1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
#include <base/sort.h>
#include <Core/ColumnWithTypeAndName.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnMap.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnVector.h>
#include <DataTypes/IDataType.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeMap.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/IFunction.h>
#include <Interpreters/castColumn.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_COLUMN;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int TOO_LARGE_ARRAY_SIZE;
extern const int BAD_ARGUMENTS;
extern const int LOGICAL_ERROR;
}
class FunctionMapPopulateSeries : public IFunction
{
public:
static constexpr auto name = "mapPopulateSeries";
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionMapPopulateSeries>(); }
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 0; }
bool isVariadic() const override { return true; }
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
void checkTypes(const DataTypePtr & key_type, const DataTypePtr & value_type, const DataTypePtr & max_key_type) const
{
WhichDataType key_data_type(key_type);
WhichDataType value_data_type(value_type);
if (!(key_data_type.isInt() || key_data_type.isUInt()))
{
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Function {} key argument should be of signed or unsigned integer type. Actual type {}",
getName(),
key_type->getName());
}
if (!(value_data_type.isInt() || value_data_type.isUInt()))
{
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Function {} key argument should be of signed or unsigned integer type. Actual type {}",
getName(),
key_type->getName());
}
if (!max_key_type)
return;
WhichDataType max_key_data_type(max_key_type);
if (max_key_data_type.isNullable())
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Function {} max key argument can not be Nullable. Actual type {}",
getName(),
max_key_type->getName());
if (!(max_key_data_type.isInt() || max_key_data_type.isUInt()))
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Function {} max key should be of signed or unsigned integer type. Actual type {}, max type {}.",
getName(),
key_type->getName(),
max_key_type->getName());
}
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments.empty() || arguments.size() > 3)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Function {} accepts at least one map or two arrays arguments, and optional max key argument",
getName());
WhichDataType key_argument_data_type(arguments[0]);
DataTypePtr key_argument_series_type;
DataTypePtr value_argument_series_type;
size_t max_key_argument_index = 0;
if (key_argument_data_type.isArray())
{
DataTypePtr value_type;
if (1 < arguments.size())
value_type = arguments[1];
if (arguments.size() < 2 || (value_type && !isArray(value_type)))
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"Function {} if array argument is passed as key, additional array argument as value must be passed",
getName());
const auto & key_array_type = assert_cast<const DataTypeArray &>(*arguments[0]);
const auto & value_array_type = assert_cast<const DataTypeArray &>(*value_type);
key_argument_series_type = key_array_type.getNestedType();
value_argument_series_type = value_array_type.getNestedType();
max_key_argument_index = 2;
}
else if (key_argument_data_type.isMap())
{
const auto & map_data_type = assert_cast<const DataTypeMap &>(*arguments[0]);
key_argument_series_type = map_data_type.getKeyType();
value_argument_series_type = map_data_type.getValueType();
max_key_argument_index = 1;
}
else
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Function {} only accepts one map or arrays, but got {}",
getName(),
arguments[0]->getName());
DataTypePtr max_key_argument_type;
if (max_key_argument_index < arguments.size())
max_key_argument_type = arguments[max_key_argument_index];
checkTypes(key_argument_series_type, value_argument_series_type, max_key_argument_type);
if (key_argument_data_type.isArray())
