1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
|
#pragma once
#include <base/types.h>
#include <Core/Defines.h>
#include <base/TypeLists.h>
#include <Columns/IColumn.h>
#include <Columns/ColumnVector.h>
#include <Common/typeid_cast.h>
#include <Common/NaNUtils.h>
#include <Common/SipHash.h>
#include <base/range.h>
/// Warning in boost::geometry during template strategy substitution.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#include <boost/geometry.hpp>
#pragma clang diagnostic pop
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/geometries/multi_polygon.hpp>
#include <boost/geometry/geometries/segment.hpp>
#include <array>
#include <vector>
#include <iterator>
#include <cmath>
#include <algorithm>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int BAD_ARGUMENTS;
}
template <typename Polygon>
UInt64 getPolygonAllocatedBytes(const Polygon & polygon)
{
UInt64 size = 0;
using RingType = typename Polygon::ring_type;
using ValueType = typename RingType::value_type;
auto size_of_ring = [](const RingType & ring) { return sizeof(ring) + ring.capacity() * sizeof(ValueType); };
size += size_of_ring(polygon.outer());
const auto & inners = polygon.inners();
size += sizeof(inners) + inners.capacity() * sizeof(RingType);
for (auto & inner : inners)
size += size_of_ring(inner);
return size;
}
template <typename MultiPolygon>
UInt64 getMultiPolygonAllocatedBytes(const MultiPolygon & multi_polygon)
{
using ValueType = typename MultiPolygon::value_type;
UInt64 size = multi_polygon.capacity() * sizeof(ValueType);
for (const auto & polygon : multi_polygon)
size += getPolygonAllocatedBytes(polygon);
return size;
}
/// This algorithm can be used as a baseline for comparison.
template <typename CoordinateType>
class PointInPolygonTrivial
{
public:
using Point = boost::geometry::model::d2::point_xy<CoordinateType>;
/// Counter-Clockwise ordering.
using Polygon = boost::geometry::model::polygon<Point, false>;
using MultiPolygon = boost::geometry::model::multi_polygon<Polygon>;
using Box = boost::geometry::model::box<Point>;
using Segment = boost::geometry::model::segment<Point>;
explicit PointInPolygonTrivial(const Polygon & polygon_)
: polygon(polygon_) {}
/// True if bound box is empty.
bool hasEmptyBound() const { return false; }
UInt64 getAllocatedBytes() const { return 0; }
bool contains(CoordinateType x, CoordinateType y) const
{
return boost::geometry::covered_by(Point(x, y), polygon);
}
private:
Polygon polygon;
};
/// Simple algorithm with bounding box.
template <typename Strategy, typename CoordinateType>
class PointInPolygon
{
public:
using Point = boost::geometry::model::d2::point_xy<CoordinateType>;
/// Counter-Clockwise ordering.
using Polygon = boost::geometry::model::polygon<Point, false>;
using Box = boost::geometry::model::box<Point>;
explicit PointInPolygon(const Polygon & polygon_) : polygon(polygon_)
{
boost::geometry::envelope(polygon, box);
const Point & min_corner = box.min_corner();
const Point & max_corner = box.max_corner();
if (min_corner.x() == max_corner.x() || min_corner.y() == max_corner.y())
has_empty_bound = true;
}
bool hasEmptyBound() const { return has_empty_bound; }
inline bool ALWAYS_INLINE contains(CoordinateType x, CoordinateType y) const
{
Point point(x, y);
if (!boost::geometry::within(point, box))
return false;
return boost::geometry::covered_by(point, polygon, strategy);
}
UInt64 getAllocatedBytes() const { return sizeof(*this); }
private:
const Polygon & polygon;
Box box;
bool has_empty_bound = false;
Strategy strategy;
};
/// Optimized algorithm with bounding box and grid.
template <typename CoordinateType>
class PointInPolygonWithGrid
{
public:
using Point = boost::geometry::model::d2::point_xy<CoordinateType>;
/// Counter-Clockwise ordering.
