinality_key_string, false) \
        M(low_cardinality_key_fixed_string, false) \
        M(low_cardinality_key32_two_level, true) \
        M(low_cardinality_key64_two_level, true) \
        M(low_cardinality_keys128_two_level, true) \
        M(low_cardinality_keys256_two_level, true) \
        M(low_cardinality_key_string_two_level, true) \
        M(low_cardinality_key_fixed_string_two_level, true) \

    enum class Type
    {
        EMPTY = 0,
        without_key,

    #define M(NAME, IS_TWO_LEVEL) NAME,
        APPLY_FOR_AGGREGATED_VARIANTS(M)
    #undef M
    };
    Type type = Type::EMPTY;

    AggregatedDataVariants() : aggregates_pools(1, std::make_shared<Arena>()), aggregates_pool(aggregates_pools.back().get()) {}
    bool empty() const { return type == Type::EMPTY; }
    void invalidate() { type = Type::EMPTY; }

    ~AggregatedDataVariants();

    void init(Type type_, std::optional<size_t> size_hint = std::nullopt);

    /// Number of rows (different keys).
    size_t size() const
    {
        switch (type)
        {
            case Type::EMPTY:       return 0;
            case Type::without_key: return 1;

        #define M(NAME, IS_TWO_LEVEL) \
            case Type::NAME: return (NAME)->data.size() + (without_key != nullptr);
            APPLY_FOR_AGGREGATED_VARIANTS(M)
        #undef M
        }

        UNREACHABLE();
    }

    /// The size without taking into account the row in which data is written for the calculation of TOTALS.
    size_t sizeWithoutOverflowRow() const
    {
        switch (type)
        {
            case Type::EMPTY:       return 0;
            case Type::without_key: return 1;

            #define M(NAME, IS_TWO_LEVEL) \
            case Type::NAME: return (NAME)->data.size();
            APPLY_FOR_AGGREGATED_VARIANTS(M)
            #undef M
        }

        UNREACHABLE();
    }

    const char * getMethodName() const
    {
        switch (type)
        {
            case Type::EMPTY:       return "EMPTY";
            case Type::without_key: return "without_key";

        #define M(NAME, IS_TWO_LEVEL) \
            case Type::NAME: return #NAME;
            APPLY_FOR_AGGREGATED_VARIANTS(M)
        #undef M
        }

        UNREACHABLE();
    }

    bool isTwoLevel() const
    {
        switch (type)
        {
            case Type::EMPTY:       return false;
            case Type::without_key: return false;

        #define M(NAME, IS_TWO_LEVEL) \
            case Type::NAME: return IS_TWO_LEVEL;
            APPLY_FOR_AGGREGATED_VARIANTS(M)
        #undef M
        }

        UNREACHABLE();
    }

    #define APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) \
        M(key32)            \
        M(key64)            \
        M(key_string)       \
        M(key_fixed_string) \
        M(keys32)           \
        M(keys64)           \
        M(keys128)          \
        M(keys256)          \
        M(serialized)       \
        M(nullable_key32) \
        M(nullable_key64) \
        M(nullable_key_string) \
        M(nullable_key_fixed_string) \
        M(nullable_keys128) \
        M(nullable_keys256) \
        M(low_cardinality_key32) \
        M(low_cardinality_key64) \
        M(low_cardinality_keys128) \
        M(low_cardinality_keys256) \
        M(low_cardinality_key_string) \
        M(low_cardinality_key_fixed_string) \

    /// NOLINTNEXTLINE
    #define APPLY_FOR_VARIANTS_NOT_CONVERTIBLE_TO_TWO_LEVEL(M) \
        M(key8)             \
        M(key16)            \
        M(nullable_key8) \
        M(nullable_key16) \
        M(keys16)           \
        M(key64_hash64)     \
        M(key_string_hash64)\
        M(key_fixed_string_hash64) \
        M(keys128_hash64)   \
        M(keys256_hash64)   \
        M(serialized_hash64) \
        M(low_cardinality_key8) \
        M(low_cardinality_key16) \

    /// NOLINTNEXTLINE
    #define APPLY_FOR_VARIANTS_SINGLE_LEVEL(M) \
        APPLY_FOR_VARIANTS_NOT_CONVERTIBLE_TO_TWO_LEVEL(M) \
        APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) \

    bool isConvertibleToTwoLevel() const
    {
        switch (type)
        {
        #define M(NAME) \
            case Type::NAME: return true;

            APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M)

        #undef M
            default:
                return false;
        }
    }

    void convertToTwoLevel();

    /// NOLINTNEXTLINE
    #define APPLY_FOR_VARIANTS_TWO_LEVEL(M) \
        M(key32_two_level)            \
        M(key64_two_level)            \
        M(key_string_two_level)       \
        M(key_fixed_string_two_level) \
        M(keys32_two_level)           \
        M(keys64_two_level)           \
        M(keys128_two_level)          \
        M(keys256_two_level)          \
        M(serialized_two_level)       \
        M(nullable_key32_two_level) \
        M(nullable_key64_two_level) \
        M(nullable_key_string_two_level) \
        M(nullable_key_fixed_string_two_level) \
        M(nullable_keys128_two_level) \
        M(nullable_keys256_two_level) \
        M(low_cardinality_key32_two_level) \
        M(low_cardinality_key64_two_level) \
        M(low_cardinality_keys128_two_level) \
        M(low_cardinality_keys256_two_level) \
        M(low_cardinality_key_string_two_level) \
        M(low_cardinality_key_fixed_string_two_level) \

    #define APPLY_FOR_LOW_CARDINALITY_VARIANTS(M) \
        M(low_cardinality_key8) \
        M(low_cardinality_key16) \
        M(low_cardinality_key32) \
        M(low_cardinality_key64) \
        M(low_cardinality_keys128) \
        M(low_cardinality_keys256) \
        M(low_cardinality_key_string) \
        M(low_cardinality_key_fixed_string) \
        M(low_cardinality_key32_two_level) \
        M(low_cardinality_key64_two_level) \
        M(low_cardinality_keys128_two_level) \
        M(low_cardinality_keys256_two_level) \
        M(low_cardinality_key_string_two_level) \
        M(low_cardinality_key_fixed_string_two_level)

    bool isLowCardinality() const
    {
        switch (type)
        {
        #define M(NAME) \
            case Type::NAME: return true;

            APPLY_FOR_LOW_CARDINALITY_VARIANTS(M)
        #undef M
            default:
                return false;
        }
    }

    static HashMethodContextPtr createCache(Type type, const HashMethodContext::Settings & settings)
    {
        switch (type)
        {
            case Type::without_key: return nullptr;

            #define M(NAME, IS_TWO_LEVEL) \
            case Type::NAME: \
            { \
                using TPtr ## NAME = decltype(AggregatedDataVariants::NAME); \
                using T ## NAME = typename TPtr ## NAME ::element_type; \
                return T ## NAME ::State::createContext(settings); \
            }

            APPLY_FOR_AGGREGATED_VARIANTS(M)
            #undef M

            default:
                throw Exception(ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT, "Unknown aggregated data variant.");
        }
    }
};

using AggregatedDataVariantsPtr = std::shared_ptr<AggregatedDataVariants>;
using ManyAggregatedDataVariants = std::vector<AggregatedDataVariantsPtr>;
using ManyAggregatedDataVariantsPtr = std::shared_ptr<ManyAggregatedDataVariants>;

class CompiledAggregateFunctionsHolder;
class NativeWriter;
struct OutputBlockColumns;

/** How are "total" values calculated with WITH TOTALS?
  * (For more details, see TotalsHavingTransform.)
  *
  * In the absence of group_by_overflow_mode = 'any', the data is aggregated as usual, but the states of the aggregate functions are not finalized.
  * Later, the aggregate function states for all rows (passed through HAVING) are merged into one - this will be TOTALS.
  *
  * If there is group_by_overflow_mode = 'any', the data is aggregated as usual, except for the keys that did not fit in max_rows_to_group_by.
  * For these keys, the data is aggregated into one additional row - see below under the names `overflow_row`, `overflows`...
  * Later, the aggregate function states for all rows (passed through HAVING) are merged into one,
  *  also overflow_row is added or not added (depending on the totals_mode setting) also - this will be TOTALS.
  */