return std::make_shared<DataTypeTuple>(DataTypes{arguments[0], arguments[1]});
else
return arguments[0];
}
template <typename KeyType, typename ValueType>
void executeImplTyped(
const ColumnPtr & key_column,
const ColumnPtr & value_column,
const ColumnPtr & offsets_column,
const ColumnPtr & max_key_column,
MutableColumnPtr result_key_column,
MutableColumnPtr result_value_column,
MutableColumnPtr result_offset_column) const
{
const auto & key_column_typed = assert_cast<const ColumnVector<KeyType> &>(*key_column);
const auto & key_column_data = key_column_typed.getData();
const auto & offsets_column_typed = assert_cast<const ColumnVector<ColumnArray::Offset> &>(*offsets_column);
const auto & offsets = offsets_column_typed.getData();
const auto & value_column_typed = assert_cast<const ColumnVector<ValueType> &>(*value_column);
const auto & value_column_data = value_column_typed.getData();
auto & result_key_column_typed = assert_cast<ColumnVector<KeyType> &>(*result_key_column);
auto & result_key_data = result_key_column_typed.getData();
auto & result_value_column_typed = assert_cast<ColumnVector<ValueType> &>(*result_value_column);
auto & result_value_data = result_value_column_typed.getData();
auto & result_offsets_column_typed = assert_cast<ColumnVector<ColumnArray::Offset> &>(*result_offset_column);
auto & result_offsets_data = result_offsets_column_typed.getData();
const PaddedPODArray<KeyType> * max_key_data = max_key_column ? &assert_cast<const ColumnVector<KeyType> &>(*max_key_column).getData() : nullptr;
PaddedPODArray<std::pair<KeyType, ValueType>> sorted_keys_values;
size_t key_offsets_size = offsets.size();
result_key_data.reserve(key_offsets_size);
result_value_data.reserve(key_offsets_size);
for (size_t offset_index = 0; offset_index < key_offsets_size; ++offset_index)
{
size_t start_offset = offsets[offset_index - 1];
size_t end_offset = offsets[offset_index];
sorted_keys_values.clear();
for (; start_offset < end_offset; ++start_offset)
sorted_keys_values.emplace_back(key_column_data[start_offset], value_column_data[start_offset]);
if unlikely(sorted_keys_values.empty())
{
result_offsets_data.emplace_back(result_value_data.size());
continue;
}
::sort(sorted_keys_values.begin(), sorted_keys_values.end());
KeyType min_key = sorted_keys_values.front().first;
KeyType max_key = sorted_keys_values.back().first;
if (max_key_data)
{
max_key = (*max_key_data)[offset_index];
if (unlikely(max_key < min_key))
{
result_offsets_data.emplace_back(result_value_data.size());
continue;
}
}
using KeyTypeUnsigned = ::make_unsigned_t<KeyType>;
KeyTypeUnsigned max_min_key_difference = 0;
if constexpr (::is_unsigned_v<KeyType>)
{
max_min_key_difference = max_key - min_key;
}
else
{
bool is_max_key_positive = max_key >= 0;
bool is_min_key_positive = min_key >= 0;
if (is_max_key_positive && is_min_key_positive)
{
max_min_key_difference = static_cast<KeyTypeUnsigned>(max_key - min_key);
}
else if (is_max_key_positive && !is_min_key_positive)
{
KeyTypeUnsigned min_key_unsigned = -static_cast<KeyTypeUnsigned>(min_key);
max_min_key_difference = static_cast<KeyTypeUnsigned>(max_key) + min_key_unsigned;
}
else
{
/// Both max and min key are negative
KeyTypeUnsigned min_key_unsigned = -static_cast<KeyTypeUnsigned>(min_key);
KeyTypeUnsigned max_key_unsigned = -static_cast<KeyTypeUnsigned>(max_key);
max_min_key_difference = min_key_unsigned - max_key_unsigned;
}
}
static constexpr size_t MAX_ARRAY_SIZE = 1ULL << 30;
if (max_min_key_difference > MAX_ARRAY_SIZE)
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE,
"Function {} too large array size in the result",
getName());
size_t length = static_cast<size_t>(max_min_key_difference);
size_t result_key_data_size = result_key_data.size();
size_t result_value_data_size = result_value_data.size();
size_t sorted_keys_values_size = sorted_keys_values.size();
result_key_data.resize_fill(result_key_data_size + length + 1);
