1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
#include <DataTypes/DataTypesNumber.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnConst.h>
#include <Common/typeid_cast.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionFactory.h>
#include <Functions/PerformanceAdaptors.h>
#include <Interpreters/castColumn.h>
#include <Common/TargetSpecific.h>
#include <base/range.h>
#include <cmath>
#include <numbers>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int ILLEGAL_COLUMN;
}
/** Calculates the distance between two geographical locations.
* There are three variants:
* greatCircleAngle: calculates the distance on a sphere in degrees: https://en.wikipedia.org/wiki/Great-circle_distance
* greatCircleDistance: calculates the distance on a sphere in meters.
* geoDistance: calculates the distance on WGS-84 ellipsoid in meters.
*
* The function calculates distance between two points on Earth specified by longitude and latitude in degrees.
*
* Latitude must be in [-90, 90], longitude must be [-180, 180].
*
* Original code of this implementation of this function is here:
* https://github.com/sphinxsearch/sphinx/blob/409f2c2b5b2ff70b04e38f92b6b1a890326bad65/src/sphinxexpr.cpp#L3825.
* Andrey Aksenov, the author of original code, permitted to use this code in ClickHouse under the Apache 2.0 license.
* Presentation about this code from Highload++ Siberia 2019 is here https://github.com/ClickHouse/ClickHouse/files/3324740/1_._._GEODIST_._.pdf
* The main idea of this implementation is optimisations based on Taylor series, trigonometric identity
* and calculated constants once for cosine, arcsine(sqrt) and look up table.
*/
namespace
{
constexpr double PI = std::numbers::pi_v<double>;
constexpr float PI_F = std::numbers::pi_v<float>;
constexpr float RAD_IN_DEG = static_cast<float>(PI / 180.0);
constexpr float RAD_IN_DEG_HALF = static_cast<float>(PI / 360.0);
constexpr size_t COS_LUT_SIZE = 1024; // maxerr 0.00063%
constexpr float COS_LUT_SIZE_F = 1024.0f; // maxerr 0.00063%
constexpr size_t ASIN_SQRT_LUT_SIZE = 512;
constexpr size_t METRIC_LUT_SIZE = 1024;
/** Earth radius in meters using WGS84 authalic radius.
* We use this value to be consistent with H3 library.
*/
constexpr float EARTH_RADIUS = 6371007.180918475f;
constexpr float EARTH_DIAMETER = 2 * EARTH_RADIUS;
float cos_lut[COS_LUT_SIZE + 1]; /// cos(x) table
float asin_sqrt_lut[ASIN_SQRT_LUT_SIZE + 1]; /// asin(sqrt(x)) * earth_diameter table
float sphere_metric_lut[METRIC_LUT_SIZE + 1]; /// sphere metric, unitless: the distance in degrees for one degree across longitude depending on latitude
float sphere_metric_meters_lut[METRIC_LUT_SIZE + 1]; /// sphere metric: the distance in meters for one degree across longitude depending on latitude
float wgs84_metric_meters_lut[2 * (METRIC_LUT_SIZE + 1)]; /// ellipsoid metric: the distance in meters across one degree latitude/longitude depending on latitude
inline double sqr(double v)
{
return v * v;
}
inline float sqrf(float v)
{
return v * v;
}
void geodistInit()
{
for (size_t i = 0; i <= COS_LUT_SIZE; ++i)
cos_lut[i] = static_cast<float>(cos(2 * PI * i / COS_LUT_SIZE)); // [0, 2 * pi] -> [0, COS_LUT_SIZE]
for (size_t i = 0; i <= ASIN_SQRT_LUT_SIZE; ++i)
asin_sqrt_lut[i] = static_cast<float>(asin(
sqrt(static_cast<double>(i) / ASIN_SQRT_LUT_SIZE))); // [0, 1] -> [0, ASIN_SQRT_LUT_SIZE]
for (size_t i = 0; i <= METRIC_LUT_SIZE; ++i)
{
double latitude = i * (PI / METRIC_LUT_SIZE) - PI * 0.5; // [-pi / 2, pi / 2] -> [0, METRIC_LUT_SIZE]
/// Squared metric coefficients (for the distance in meters) on a tangent plane, for latitude and longitude (in degrees),
/// depending on the latitude (in radians).