/** Aggregates the source of the blocks.
  */
class Aggregator final
{
public:
    using AggregateColumns = std::vector<ColumnRawPtrs>;
    using AggregateColumnsData = std::vector<ColumnAggregateFunction::Container *>;
    using AggregateColumnsConstData = std::vector<const ColumnAggregateFunction::Container *>;
    using AggregateFunctionsPlainPtrs = std::vector<const IAggregateFunction *>;

    struct Params
    {
        /// What to count.
        const Names keys;
        const AggregateDescriptions aggregates;
        const size_t keys_size;
        const size_t aggregates_size;

        /// The settings of approximate calculation of GROUP BY.
        const bool overflow_row;    /// Do we need to put into AggregatedDataVariants::without_key aggregates for keys that are not in max_rows_to_group_by.
        const size_t max_rows_to_group_by;
        const OverflowMode group_by_overflow_mode;

        /// Two-level aggregation settings (used for a large number of keys).
        /** With how many keys or the size of the aggregation state in bytes,
          *  two-level aggregation begins to be used. Enough to reach of at least one of the thresholds.
          * 0 - the corresponding threshold is not specified.
          */
        size_t group_by_two_level_threshold;
        size_t group_by_two_level_threshold_bytes;

        /// Settings to flush temporary data to the filesystem (external aggregation).
        const size_t max_bytes_before_external_group_by;        /// 0 - do not use external aggregation.

        /// Return empty result when aggregating without keys on empty set.
        bool empty_result_for_aggregation_by_empty_set;

        TemporaryDataOnDiskScopePtr tmp_data_scope;

        /// Settings is used to determine cache size. No threads are created.
        size_t max_threads;

        const size_t min_free_disk_space;

        bool compile_aggregate_expressions;
        size_t min_count_to_compile_aggregate_expression;

        size_t max_block_size;

        bool only_merge;

        bool enable_prefetch;

        struct StatsCollectingParams
        {
            StatsCollectingParams();

            StatsCollectingParams(
                const ASTPtr & select_query_,
                bool collect_hash_table_stats_during_aggregation_,
                size_t max_entries_for_hash_table_stats_,
                size_t max_size_to_preallocate_for_aggregation_);

            bool isCollectionAndUseEnabled() const { return key != 0; }
            void disable() { key = 0; }

            UInt64 key = 0;
            const size_t max_entries_for_hash_table_stats = 0;
            const size_t max_size_to_preallocate_for_aggregation = 0;
        };
        StatsCollectingParams stats_collecting_params;

        Params(
            const Names & keys_,
            const AggregateDescriptions & aggregates_,
            bool overflow_row_,
            size_t max_rows_to_group_by_,
            OverflowMode group_by_overflow_mode_,
            size_t group_by_two_level_threshold_,
            size_t group_by_two_level_threshold_bytes_,
            size_t max_bytes_before_external_group_by_,
            bool empty_result_for_aggregation_by_empty_set_,
            TemporaryDataOnDiskScopePtr tmp_data_scope_,
            size_t max_threads_,
            size_t min_free_disk_space_,
            bool compile_aggregate_expressions_,
            size_t min_count_to_compile_aggregate_expression_,
            size_t max_block_size_,
            bool enable_prefetch_,
            bool only_merge_, // true for projections
            const StatsCollectingParams & stats_collecting_params_ = {})
            : keys(keys_)
            , aggregates(aggregates_)
            , keys_size(keys.size())
            , aggregates_size(aggregates.size())
            , overflow_row(overflow_row_)
            , max_rows_to_group_by(max_rows_to_group_by_)
            , group_by_overflow_mode(group_by_overflow_mode_)
            , group_by_two_level_threshold(group_by_two_level_threshold_)
            , group_by_two_level_threshold_bytes(group_by_two_level_threshold_bytes_)
            , max_bytes_before_external_group_by(max_bytes_before_external_group_by_)
            , empty_result_for_aggregation_by_empty_set(empty_result_for_aggregation_by_empty_set_)
            , tmp_data_scope(std::move(tmp_data_scope_))
            , max_threads(max_threads_)
            , min_free_disk_space(min_free_disk_space_)
            , compile_aggregate_expressions(compile_aggregate_expressions_)
            , min_count_to_compile_aggregate_expression(min_count_to_compile_aggregate_expression_)
            , max_block_size(max_block_size_)
            , only_merge(only_merge_)
            , enable_prefetch(enable_prefetch_)
            , stats_collecting_params(stats_collecting_params_)
        {
        }