result_value_data.resize_fill(result_value_data_size + length + 1);
size_t sorted_values_index = 0;
for (KeyType current_key = min_key; current_key <= max_key; ++current_key)
{
size_t key_offset_index = current_key - min_key;
size_t insert_index = result_value_data_size + key_offset_index;
result_key_data[insert_index] = current_key;
if (sorted_values_index < sorted_keys_values_size &&
sorted_keys_values[sorted_values_index].first == current_key)
{
auto & sorted_key_value = sorted_keys_values[sorted_values_index];
if (current_key == sorted_key_value.first)
{
result_value_data[insert_index] = sorted_key_value.second;
}
++sorted_values_index;
while (sorted_values_index < sorted_keys_values_size &&
current_key == sorted_keys_values[sorted_values_index].first)
{
++sorted_values_index;
}
}
if (current_key == max_key)
break;
}
result_offsets_data.emplace_back(result_value_data.size());
}
}
struct KeyAndValueInput
{
DataTypePtr key_series_type;
DataTypePtr value_series_type;
ColumnPtr key_column;
ColumnPtr value_column;
ColumnPtr offsets_column;
/// Optional max key column
ColumnPtr max_key_column;
};
KeyAndValueInput extractKeyAndValueInput(const ColumnsWithTypeAndName & arguments) const
{
KeyAndValueInput input;
size_t max_key_argument_index = 0;
auto first_argument_column = arguments[0].column->convertToFullColumnIfConst();
ColumnPtr second_argument_array_column;
if (const auto * key_argument_array_column = typeid_cast<const ColumnArray *>(first_argument_column.get()))
{
const ColumnArray * value_argument_array_column = nullptr;
if (1 < arguments.size())
{
second_argument_array_column = arguments[1].column->convertToFullColumnIfConst();
value_argument_array_column = typeid_cast<const ColumnArray *>(second_argument_array_column.get());
}
if (!value_argument_array_column)
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"Function {} if array argument is passed as key, additional array argument as value must be passed",
getName());
input.key_series_type = assert_cast<const DataTypeArray &>(*arguments[0].type).getNestedType();
input.key_column = key_argument_array_column->getDataPtr();
const auto & key_offsets = key_argument_array_column->getOffsets();
input.value_series_type = assert_cast<const DataTypeArray &>(*arguments[1].type).getNestedType();
input.value_column = value_argument_array_column->getDataPtr();
const auto & value_offsets = value_argument_array_column->getOffsets();
if (key_offsets != value_offsets)
throw Exception(
ErrorCodes::BAD_ARGUMENTS,
"Function {} key and value array should have same amount of elements",
getName());
input.offsets_column = key_argument_array_column->getOffsetsPtr();
max_key_argument_index = 2;
}
else if (const auto * key_argument_map_column = typeid_cast<const ColumnMap *>(first_argument_column.get()))
{
const auto & nested_array = key_argument_map_column->getNestedColumn();
const auto & nested_data_column = key_argument_map_column->getNestedData();
const auto & map_argument_type = assert_cast<const DataTypeMap &>(*arguments[0].type);
input.key_series_type = map_argument_type.getKeyType();
input.value_series_type = map_argument_type.getValueType();
input.key_column = nested_data_column.getColumnPtr(0);
input.value_column = nested_data_column.getColumnPtr(1);
input.offsets_column = nested_array.getOffsetsPtr();
max_key_argument_index = 1;
}
else
throw Exception(
ErrorCodes::ILLEGAL_COLUMN,
"Function {} only accepts one map or arrays, but got {}",
getName(),
arguments[0].type->getName());
ColumnPtr max_key_column;
if (max_key_argument_index < arguments.size())
{
max_key_column = arguments[max_key_argument_index].column->convertToFullColumnIfConst();
auto max_key_column_type = arguments[max_key_argument_index].type;
if (!max_key_column_type->equals(*input.key_series_type))
{
ColumnWithTypeAndName column_to_cast = {max_key_column, max_key_column_type, ""};
max_key_column = castColumnAccurate(column_to_cast, input.key_series_type);
}
}
input.max_key_column = std::move(max_key_column);
