1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
#pragma once
#include <Core/Types.h>
#include <Core/DecimalFunctions.h>
namespace DB
{
/** Transform-type wrapper for DateTime64, simplifies DateTime64 support for given Transform.
*
* Depending on what overloads of Transform::execute() are available, when called with DateTime64 value,
* invokes Transform::execute() with either:
* * whole part of DateTime64 value, discarding fractional part (1)
* * DateTime64 value and scale factor (2)
* * DateTime64 broken down to components, result of execute is then re-assembled back into DateTime64 value (3)
*
* Suitable Transform-types are commonly used in Date/DateTime manipulation functions,
* and should implement static (or const) function with following signatures:
* 1:
* R execute(Int64 whole_value, ... )
* 2:
* R execute(DateTime64 value, Int64 scale_multiplier, ... )
* 3:
* R execute(DecimalUtils::DecimalComponents<DateTime64> components, ... )
*
* Where R could be of arbitrary type, in case of (3) if R is DecimalUtils::DecimalComponents<DateTime64>, result is re-assembed back into DateTime64.
*/
template <typename Transform>
class TransformDateTime64
{
private:
// Detect if Transform::execute is const or static method
// with signature defined by template args (ignoring result type).
template<typename = void, typename... Args>
struct TransformHasExecuteOverload : std::false_type {};
template<typename... Args>
struct TransformHasExecuteOverload<std::void_t<decltype(std::declval<Transform>().execute(std::declval<Args>()...))>, Args...>
: std::true_type {};
template<typename... Args>
static constexpr bool TransformHasExecuteOverload_v = TransformHasExecuteOverload<void, Args...>::value;
public:
static constexpr auto name = Transform::name;
// non-explicit constructor to allow creating from scale value (or with no scale at all), indispensable in some contexts.
TransformDateTime64(UInt32 scale_ = 0) /// NOLINT
: scale_multiplier(DecimalUtils::scaleMultiplier<DateTime64::NativeType>(scale_))
{}
TransformDateTime64(DateTime64::NativeType scale_multiplier_ = 1) /// NOLINT(google-explicit-constructor)
: scale_multiplier(scale_multiplier_)
{}
template <typename ... Args>
inline auto NO_SANITIZE_UNDEFINED execute(const DateTime64 & t, Args && ... args) const
{
/// Type conversion from float to integer may be required.
/// We are Ok with implementation specific result for out of range and denormals conversion.
if constexpr (TransformHasExecuteOverload_v<DateTime64, decltype(scale_multiplier), Args...>)
{
return wrapped_transform.execute(t, scale_multiplier, std::forward<Args>(args)...);
}
else if constexpr (TransformHasExecuteOverload_v<DecimalUtils::DecimalComponents<DateTime64>, Args...>)
{
auto components = DecimalUtils::splitWithScaleMultiplier(t, scale_multiplier);
const auto result = wrapped_transform.execute(components, std::forward<Args>(args)...);
using ResultType = std::decay_t<decltype(result)>;
if constexpr (std::is_same_v<DecimalUtils::DecimalComponents<DateTime64>, ResultType>)
{
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(result, scale_multiplier);
}
else
{
return result;
}
}
else
{
auto components = DecimalUtils::splitWithScaleMultiplier(t, scale_multiplier);
if (t.value < 0 && components.fractional)
--components.whole;
return wrapped_transform.execute(static_cast<Int64>(components.whole), std::forward<Args>(args)...);
}
}
template <typename T, typename... Args>
requires (!std::same_as<T, DateTime64>)
inline auto execute(const T & t, Args &&... args) const
{
return wrapped_transform.execute(t, std::forward<Args>(args)...);
}
template <typename ... Args>
inline auto NO_SANITIZE_UNDEFINED executeExtendedResult(const DateTime64 & t, Args && ... args) const
{
/// Type conversion from float to integer may be required.
/// We are Ok with implementation specific result for out of range and denormals conversion.
if constexpr (TransformHasExecuteOverload_v<DateTime64, decltype(scale_multiplier), Args...>)
{
return wrapped_transform.executeExtendedResult(t, scale_multiplier, std::forward<Args>(args)...);
}
else if constexpr (TransformHasExecuteOverload_v<DecimalUtils::DecimalComponents<DateTime64>, Args...>)
{
auto components = DecimalUtils::splitWithScaleMultiplier(t, scale_multiplier);
const auto result = wrapped_transform.executeExtendedResult(components, std::forward<Args>(args)...);
using ResultType = std::decay_t<decltype(result)>;
if constexpr (std::is_same_v<DecimalUtils::DecimalComponents<DateTime64>, ResultType>)
{
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(result, scale_multiplier);
}
else
{
return result;
}
}
else
{
const auto components = DecimalUtils::splitWithScaleMultiplier(t, scale_multiplier);
return wrapped_transform.executeExtendedResult(static_cast<Int64>(components.whole), std::forward<Args>(args)...);
}
}
template <typename T, typename ... Args>
requires (!std::same_as<T, DateTime64>)
inline auto executeExtendedResult(const T & t, Args && ... args) const
{
return wrapped_transform.executeExtendedResult(t, std::forward<Args>(args)...);
}
DateTime64::NativeType getScaleMultiplier() const { return scale_multiplier; }
private:
DateTime64::NativeType scale_multiplier = 1;
Transform wrapped_transform = {};
};
}
|