        /// Only parameters that matter during merge.
        Params(const Names & keys_, const AggregateDescriptions & aggregates_, bool overflow_row_, size_t max_threads_, size_t max_block_size_)
            : Params(
                keys_, aggregates_, overflow_row_, 0, OverflowMode::THROW, 0, 0, 0, false, nullptr, max_threads_, 0, false, 0, max_block_size_, false, true, {})
        {
        }

        static Block
        getHeader(const Block & header, bool only_merge, const Names & keys, const AggregateDescriptions & aggregates, bool final);

        Block getHeader(const Block & header_, bool final) const { return getHeader(header_, only_merge, keys, aggregates, final); }

        /// Remember the columns we will work with
        ColumnRawPtrs makeRawKeyColumns(const Block & block) const;
        AggregateColumnsConstData makeAggregateColumnsData(const Block & block) const;

        /// Returns keys and aggregated for EXPLAIN query
        void explain(WriteBuffer & out, size_t indent) const;
        void explain(JSONBuilder::JSONMap & map) const;
    };

    explicit Aggregator(const Block & header_, const Params & params_);

    /// Process one block. Return false if the processing should be aborted (with group_by_overflow_mode = 'break').
    bool executeOnBlock(const Block & block,
        AggregatedDataVariants & result,
        ColumnRawPtrs & key_columns,
        AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block
        bool & no_more_keys) const;

    bool executeOnBlock(Columns columns,
        size_t row_begin, size_t row_end,
        AggregatedDataVariants & result,
        ColumnRawPtrs & key_columns,
        AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block
        bool & no_more_keys) const;

    /** This array serves two purposes.
      *
      * Function arguments are collected side by side, and they do not need to be collected from different places. Also the array is made zero-terminated.
      * The inner loop (for the case without_key) is almost twice as compact; performance gain of about 30%.
      */
    struct AggregateFunctionInstruction
    {
        const IAggregateFunction * that{};
        size_t state_offset{};
        const IColumn ** arguments{};
        const IAggregateFunction * batch_that{};
        const IColumn ** batch_arguments{};
        const UInt64 * offsets{};
        bool has_sparse_arguments = false;
    };

    /// Used for optimize_aggregation_in_order:
    /// - No two-level aggregation
    /// - No external aggregation
    /// - No without_key support (it is implemented using executeOnIntervalWithoutKey())
    void executeOnBlockSmall(
        AggregatedDataVariants & result,
        size_t row_begin,
        size_t row_end,
        ColumnRawPtrs & key_columns,
        AggregateFunctionInstruction * aggregate_instructions) const;

    void executeOnIntervalWithoutKey(
        AggregatedDataVariants & data_variants,
        size_t row_begin,
        size_t row_end,
        AggregateFunctionInstruction * aggregate_instructions) const;

    /// Used for aggregate projection.
    bool mergeOnBlock(Block block, AggregatedDataVariants & result, bool & no_more_keys) const;

    void mergeOnBlockSmall(
        AggregatedDataVariants & result,
        size_t row_begin,
        size_t row_end,
        const AggregateColumnsConstData & aggregate_columns_data,
        const ColumnRawPtrs & key_columns) const;

    void mergeOnIntervalWithoutKey(
        AggregatedDataVariants & data_variants,
        size_t row_begin,
        size_t row_end,
        const AggregateColumnsConstData & aggregate_columns_data) const;

    /** Convert the aggregation data structure into a block.
      * If overflow_row = true, then aggregates for rows that are not included in max_rows_to_group_by are put in the first block.
      *
      * If final = false, then ColumnAggregateFunction is created as the aggregation columns with the state of the calculations,
      *  which can then be combined with other states (for distributed query processing).
      * If final = true, then columns with ready values are created as aggregate columns.
      */
    BlocksList convertToBlocks(AggregatedDataVariants & data_variants, bool final, size_t max_threads) const;

    ManyAggregatedDataVariants prepareVariantsToMerge(ManyAggregatedDataVariants & data_variants) const;

    using BucketToBlocks = std::map<Int32, BlocksList>;
    /// Merge partially aggregated blocks separated to buckets into one data structure.
    void mergeBlocks(BucketToBlocks bucket_to_blocks, AggregatedDataVariants & result, size_t max_threads);