return input;
}
struct ResultColumns
{
MutableColumnPtr result_key_column;
MutableColumnPtr result_value_column;
MutableColumnPtr result_offset_column;
IColumn * result_offset_column_raw;
/// If we return tuple of two arrays, this offset need to be the same as result_offset_column
MutableColumnPtr result_array_additional_offset_column;
};
ResultColumns extractResultColumns(MutableColumnPtr & result_column, const DataTypePtr & result_type) const
{
ResultColumns result;
auto * tuple_column = typeid_cast<ColumnTuple *>(result_column.get());
if (tuple_column && tuple_column->tupleSize() == 2)
{
auto key_array_column = tuple_column->getColumnPtr(0)->assumeMutable();
auto value_array_column = tuple_column->getColumnPtr(1)->assumeMutable();
auto * key_array_column_typed = typeid_cast<ColumnArray *>(key_array_column.get());
auto * value_array_column_typed = typeid_cast<ColumnArray *>(value_array_column.get());
if (!key_array_column_typed || !value_array_column_typed)
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Function {} result type should be Tuple with two nested Array columns or Map. Actual {}",
getName(),
result_type->getName());
result.result_key_column = key_array_column_typed->getDataPtr()->assumeMutable();
result.result_value_column = value_array_column_typed->getDataPtr()->assumeMutable();
result.result_offset_column = key_array_column_typed->getOffsetsPtr()->assumeMutable();
result.result_offset_column_raw = result.result_offset_column.get();
result.result_array_additional_offset_column = value_array_column_typed->getOffsetsPtr()->assumeMutable();
}
else if (const auto * map_column = typeid_cast<ColumnMap *>(result_column.get()))
{
result.result_key_column = map_column->getNestedData().getColumnPtr(0)->assumeMutable();
result.result_value_column = map_column->getNestedData().getColumnPtr(1)->assumeMutable();
result.result_offset_column = map_column->getNestedColumn().getOffsetsPtr()->assumeMutable();
result.result_offset_column_raw = result.result_offset_column.get();
result.result_array_additional_offset_column = nullptr;
}
else
{
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Function {} result type should be Tuple with two nested Array columns or Map. Actual {}",
getName(),
result_type->getName());
}
return result;
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t) const override
{
auto input = extractKeyAndValueInput(arguments);
auto result_column = result_type->createColumn();
auto result_columns = extractResultColumns(result_column, result_type);
auto call = [&](const auto & types)
{
using Types = std::decay_t<decltype(types)>;
using KeyType = typename Types::LeftType;
using ValueType = typename Types::RightType;
static constexpr bool key_and_value_are_numbers = IsDataTypeNumber<KeyType> && IsDataTypeNumber<ValueType>;
static constexpr bool key_is_float = std::is_same_v<KeyType, DataTypeFloat32> || std::is_same_v<KeyType, DataTypeFloat64>;
if constexpr (key_and_value_are_numbers && !key_is_float)
{
using KeyFieldType = typename KeyType::FieldType;
using ValueFieldType = typename ValueType::FieldType;
executeImplTyped<KeyFieldType, ValueFieldType>(
input.key_column,
input.value_column,
input.offsets_column,
input.max_key_column,
std::move(result_columns.result_key_column),
std::move(result_columns.result_value_column),
std::move(result_columns.result_offset_column));
return true;
}
return false;
};
if (!callOnTwoTypeIndexes(input.key_series_type->getTypeId(), input.value_series_type->getTypeId(), call))
throw Exception(ErrorCodes::ILLEGAL_COLUMN,
"Function {} illegal columns passed as arguments",
getName());
if (result_columns.result_array_additional_offset_column)
{
result_columns.result_array_additional_offset_column->insertRangeFrom(
*result_columns.result_offset_column_raw,
0,
result_columns.result_offset_column_raw->size());
}
return result_column;
}
};
REGISTER_FUNCTION(MapPopulateSeries)
{
factory.registerFunction<FunctionMapPopulateSeries>();
}
}
|