/// https://github.com/mapbox/cheap-ruler/blob/master/index.js#L67
wgs84_metric_meters_lut[i * 2] = static_cast<float>(sqr(111132.09 - 566.05 * cos(2 * latitude) + 1.20 * cos(4 * latitude)));
wgs84_metric_meters_lut[i * 2 + 1] = static_cast<float>(sqr(111415.13 * cos(latitude) - 94.55 * cos(3 * latitude) + 0.12 * cos(5 * latitude)));
sphere_metric_meters_lut[i] = static_cast<float>(sqr((EARTH_DIAMETER * PI / 360) * cos(latitude)));
sphere_metric_lut[i] = static_cast<float>(sqr(cos(latitude)));
}
}
inline NO_SANITIZE_UNDEFINED size_t floatToIndex(float x)
{
/// Implementation specific behaviour on overflow or infinite value.
return static_cast<size_t>(x);
}
inline float geodistDegDiff(float f)
{
f = fabsf(f);
if (f > 180)
f = 360 - f;
return f;
}
inline float geodistFastCos(float x)
{
float y = fabsf(x) * (COS_LUT_SIZE_F / PI_F / 2.0f);
size_t i = floatToIndex(y);
y -= i;
i &= (COS_LUT_SIZE - 1);
return cos_lut[i] + (cos_lut[i + 1] - cos_lut[i]) * y;
}
inline float geodistFastSin(float x)
{
float y = fabsf(x) * (COS_LUT_SIZE_F / PI_F / 2.0f);
size_t i = floatToIndex(y);
y -= i;
i = (i - COS_LUT_SIZE / 4) & (COS_LUT_SIZE - 1); // cos(x - pi / 2) = sin(x), costable / 4 = pi / 2
return cos_lut[i] + (cos_lut[i + 1] - cos_lut[i]) * y;
}
/// fast implementation of asin(sqrt(x))
/// max error in floats 0.00369%, in doubles 0.00072%
inline float geodistFastAsinSqrt(float x)
{
if (x < 0.122f)
{
// distance under 4546 km, Taylor error under 0.00072%
float y = sqrtf(x);
return y + x * y * 0.166666666666666f + x * x * y * 0.075f + x * x * x * y * 0.044642857142857f;
}
if (x < 0.948f)
{
// distance under 17083 km, 512-entry LUT error under 0.00072%
x *= ASIN_SQRT_LUT_SIZE;
size_t i = floatToIndex(x);
return asin_sqrt_lut[i] + (asin_sqrt_lut[i + 1] - asin_sqrt_lut[i]) * (x - i);
}
return asinf(sqrtf(x)); // distance over 17083 km, just compute exact
}
enum class Method
{
SPHERE_DEGREES,
SPHERE_METERS,
WGS84_METERS,
};
}
DECLARE_MULTITARGET_CODE(
namespace
{
template <Method method>
float distance(float lon1deg, float lat1deg, float lon2deg, float lat2deg)
{
float lat_diff = geodistDegDiff(lat1deg - lat2deg);
float lon_diff = geodistDegDiff(lon1deg - lon2deg);
if (lon_diff < 13)
{
// points are close enough; use flat ellipsoid model
// interpolate metric coefficients using latitudes midpoint
/// Why comparing only difference in longitude?
/// If longitudes are different enough, there is a big difference between great circle line and a line with constant latitude.
/// (Remember how a plane flies from Amsterdam to New York)
/// But if longitude is close but latitude is different enough, there is no difference between meridian and great circle line.
float latitude_midpoint = (lat1deg + lat2deg + 180) * METRIC_LUT_SIZE / 360; // [-90, 90] degrees -> [0, METRIC_LUT_SIZE] indexes
size_t latitude_midpoint_index = floatToIndex(latitude_midpoint) & (METRIC_LUT_SIZE - 1);
/// This is linear interpolation between two table items at index "latitude_midpoint_index" and "latitude_midpoint_index + 1".
float k_lat{};
float k_lon{};
if constexpr (method == Method::SPHERE_DEGREES)
{
k_lat = 1;
k_lon = sphere_metric_lut[latitude_midpoint_index]
+ (sphere_metric_lut[latitude_midpoint_index + 1] - sphere_metric_lut[latitude_midpoint_index]) * (latitude_midpoint - latitude_midpoint_index);
}
else if constexpr (method == Method::SPHERE_METERS)
{
k_lat = sqrf(EARTH_DIAMETER * PI_F / 360.0f);
k_lon = sphere_metric_meters_lut[latitude_midpoint_index]
+ (sphere_metric_meters_lut[latitude_midpoint_index + 1] - sphere_metric_meters_lut[latitude_midpoint_index]) * (latitude_midpoint - latitude_midpoint_index);
}
else if constexpr (method == Method::WGS84_METERS)
{
k_lat = wgs84_metric_meters_lut[latitude_midpoint_index * 2]
+ (wgs84_metric_meters_lut[(latitude_midpoint_index + 1) * 2] - wgs84_metric_meters_lut[latitude_midpoint_index * 2]) * (latitude_midpoint - latitude_midpoint_index);
k_lon = wgs84_metric_meters_lut[latitude_midpoint_index * 2 + 1]
+ (wgs84_metric_meters_lut[(latitude_midpoint_index + 1) * 2 + 1] - wgs84_metric_meters_lut[latitude_midpoint_index * 2 + 1]) * (latitude_midpoint - latitude_midpoint_index);
}
/// Metric on a tangent plane: it differs from Euclidean metric only by scale of coordinates.