    /// Merge several partially aggregated blocks into one.
    /// Precondition: for all blocks block.info.is_overflows flag must be the same.
    /// (either all blocks are from overflow data or none blocks are).
    /// The resulting block has the same value of is_overflows flag.
    Block mergeBlocks(BlocksList & blocks, bool final);

    /** Split block with partially-aggregated data to many blocks, as if two-level method of aggregation was used.
      * This is needed to simplify merging of that data with other results, that are already two-level.
      */
    std::vector<Block> convertBlockToTwoLevel(const Block & block) const;

    /// For external aggregation.
    void writeToTemporaryFile(AggregatedDataVariants & data_variants, size_t max_temp_file_size = 0) const;

    bool hasTemporaryData() const { return tmp_data && !tmp_data->empty(); }

    const TemporaryDataOnDisk & getTemporaryData() const { return *tmp_data; }

    /// Get data structure of the result.
    Block getHeader(bool final) const;

private:

    friend struct AggregatedDataVariants;
    friend class ConvertingAggregatedToChunksTransform;
    friend class ConvertingAggregatedToChunksSource;
    friend class ConvertingAggregatedToChunksWithMergingSource;
    friend class AggregatingInOrderTransform;

    /// Data structure of source blocks.
    Block header;
    /// Positions of aggregation key columns in the header.
    const ColumnNumbers keys_positions;
    Params params;

    AggregatedDataVariants::Type method_chosen;
    Sizes key_sizes;

    HashMethodContextPtr aggregation_state_cache;

    AggregateFunctionsPlainPtrs aggregate_functions;

    using AggregateFunctionInstructions = std::vector<AggregateFunctionInstruction>;
    using NestedColumnsHolder = std::vector<std::vector<const IColumn *>>;

    Sizes offsets_of_aggregate_states;    /// The offset to the n-th aggregate function in a row of aggregate functions.
    size_t total_size_of_aggregate_states = 0;    /// The total size of the row from the aggregate functions.

    // add info to track alignment requirement
    // If there are states whose alignment are v1, ..vn, align_aggregate_states will be max(v1, ... vn)
    size_t align_aggregate_states = 1;

    bool all_aggregates_has_trivial_destructor = false;

    /// How many RAM were used to process the query before processing the first block.
    Int64 memory_usage_before_aggregation = 0;

    Poco::Logger * log = &Poco::Logger::get("Aggregator");

    /// For external aggregation.
    TemporaryDataOnDiskPtr tmp_data;

    size_t min_bytes_for_prefetch = 0;

#if USE_EMBEDDED_COMPILER
    std::shared_ptr<CompiledAggregateFunctionsHolder> compiled_aggregate_functions_holder;
#endif

    std::vector<bool> is_aggregate_function_compiled;

    /** Try to compile aggregate functions.
      */
    void compileAggregateFunctionsIfNeeded();

    /** Select the aggregation method based on the number and types of keys. */
    AggregatedDataVariants::Type chooseAggregationMethod();

    /** Create states of aggregate functions for one key.
      */
    template <bool skip_compiled_aggregate_functions = false>
    void createAggregateStates(AggregateDataPtr & aggregate_data) const;

    /** Call `destroy` methods for states of aggregate functions.
      * Used in the exception handler for aggregation, since RAII in this case is not applicable.
      */
    void destroyAllAggregateStates(AggregatedDataVariants & result) const;

    void executeImpl(
        AggregatedDataVariants & result,
        size_t row_begin,
        size_t row_end,
        ColumnRawPtrs & key_columns,
        AggregateFunctionInstruction * aggregate_instructions,
        bool no_more_keys = false,
        AggregateDataPtr overflow_row = nullptr) const;

    /// Process one data block, aggregate the data into a hash table.
    template <typename Method>
    void executeImpl(
        Method & method,
        Arena * aggregates_pool,
        size_t row_begin,
        size_t row_end,
        ColumnRawPtrs & key_columns,
        AggregateFunctionInstruction * aggregate_instructions,
        bool no_more_keys,
        AggregateDataPtr overflow_row) const;