using Polygon = boost::geometry::model::polygon<Point, false>;
using MultiPolygon = boost::geometry::model::multi_polygon<Polygon>;
using Box = boost::geometry::model::box<Point>;
using Segment = boost::geometry::model::segment<Point>;
explicit PointInPolygonWithGrid(const Polygon & polygon_, UInt16 grid_size_ = 8)
: grid_size(std::max<UInt16>(1, grid_size_)), polygon(polygon_)
{
buildGrid();
}
/// True if bound box is empty.
bool hasEmptyBound() const { return has_empty_bound; }
UInt64 getAllocatedBytes() const;
inline bool ALWAYS_INLINE contains(CoordinateType x, CoordinateType y) const;
private:
enum class CellType
{
inner, /// The cell is completely inside polygon.
outer, /// The cell is completely outside of polygon.
singleLine, /// The cell is split to inner/outer part by a single line.
pairOfLinesSingleConvexPolygon, /// The cell is split to inner/outer part by a polyline of two sections and inner part is convex.
pairOfLinesSingleNonConvexPolygons, /// The cell is split to inner/outer part by a polyline of two sections and inner part is non convex.
pairOfLinesDifferentPolygons, /// The cell is spliited by two lines to three different parts.
complexPolygon /// Generic case.
};
struct HalfPlane
{
/// Line, a * x + b * y + c = 0. Vector (a, b) points inside half-plane.
CoordinateType a;
CoordinateType b;
CoordinateType c;
HalfPlane() = default;
/// Take left half-plane.
HalfPlane(const Point & from, const Point & to)
{
a = -(to.y() - from.y());
b = to.x() - from.x();
c = -from.x() * a - from.y() * b;
}
/// Inner part of the HalfPlane is the left side of initialized vector.
bool ALWAYS_INLINE contains(CoordinateType x, CoordinateType y) const { return a * x + b * y + c >= 0; }
};
struct Cell
{
static const int max_stored_half_planes = 2;
HalfPlane half_planes[max_stored_half_planes];
size_t index_of_inner_polygon;
CellType type;
};
const UInt16 grid_size;
Polygon polygon;
std::vector<Cell> cells;
std::vector<MultiPolygon> polygons;
CoordinateType cell_width;
CoordinateType cell_height;
CoordinateType x_shift;
CoordinateType y_shift;
CoordinateType x_scale;
CoordinateType y_scale;
bool has_empty_bound = false;
void buildGrid();
/// Calculate bounding box and shift/scale of cells.
void calcGridAttributes(Box & box);
template <typename T>
T ALWAYS_INLINE getCellIndex(T row, T col) const { return row * grid_size + col; }
/// Complex case. Will check intersection directly.
inline void addComplexPolygonCell(size_t index, const Box & box);
/// Empty intersection or intersection == box.
inline void addCell(size_t index, const Box & empty_box);
/// Intersection is a single polygon.
inline void addCell(size_t index, const Box & box, const Polygon & intersection);
/// Intersection is a pair of polygons.
inline void addCell(size_t index, const Box & box, const Polygon & first, const Polygon & second);
/// Returns a list of half-planes were formed from intersection edges without box edges.
inline std::vector<HalfPlane> findHalfPlanes(const Box & box, const Polygon & intersection);
/// Check that polygon.outer() is convex.