return sqrtf(k_lat * lat_diff * lat_diff + k_lon * lon_diff * lon_diff);
}
else
{
// points too far away; use haversine
float a = sqrf(geodistFastSin(lat_diff * RAD_IN_DEG_HALF))
+ geodistFastCos(lat1deg * RAD_IN_DEG) * geodistFastCos(lat2deg * RAD_IN_DEG) * sqrf(geodistFastSin(lon_diff * RAD_IN_DEG_HALF));
if constexpr (method == Method::SPHERE_DEGREES)
return (360.0f / PI_F) * geodistFastAsinSqrt(a);
else
return EARTH_DIAMETER * geodistFastAsinSqrt(a);
}
}
}
template <Method method>
class FunctionGeoDistance : public IFunction
{
public:
static constexpr auto name =
(method == Method::SPHERE_DEGREES) ? "greatCircleAngle"
: ((method == Method::SPHERE_METERS) ? "greatCircleDistance"
: "geoDistance");
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 4; }
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
for (const auto arg_idx : collections::range(0, arguments.size()))
{
const auto * arg = arguments[arg_idx].get();
if (!isNumber(WhichDataType(arg)))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument {} of function {}. "
"Must be numeric", arg->getName(), std::to_string(arg_idx + 1), getName());
}
return std::make_shared<DataTypeFloat32>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
auto dst = ColumnVector<Float32>::create();
auto & dst_data = dst->getData();
dst_data.resize(input_rows_count);
auto arguments_copy = arguments;
for (auto & argument : arguments_copy)
{
argument.column = argument.column->convertToFullColumnIfConst();
argument.column = castColumn(argument, result_type);
argument.type = result_type;
}
const auto * col_lon1 = convertArgumentColumnToFloat32(arguments_copy, 0);
const auto * col_lat1 = convertArgumentColumnToFloat32(arguments_copy, 1);
const auto * col_lon2 = convertArgumentColumnToFloat32(arguments_copy, 2);
const auto * col_lat2 = convertArgumentColumnToFloat32(arguments_copy, 3);
for (size_t row_num = 0; row_num < input_rows_count; ++row_num)
{
dst_data[row_num] = distance<method>(
col_lon1->getData()[row_num], col_lat1->getData()[row_num],
col_lon2->getData()[row_num], col_lat2->getData()[row_num]);
}
return dst;
}
const ColumnFloat32 * convertArgumentColumnToFloat32(const ColumnsWithTypeAndName & arguments, size_t argument_index) const
{
const auto * column_typed = checkAndGetColumn<ColumnFloat32>(arguments[argument_index].column.get());
if (!column_typed)
throw Exception(
ErrorCodes::ILLEGAL_COLUMN,
"Illegal type {} of argument {} of function {}. Must be Float32.",
arguments[argument_index].type->getName(),
argument_index + 1,
getName());
return column_typed;
}
};
) // DECLARE_MULTITARGET_CODE
template <Method method>
class FunctionGeoDistance : public TargetSpecific::Default::FunctionGeoDistance<method>
{
public:
explicit FunctionGeoDistance(ContextPtr context) : selector(context)
{
selector.registerImplementation<TargetArch::Default,
TargetSpecific::Default::FunctionGeoDistance<method>>();
#if USE_MULTITARGET_CODE
selector.registerImplementation<TargetArch::AVX,
TargetSpecific::AVX::FunctionGeoDistance<method>>();
selector.registerImplementation<TargetArch::AVX2,
TargetSpecific::AVX2::FunctionGeoDistance<method>>();
selector.registerImplementation<TargetArch::AVX512F,
TargetSpecific::AVX512F::FunctionGeoDistance<method>>();
#endif
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
return selector.selectAndExecute(arguments, result_type, input_rows_count);
}
static FunctionPtr create(ContextPtr context)
{
return std::make_shared<FunctionGeoDistance<method>>(context);
}
private:
ImplementationSelector<IFunction> selector;
};
REGISTER_FUNCTION(GeoDistance)
{
geodistInit();
factory.registerFunction<FunctionGeoDistance<Method::SPHERE_DEGREES>>();
factory.registerFunction<FunctionGeoDistance<Method::SPHERE_METERS>>();
factory.registerFunction<FunctionGeoDistance<Method::WGS84_METERS>>();
}
}
|