1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
#include <cmath>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/IColumn.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/IDataType.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_COLUMN;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int LOGICAL_ERROR;
extern const int ARGUMENT_OUT_OF_BOUND;
}
struct L1Norm
{
static constexpr auto name = "L1";
struct ConstParams {};
template <typename ResultType>
inline static ResultType accumulate(ResultType result, ResultType value, const ConstParams &)
{
return result + fabs(value);
}
template <typename ResultType>
inline static ResultType combine(ResultType result, ResultType other_result, const ConstParams &)
{
return result + other_result;
}
template <typename ResultType>
inline static ResultType finalize(ResultType result, const ConstParams &)
{
return result;
}
};
struct L2Norm
{
static constexpr auto name = "L2";
struct ConstParams {};
template <typename ResultType>
inline static ResultType accumulate(ResultType result, ResultType value, const ConstParams &)
{
return result + value * value;
}
template <typename ResultType>
inline static ResultType combine(ResultType result, ResultType other_result, const ConstParams &)
{
return result + other_result;
}
template <typename ResultType>
inline static ResultType finalize(ResultType result, const ConstParams &)
{
return sqrt(result);
}
};
struct L2SquaredNorm : L2Norm
{
static constexpr auto name = "L2Squared";
template <typename ResultType>
inline static ResultType finalize(ResultType result, const ConstParams &)
{
return result;
}
};
struct LpNorm
{
static constexpr auto name = "Lp";
struct ConstParams
{
Float64 power;
Float64 inverted_power = 1 / power;
};
template <typename ResultType>
inline static ResultType accumulate(ResultType result, ResultType value, const ConstParams & params)
{
return result + static_cast<ResultType>(std::pow(fabs(value), params.power));
}
template <typename ResultType>
inline static ResultType combine(ResultType result, ResultType other_result, const ConstParams &)
{
return result + other_result;
}
template <typename ResultType>
inline static ResultType finalize(ResultType result, const ConstParams & params)
{
return static_cast<ResultType>(std::pow(result, params.inverted_power));
}
};
struct LinfNorm
{
static constexpr auto name = "Linf";
struct ConstParams {};
template <typename ResultType>
inline static ResultType accumulate(ResultType result, ResultType value, const ConstParams &)
{
return fmax(result, fabs(value));
}
template <typename ResultType>
inline static ResultType combine(ResultType result, ResultType other_result, const ConstParams &)
{
return fmax(result, other_result);
}
template <typename ResultType>
inline static ResultType finalize(ResultType result, const ConstParams &)
{
return result;
}
};
template <class Kernel>
class FunctionArrayNorm : public IFunction
{
public:
String getName() const override { static auto name = String("array") + Kernel::name + "Norm"; return name; }
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionArrayNorm<Kernel>>(); }
size_t getNumberOfArguments() const override { return 1; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {}; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
bool useDefaultImplementationForConstants() const override { return true; }
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
const auto * array_type = checkAndGetDataType<DataTypeArray>(arguments[0].type.get());
if (!array_type)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Argument of function {} must be array.", getName());
switch (array_type->getNestedType()->getTypeId())
{
case TypeIndex::UInt8:
case TypeIndex::UInt16:
case TypeIndex::UInt32:
case TypeIndex::Int8:
case TypeIndex::Int16:
case TypeIndex::Int32:
case TypeIndex::UInt64:
case TypeIndex::Int64:
case TypeIndex::Float64:
return std::make_shared<DataTypeFloat64>();
case TypeIndex::Float32:
return std::make_shared<DataTypeFloat32>();
default:
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Arguments of function {} has nested type {}. "
"Support: UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float32, Float64.",
getName(), array_type->getNestedType()->getName());
}
}
ColumnPtr
executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
DataTypePtr type = typeid_cast<const DataTypeArray *>(arguments[0].type.get())->getNestedType();
ColumnPtr column = arguments[0].column->convertToFullColumnIfConst();