inline bool isConvex(const Polygon & polygon);
};
template <typename CoordinateType>
UInt64 PointInPolygonWithGrid<CoordinateType>::getAllocatedBytes() const
{
UInt64 size = sizeof(*this);
size += cells.capacity() * sizeof(Cell);
size += polygons.capacity() * sizeof(MultiPolygon);
size += getPolygonAllocatedBytes(polygon);
for (const auto & elem : polygons)
size += getMultiPolygonAllocatedBytes(elem);
return size;
}
template <typename CoordinateType>
void PointInPolygonWithGrid<CoordinateType>::calcGridAttributes(
PointInPolygonWithGrid<CoordinateType>::Box & box)
{
boost::geometry::envelope(polygon, box);
const Point & min_corner = box.min_corner();
const Point & max_corner = box.max_corner();
cell_width = (max_corner.x() - min_corner.x()) / grid_size;
cell_height = (max_corner.y() - min_corner.y()) / grid_size;
if (cell_width == 0 || cell_height == 0)
{
has_empty_bound = true;
return;
}
x_scale = 1 / cell_width;
y_scale = 1 / cell_height;
x_shift = -min_corner.x();
y_shift = -min_corner.y();
if (!(isFinite(x_scale)
&& isFinite(y_scale)
&& isFinite(x_shift)
&& isFinite(y_shift)
&& isFinite(grid_size)))
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Polygon is not valid: bounding box is unbounded");
}
template <typename CoordinateType>
void PointInPolygonWithGrid<CoordinateType>::buildGrid()
{
Box box;
calcGridAttributes(box);
if (has_empty_bound)
return;
cells.assign(size_t(grid_size) * grid_size, {});
const Point & min_corner = box.min_corner();
for (size_t row = 0; row < grid_size; ++row)
{
CoordinateType y_min = min_corner.y() + row * cell_height;
CoordinateType y_max = min_corner.y() + (row + 1) * cell_height;
for (size_t col = 0; col < grid_size; ++col)
{
CoordinateType x_min = min_corner.x() + col * cell_width;
CoordinateType x_max = min_corner.x() + (col + 1) * cell_width;
Box cell_box(Point(x_min, y_min), Point(x_max, y_max));
MultiPolygon intersection;
boost::geometry::intersection(polygon, cell_box, intersection);
size_t cell_index = getCellIndex(row, col);
if (intersection.empty())
addCell(cell_index, cell_box);
else if (intersection.size() == 1)
addCell(cell_index, cell_box, intersection.front());
else if (intersection.size() == 2)
addCell(cell_index, cell_box, intersection.front(), intersection.back());
else
addComplexPolygonCell(cell_index, cell_box);
}
}
}
template <typename CoordinateType>
bool PointInPolygonWithGrid<CoordinateType>::contains(CoordinateType x, CoordinateType y) const
{
if (has_empty_bound)
return false;
if (!isFinite(x) || !isFinite(y))
return false;
CoordinateType float_row = (y + y_shift) * y_scale;
CoordinateType float_col = (x + x_shift) * x_scale;
if (float_row < 0 || float_row > grid_size)
return false;
if (float_col < 0 || float_col > grid_size)
return false;
int row = std::min<int>(static_cast<int>(float_row), grid_size - 1);
int col = std::min<int>(static_cast<int>(float_col), grid_size - 1);
int index = getCellIndex(row, col);
const auto & cell = cells[index];
switch (cell.type)
{
case CellType::inner:
return true;
case CellType::outer:
return false;
case CellType::singleLine:
return cell.half_planes[0].contains(x, y);
case CellType::pairOfLinesSingleConvexPolygon:
return cell.half_planes[0].contains(x, y) && cell.half_planes[1].contains(x, y);
case CellType::pairOfLinesDifferentPolygons: [[fallthrough]];
case CellType::pairOfLinesSingleNonConvexPolygons:
return cell.half_planes[0].contains(x, y) || cell.half_planes[1].contains(x, y);
case CellType::complexPolygon:
return boost::geometry::within(Point(x, y), polygons[cell.index_of_inner_polygon]);
}
UNREACHABLE();
}
template <typename CoordinateType>
bool PointInPolygonWithGrid<CoordinateType>::isConvex(const PointInPolygonWithGrid<CoordinateType>::Polygon & poly)
{
const auto & outer = poly.outer();
/// Segment or point.