    /// Specialization for a particular value no_more_keys.
    template <bool no_more_keys, bool use_compiled_functions, bool prefetch, typename Method>
    void executeImplBatch(
        Method & method,
        typename Method::State & state,
        Arena * aggregates_pool,
        size_t row_begin,
        size_t row_end,
        AggregateFunctionInstruction * aggregate_instructions,
        AggregateDataPtr overflow_row) const;

    /// For case when there are no keys (all aggregate into one row).
    template <bool use_compiled_functions>
    void executeWithoutKeyImpl(
        AggregatedDataWithoutKey & res,
        size_t row_begin,
        size_t row_end,
        AggregateFunctionInstruction * aggregate_instructions,
        Arena * arena) const;

    template <typename Method>
    void writeToTemporaryFileImpl(
        AggregatedDataVariants & data_variants,
        Method & method,
        TemporaryFileStream & out) const;

    /// Merge NULL key data from hash table `src` into `dst`.
    template <typename Method, typename Table>
    void mergeDataNullKey(
            Table & table_dst,
            Table & table_src,
            Arena * arena) const;

    /// Merge data from hash table `src` into `dst`.
    template <typename Method, bool use_compiled_functions, bool prefetch, typename Table>
    void mergeDataImpl(Table & table_dst, Table & table_src, Arena * arena) const;

    /// Merge data from hash table `src` into `dst`, but only for keys that already exist in dst. In other cases, merge the data into `overflows`.
    template <typename Method, typename Table>
    void mergeDataNoMoreKeysImpl(
        Table & table_dst,
        AggregatedDataWithoutKey & overflows,
        Table & table_src,
        Arena * arena) const;

    /// Same, but ignores the rest of the keys.
    template <typename Method, typename Table>
    void mergeDataOnlyExistingKeysImpl(
        Table & table_dst,
        Table & table_src,
        Arena * arena) const;

    void mergeWithoutKeyDataImpl(
        ManyAggregatedDataVariants & non_empty_data) const;

    template <typename Method>
    void mergeSingleLevelDataImpl(
        ManyAggregatedDataVariants & non_empty_data) const;

    template <bool return_single_block>
    using ConvertToBlockRes = std::conditional_t<return_single_block, Block, BlocksList>;

    template <bool return_single_block, typename Method, typename Table>
    ConvertToBlockRes<return_single_block>
    convertToBlockImpl(Method & method, Table & data, Arena * arena, Arenas & aggregates_pools, bool final, size_t rows) const;

    template <typename Mapped>
    void insertAggregatesIntoColumns(
        Mapped & mapped,
        MutableColumns & final_aggregate_columns,
        Arena * arena) const;

    template <bool use_compiled_functions>
    Block insertResultsIntoColumns(PaddedPODArray<AggregateDataPtr> & places, OutputBlockColumns && out_cols, Arena * arena, bool has_null_key_data) const;

    template <typename Method, bool use_compiled_functions, bool return_single_block, typename Table>
    ConvertToBlockRes<return_single_block>
    convertToBlockImplFinal(Method & method, Table & data, Arena * arena, Arenas & aggregates_pools, size_t rows) const;

    template <bool return_single_block, typename Method, typename Table>
    ConvertToBlockRes<return_single_block>
    convertToBlockImplNotFinal(Method & method, Table & data, Arenas & aggregates_pools, size_t rows) const;

    template <typename Method>
    Block convertOneBucketToBlock(
        AggregatedDataVariants & data_variants,
        Method & method,
        Arena * arena,
        bool final,
        Int32 bucket) const;

    Block convertOneBucketToBlock(AggregatedDataVariants & variants, Arena * arena, bool final, Int32 bucket) const;

    Block mergeAndConvertOneBucketToBlock(
        ManyAggregatedDataVariants & variants,
        Arena * arena,
        bool final,
        Int32 bucket,
        std::atomic<bool> * is_cancelled = nullptr) const;