const auto * arr = assert_cast<const ColumnArray *>(column.get());
switch (result_type->getTypeId())
{
case TypeIndex::Float32:
return executeWithResultType<Float32>(*arr, type, input_rows_count, arguments);
break;
case TypeIndex::Float64:
return executeWithResultType<Float64>(*arr, type, input_rows_count, arguments);
break;
default:
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected result type {}", result_type->getName());
}
}
private:
#define SUPPORTED_TYPES(action) \
action(UInt8) \
action(UInt16) \
action(UInt32) \
action(UInt64) \
action(Int8) \
action(Int16) \
action(Int32) \
action(Int64) \
action(Float32) \
action(Float64)
template <typename ResultType>
ColumnPtr executeWithResultType(const ColumnArray & array, const DataTypePtr & nested_type, size_t input_rows_count, const ColumnsWithTypeAndName & arguments) const
{
switch (nested_type->getTypeId())
{
#define ON_TYPE(type) \
case TypeIndex::type: \
return executeWithTypes<ResultType, type>(array, input_rows_count, arguments); \
break;
SUPPORTED_TYPES(ON_TYPE)
#undef ON_TYPE
default:
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Arguments of function {} has nested type {}. "
"Support: UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float32, Float64.",
getName(), nested_type->getName());
}
}
template <typename ResultType, typename ArgumentType>
ColumnPtr executeWithTypes(const ColumnArray & array, size_t input_rows_count, const ColumnsWithTypeAndName & arguments) const
{
const auto & data = typeid_cast<const ColumnVector<ArgumentType> &>(array.getData()).getData();
const auto & offsets = array.getOffsets();
auto result_col = ColumnVector<ResultType>::create(input_rows_count);
auto & result_data = result_col->getData();
const typename Kernel::ConstParams kernel_params = initConstParams(arguments);
ColumnArray::Offset prev = 0;
size_t row = 0;
for (auto off : offsets)
{
/// Process chunks in vectorized manner
static constexpr size_t VEC_SIZE = 4;
ResultType results[VEC_SIZE] = {0};
for (; prev + VEC_SIZE < off; prev += VEC_SIZE)
{
for (size_t s = 0; s < VEC_SIZE; ++s)
results[s] = Kernel::template accumulate<ResultType>(results[s], static_cast<ResultType>(data[prev + s]), kernel_params);
}
ResultType result = 0;
for (const auto & other_state : results)
result = Kernel::template combine<ResultType>(result, other_state, kernel_params);
/// Process the tail
for (; prev < off; ++prev)
{
result = Kernel::template accumulate<ResultType>(result, static_cast<ResultType>(data[prev]), kernel_params);
}
result_data[row] = Kernel::finalize(result, kernel_params);
row++;
}
return result_col;
}
typename Kernel::ConstParams initConstParams(const ColumnsWithTypeAndName &) const { return {}; }
};
template <>
size_t FunctionArrayNorm<LpNorm>::getNumberOfArguments() const { return 2; }
template <>
ColumnNumbers FunctionArrayNorm<LpNorm>::getArgumentsThatAreAlwaysConstant() const { return {1}; }
template <>
LpNorm::ConstParams FunctionArrayNorm<LpNorm>::initConstParams(const ColumnsWithTypeAndName & arguments) const
{
if (arguments.size() < 2)
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Argument p of function {} was not provided",
getName());
if (!arguments[1].column->isNumeric())
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Argument p of function {} must be numeric constant",
getName());
if (!isColumnConst(*arguments[1].column) && arguments[1].column->size() != 1)
throw Exception(
ErrorCodes::ILLEGAL_COLUMN,
"Second argument for function {} must be either constant Float64 or constant UInt",
getName());
Float64 p = arguments[1].column->getFloat64(0);
if (p < 1 || p >= HUGE_VAL)
throw Exception(
ErrorCodes::ARGUMENT_OUT_OF_BOUND,
"Second argument for function {} must be not less than one and not be an infinity",
getName());
return LpNorm::ConstParams{p, 1 / p};
}
/// These functions are used by TupleOrArrayFunction
FunctionPtr createFunctionArrayL1Norm(ContextPtr context_) { return FunctionArrayNorm<L1Norm>::create(context_); }
FunctionPtr createFunctionArrayL2Norm(ContextPtr context_) { return FunctionArrayNorm<L2Norm>::create(context_); }
FunctionPtr createFunctionArrayL2SquaredNorm(ContextPtr context_) { return FunctionArrayNorm<L2SquaredNorm>::create(context_); }
FunctionPtr createFunctionArrayLpNorm(ContextPtr context_) { return FunctionArrayNorm<LpNorm>::create(context_); }
FunctionPtr createFunctionArrayLinfNorm(ContextPtr context_) { return FunctionArrayNorm<LinfNorm>::create(context_); }
}
|