if (outer.size() < 4)
return false;
auto vec_product = [](const Point & from, const Point & to) { return from.x() * to.y() - from.y() * to.x(); };
auto get_vector = [](const Point & from, const Point & to) -> Point
{
return Point(to.x() - from.x(), to.y() - from.y());
};
Point first = get_vector(outer[0], outer[1]);
Point prev = first;
for (auto i : collections::range(1, outer.size() - 1))
{
Point cur = get_vector(outer[i], outer[i + 1]);
if (vec_product(prev, cur) < 0)
return false;
prev = cur;
}
return vec_product(prev, first) >= 0;
}
template <typename CoordinateType>
std::vector<typename PointInPolygonWithGrid<CoordinateType>::HalfPlane>
PointInPolygonWithGrid<CoordinateType>::findHalfPlanes(
const PointInPolygonWithGrid<CoordinateType>::Box & box,
const PointInPolygonWithGrid<CoordinateType>::Polygon & intersection)
{
std::vector<HalfPlane> half_planes;
const auto & outer = intersection.outer();
for (auto i : collections::range(0, outer.size() - 1))
{
/// Want to detect is intersection edge was formed from box edge or from polygon edge.
/// If section (x1, y1), (x2, y2) is on box edge, then either x1 = x2 = one of box_x or y1 = y2 = one of box_y
auto x1 = outer[i].x();
auto y1 = outer[i].y();
auto x2 = outer[i + 1].x();
auto y2 = outer[i + 1].y();
auto box_x1 = box.min_corner().x();
auto box_y1 = box.min_corner().y();
auto box_x2 = box.max_corner().x();
auto box_y2 = box.max_corner().y();
if (! ((x1 == x2 && (x1 == box_x1 || x2 == box_x2))
|| (y1 == y2 && (y1 == box_y1 || y2 == box_y2))))
{
half_planes.emplace_back(Point(x1, y1), Point(x2, y2));
}
}
return half_planes;
}
template <typename CoordinateType>
void PointInPolygonWithGrid<CoordinateType>::addComplexPolygonCell(
size_t index, const PointInPolygonWithGrid<CoordinateType>::Box & box)
{
cells[index].type = CellType::complexPolygon;
cells[index].index_of_inner_polygon = polygons.size();
/// Expand box in (1 + eps_factor) times to eliminate errors for points on box bound.
static constexpr CoordinateType eps_factor = 0.01;
auto x_eps = eps_factor * (box.max_corner().x() - box.min_corner().x());
auto y_eps = eps_factor * (box.max_corner().y() - box.min_corner().y());
Point min_corner(box.min_corner().x() - x_eps, box.min_corner().y() - y_eps);
Point max_corner(box.max_corner().x() + x_eps, box.max_corner().y() + y_eps);
Box box_with_eps_bound(min_corner, max_corner);
MultiPolygon intersection;
boost::geometry::intersection(polygon, box_with_eps_bound, intersection);
polygons.push_back(intersection);
}
template <typename CoordinateType>
void PointInPolygonWithGrid<CoordinateType>::addCell(
size_t index, const PointInPolygonWithGrid<CoordinateType>::Box & empty_box)
{
const auto & min_corner = empty_box.min_corner();
const auto & max_corner = empty_box.max_corner();
Point center((min_corner.x() + max_corner.x()) / 2, (min_corner.y() + max_corner.y()) / 2);
if (boost::geometry::within(center, polygon))
cells[index].type = CellType::inner;
else
cells[index].type = CellType::outer;
}
template <typename CoordinateType>
void PointInPolygonWithGrid<CoordinateType>::addCell(
size_t index,
const PointInPolygonWithGrid<CoordinateType>::Box & box,
const PointInPolygonWithGrid<CoordinateType>::Polygon & intersection)
{
if (!intersection.inners().empty())
addComplexPolygonCell(index, box);
auto half_planes = findHalfPlanes(box, intersection);
if (half_planes.empty())
{
addCell(index, box);
}
else if (half_planes.size() == 1)
{
cells[index].type = CellType::singleLine;
cells[index].half_planes[0] = half_planes[0];
}
else if (half_planes.size() == 2)
{
cells[index].type = isConvex(intersection) ? CellType::pairOfLinesSingleConvexPolygon
: CellType::pairOfLinesSingleNonConvexPolygons;
cells[index].half_planes[0] = half_planes[0];
cells[index].half_planes[1] = half_planes[1];
}
else
addComplexPolygonCell(index, box);
}
template <typename CoordinateType>
void PointInPolygonWithGrid<CoordinateType>::addCell(
size_t index,
const PointInPolygonWithGrid<CoordinateType>::Box & box,
const PointInPolygonWithGrid<CoordinateType>::Polygon & first,
const PointInPolygonWithGrid<CoordinateType>::Polygon & second)
{
if (!first.inners().empty() || !second.inners().empty())
addComplexPolygonCell(index, box);
auto first_half_planes = findHalfPlanes(box, first);
auto second_half_planes = findHalfPlanes(box, second);
if (first_half_planes.empty())
addCell(index, box, first);
else if (second_half_planes.empty())
addCell(index, box, second);
else if (first_half_planes.size() == 1 && second_half_planes.size() == 1)
{
cells[index].type = CellType::pairOfLinesDifferentPolygons;
cells[index].half_planes[0] = first_half_planes[0];
cells[index].half_planes[1] = second_half_planes[0];
}
else
addComplexPolygonCell(index, box);
}
/// Algorithms.