    Block prepareBlockAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final, bool is_overflows) const;
    BlocksList prepareBlocksAndFillTwoLevel(AggregatedDataVariants & data_variants, bool final, ThreadPool * thread_pool) const;

    template <bool return_single_block>
    ConvertToBlockRes<return_single_block> prepareBlockAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const;

    template <typename Method>
    BlocksList prepareBlocksAndFillTwoLevelImpl(
        AggregatedDataVariants & data_variants,
        Method & method,
        bool final,
        ThreadPool * thread_pool) const;

    template <bool no_more_keys, typename Method, typename Table>
    void mergeStreamsImplCase(
        Arena * aggregates_pool,
        Method & method,
        Table & data,
        AggregateDataPtr overflow_row,
        size_t row_begin,
        size_t row_end,
        const AggregateColumnsConstData & aggregate_columns_data,
        const ColumnRawPtrs & key_columns,
        Arena * arena_for_keys) const;

    /// `arena_for_keys` used to store serialized aggregation keys (in methods like `serialized`) to save some space.
    /// If not provided, aggregates_pool is used instead. Refer to mergeBlocks() for an usage example.
    template <typename Method, typename Table>
    void mergeStreamsImpl(
        Block block,
        Arena * aggregates_pool,
        Method & method,
        Table & data,
        AggregateDataPtr overflow_row,
        bool no_more_keys,
        Arena * arena_for_keys = nullptr) const;

    template <typename Method, typename Table>
    void mergeStreamsImpl(
        Arena * aggregates_pool,
        Method & method,
        Table & data,
        AggregateDataPtr overflow_row,
        bool no_more_keys,
        size_t row_begin,
        size_t row_end,
        const AggregateColumnsConstData & aggregate_columns_data,
        const ColumnRawPtrs & key_columns,
        Arena * arena_for_keys) const;

    void mergeBlockWithoutKeyStreamsImpl(
        Block block,
        AggregatedDataVariants & result) const;
    void mergeWithoutKeyStreamsImpl(
        AggregatedDataVariants & result,
        size_t row_begin,
        size_t row_end,
        const AggregateColumnsConstData & aggregate_columns_data) const;

    template <typename Method>
    void mergeBucketImpl(
        ManyAggregatedDataVariants & data, Int32 bucket, Arena * arena, std::atomic<bool> * is_cancelled = nullptr) const;

    template <typename Method>
    void convertBlockToTwoLevelImpl(
        Method & method,
        Arena * pool,
        ColumnRawPtrs & key_columns,
        const Block & source,
        std::vector<Block> & destinations) const;

    template <typename Method, typename Table>
    void destroyImpl(Table & table) const;

    void destroyWithoutKey(
        AggregatedDataVariants & result) const;


    /** Checks constraints on the maximum number of keys for aggregation.
      * If it is exceeded, then, depending on the group_by_overflow_mode, either
      * - throws an exception;
      * - returns false, which means that execution must be aborted;
      * - sets the variable no_more_keys to true.
      */
    bool checkLimits(size_t result_size, bool & no_more_keys) const;

    void prepareAggregateInstructions(
        Columns columns,
        AggregateColumns & aggregate_columns,
        Columns & materialized_columns,
        AggregateFunctionInstructions & instructions,
        NestedColumnsHolder & nested_columns_holder) const;

    void addSingleKeyToAggregateColumns(
        AggregatedDataVariants & data_variants,
        MutableColumns & aggregate_columns) const;

    void addArenasToAggregateColumns(
        const AggregatedDataVariants & data_variants,
        MutableColumns & aggregate_columns) const;

    void createStatesAndFillKeyColumnsWithSingleKey(
        AggregatedDataVariants & data_variants,
        Columns & key_columns, size_t key_row,
        MutableColumns & final_key_columns) const;

    static bool hasSparseArguments(AggregateFunctionInstruction * aggregate_instructions);
};


/** Get the aggregation variant by its type. */
template <typename Method> Method & getDataVariant(AggregatedDataVariants & variants);

#define M(NAME, IS_TWO_LEVEL) \
    template <> inline decltype(AggregatedDataVariants::NAME)::element_type & getDataVariant<decltype(AggregatedDataVariants::NAME)::element_type>(AggregatedDataVariants & variants) { return *variants.NAME; } /// NOLINT

APPLY_FOR_AGGREGATED_VARIANTS(M)

#undef M


struct HashTablesCacheStatistics
{
    size_t entries = 0;
    size_t hits = 0;
    size_t misses = 0;
};

std::optional<HashTablesCacheStatistics> getHashTablesCacheStatistics();
}