1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionBinaryArithmetic.h>
#include <base/arithmeticOverflow.h>
namespace DB
{
template <typename A, typename B>
struct PlusImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
static const constexpr bool allow_fixed_string = false;
static const constexpr bool allow_string_integer = false;
static const constexpr bool is_commutative = true;
template <typename Result = ResultType>
static inline NO_SANITIZE_UNDEFINED Result apply(A a, B b)
{
/// Next everywhere, static_cast - so that there is no wrong result in expressions of the form Int64 c = UInt32(a) * Int32(-1).
if constexpr (is_big_int_v<A> || is_big_int_v<B>)
{
using CastA = std::conditional_t<std::is_floating_point_v<B>, B, A>;
using CastB = std::conditional_t<std::is_floating_point_v<A>, A, B>;
return static_cast<Result>(static_cast<CastA>(a)) + static_cast<Result>(static_cast<CastB>(b));
}
else
return static_cast<Result>(a) + static_cast<Result>(b);
}
/// Apply operation and check overflow. It's used for Deciamal operations. @returns true if overflowed, false otherwise.
template <typename Result = ResultType>
static inline bool apply(A a, B b, Result & c)
{
return common::addOverflow(static_cast<Result>(a), b, c);
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
return left->getType()->isIntegerTy() ? b.CreateAdd(left, right) : b.CreateFAdd(left, right);
}
#endif
};
struct NamePlus { static constexpr auto name = "plus"; };
using FunctionPlus = BinaryArithmeticOverloadResolver<PlusImpl, NamePlus>;
REGISTER_FUNCTION(Plus)
{
factory.registerFunction<FunctionPlus>();
}
}
|