1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionBinaryArithmetic.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int LOGICAL_ERROR;
}
namespace
{
template <typename A, typename B>
struct BitShiftLeftImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
static const constexpr bool allow_fixed_string = false;
static const constexpr bool allow_string_integer = true;
template <typename Result = ResultType>
static inline NO_SANITIZE_UNDEFINED Result apply(A a [[maybe_unused]], B b [[maybe_unused]])
{
if constexpr (is_big_int_v<B>)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "BitShiftLeft is not implemented for big integers as second argument");
else if constexpr (is_big_int_v<A>)
return static_cast<Result>(a) << static_cast<UInt32>(b);
else
return static_cast<Result>(a) << static_cast<Result>(b);
}
/// For String
static ALWAYS_INLINE NO_SANITIZE_UNDEFINED void apply(const UInt8 * pos [[maybe_unused]], const UInt8 * end [[maybe_unused]], const B & b [[maybe_unused]], ColumnString::Chars & out_vec, ColumnString::Offsets & out_offsets)
{
if constexpr (is_big_int_v<B>)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "BitShiftLeft is not implemented for big integers as second argument");
else
{
UInt8 word_size = 8;
/// To prevent overflow
if (static_cast<double>(b) >= (static_cast<double>(end - pos) * word_size) || b < 0)
{
// insert default value
out_vec.push_back(0);
out_offsets.push_back(out_offsets.back() + 1);
return;
}
size_t shift_left_bits = b % word_size;
size_t shift_left_bytes = b / word_size;
const UInt8 * begin = pos;
const size_t old_size = out_vec.size();
size_t length;
if (shift_left_bits)
length = end + shift_left_bytes - begin + 1; /// Moving to the left here will make a redundant byte to store the overflowing bits in the front
else
length = end + shift_left_bytes - begin;
const size_t new_size = old_size + length + 1;
out_vec.resize(new_size);
out_vec[old_size + length] = 0;
UInt8 * op_pointer = const_cast<UInt8 *>(begin);
UInt8 * out = out_vec.data() + old_size;
UInt8 previous = 0;
while (op_pointer < end)
{
if (shift_left_bits)
{
/// The left b bit of the right byte is moved to the right b bit of this byte
*out = static_cast<UInt8>(static_cast<UInt8>(*(op_pointer) >> (8 - shift_left_bits)) | previous);
previous = *op_pointer << shift_left_bits;
}
else
{
*out = *op_pointer;
}
op_pointer++;
out++;
}
if (shift_left_bits)
{
*out = *(op_pointer - 1) << shift_left_bits;
out++;
}
for (size_t i = 0; i < shift_left_bytes; ++i)
*(out + i) = 0;
out_offsets.push_back(new_size);
}
}
/// For FixedString
static ALWAYS_INLINE NO_SANITIZE_UNDEFINED void apply(const UInt8 * pos [[maybe_unused]], const UInt8 * end [[maybe_unused]], const B & b [[maybe_unused]], ColumnFixedString::Chars & out_vec)
{
if constexpr (is_big_int_v<B>)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "BitShiftLeft is not implemented for big integers as second argument");
else
{
UInt8 word_size = 8;
size_t n = end - pos;
/// To prevent overflow
if (static_cast<double>(b) >= (static_cast<double>(n) * word_size) || b < 0)
{
// insert default value
out_vec.resize_fill(out_vec.size() + n);
return;
}
size_t shift_left_bytes = b / word_size;
size_t shift_left_bits = b % word_size;
const UInt8 * begin = pos;
const size_t old_size = out_vec.size();
const size_t new_size = old_size + n;
out_vec.resize(new_size);
UInt8 * op_pointer = const_cast<UInt8 *>(begin + shift_left_bytes);
UInt8 * out = out_vec.data() + old_size;
while (op_pointer < end)
{
*out = *op_pointer << shift_left_bits;
if (op_pointer + 1 < end)
{
/// The left b bit of the right byte is moved to the right b bit of this byte
*out = static_cast<UInt8>(static_cast<UInt8>(*(op_pointer + 1) >> (8 - shift_left_bits)) | *out);
}
op_pointer++;
out++;
}
for (size_t i = 0; i < shift_left_bytes; ++i)
*(out + i) = 0;
}
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = true;
static inline llvm::Value * compile(llvm::IRBuilder<> & b, llvm::Value * left, llvm::Value * right, bool)
{
if (!left->getType()->isIntegerTy())
throw Exception(ErrorCodes::LOGICAL_ERROR, "BitShiftLeftImpl expected an integral type");
return b.CreateShl(left, right);
}
#endif
};
struct NameBitShiftLeft { static constexpr auto name = "bitShiftLeft"; };
using FunctionBitShiftLeft = BinaryArithmeticOverloadResolver<BitShiftLeftImpl, NameBitShiftLeft, true, false>;
}
REGISTER_FUNCTION(BitShiftLeft)
{
factory.registerFunction<FunctionBitShiftLeft>();
}
}
|