template <typename T, typename U, typename PointInPolygonImpl>
ColumnPtr pointInPolygon(const ColumnVector<T> & x, const ColumnVector<U> & y, PointInPolygonImpl && impl)
{
auto size = x.size();
if (impl.hasEmptyBound())
return ColumnVector<UInt8>::create(size, 0);
auto result = ColumnVector<UInt8>::create(size);
auto & data = result->getData();
const auto & x_data = x.getData();
const auto & y_data = y.getData();
for (auto i : collections::range(0, size))
data[i] = static_cast<UInt8>(impl.contains(x_data[i], y_data[i]));
return result;
}
template <typename ... Types>
struct CallPointInPolygon;
template <typename Type, typename ... Types>
struct CallPointInPolygon<Type, Types ...>
{
template <typename T, typename PointInPolygonImpl>
static ColumnPtr call(const ColumnVector<T> & x, const IColumn & y, PointInPolygonImpl && impl)
{
if (auto column = typeid_cast<const ColumnVector<Type> *>(&y))
return pointInPolygon(x, *column, impl);
return CallPointInPolygon<Types ...>::template call<T>(x, y, impl);
}
template <typename PointInPolygonImpl>
static ColumnPtr call(const IColumn & x, const IColumn & y, PointInPolygonImpl && impl)
{
using Impl = TypeListChangeRoot<CallPointInPolygon, TypeListIntAndFloat>;
if (auto column = typeid_cast<const ColumnVector<Type> *>(&x))
return Impl::template call<Type>(*column, y, impl);
return CallPointInPolygon<Types ...>::call(x, y, impl);
}
};
template <>
struct CallPointInPolygon<>
{
template <typename T, typename PointInPolygonImpl>
static ColumnPtr call(const ColumnVector<T> &, const IColumn & y, PointInPolygonImpl &&)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unknown numeric column type: {}", demangle(typeid(y).name()));
}
template <typename PointInPolygonImpl>
static ColumnPtr call(const IColumn & x, const IColumn &, PointInPolygonImpl &&)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unknown numeric column type: {}", demangle(typeid(x).name()));
}
};
template <typename PointInPolygonImpl>
NO_INLINE ColumnPtr pointInPolygon(const IColumn & x, const IColumn & y, PointInPolygonImpl && impl)
{
using Impl = TypeListChangeRoot<CallPointInPolygon, TypeListIntAndFloat>;
return Impl::call(x, y, impl);
}
template <typename Polygon>
UInt128 sipHash128(Polygon && polygon)
{
SipHash hash;
auto hash_ring = [&hash](const auto & ring)
{
UInt32 size = static_cast<UInt32>(ring.size());
hash.update(size);
hash.update(reinterpret_cast<const char *>(ring.data()), size * sizeof(ring[0]));
};
hash_ring(polygon.outer());
const auto & inners = polygon.inners();
hash.update(inners.size());
for (auto & inner : inners)
hash_ring(inner);
return hash.get128();
}
}
|