aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/clickhouse/src/Functions/FunctionsRound.h
blob: 3d1028c6d35134f6684f897373a863f63027c736 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
#pragma once

#include <Functions/FunctionHelpers.h>
#include <IO/WriteHelpers.h>
#include <DataTypes/getLeastSupertype.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <Columns/ColumnVector.h>
#include <Interpreters/castColumn.h>
#include "IFunction.h"
#include <Common/intExp.h>
#include <Common/assert_cast.h>
#include <Core/Defines.h>
#include <cmath>
#include <type_traits>
#include <array>
#include <base/sort.h>
#include <algorithm>

#ifdef __SSE4_1__
    #include <smmintrin.h>
#else
    #include <fenv.h>
#endif


namespace DB
{

namespace ErrorCodes
{
    extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
    extern const int ILLEGAL_TYPE_OF_ARGUMENT;
    extern const int ARGUMENT_OUT_OF_BOUND;
    extern const int ILLEGAL_COLUMN;
    extern const int BAD_ARGUMENTS;
    extern const int CANNOT_SET_ROUNDING_MODE;
}


/** Rounding Functions:
    * round(x, N) - rounding to nearest (N = 0 by default). Use banker's rounding for floating point numbers.
    * roundBankers(x, N) - rounding to nearest (N = 0 by default). Use banker's rounding for all numbers.
    * floor(x, N) is the largest number <= x (N = 0 by default).
    * ceil(x, N) is the smallest number >= x (N = 0 by default).
    * trunc(x, N) - is the largest by absolute value number that is not greater than x by absolute value (N = 0 by default).
    *
    * The value of the parameter N (scale):
    * - N > 0: round to the number with N decimal places after the decimal point
    * - N < 0: round to an integer with N zero characters
    * - N = 0: round to an integer
    *
    * Type of the result is the type of argument.
    * For integer arguments, when passing negative scale, overflow can occur.
    * In that case, the behavior is implementation specific.
    */


/** This parameter controls the behavior of the rounding functions.
  */
enum class ScaleMode
{
    Positive,   // round to a number with N decimal places after the decimal point
    Negative,   // round to an integer with N zero characters
    Zero,       // round to an integer
};

enum class RoundingMode
{
#ifdef __SSE4_1__
    Round   = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC,
    Floor   = _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC,
    Ceil    = _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC,
    Trunc   = _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC,
#else
    Round   = 8,    /// Values are correspond to above just in case.
    Floor   = 9,
    Ceil    = 10,
    Trunc   = 11,
#endif
};

enum class TieBreakingMode
{
    Auto, // use banker's rounding for floating point numbers, round up otherwise
    Bankers, // use banker's rounding
};

/// For N, no more than the number of digits in the largest type.
using Scale = Int16;


/** Rounding functions for integer values.
  */
template <typename T, RoundingMode rounding_mode, ScaleMode scale_mode, TieBreakingMode tie_breaking_mode>
struct IntegerRoundingComputation
{
    static const size_t data_count = 1;

    static size_t prepare(size_t scale)
    {
        return scale;
    }

    /// Integer overflow is Ok.
    static ALWAYS_INLINE_NO_SANITIZE_UNDEFINED T computeImpl(T x, T scale)
    {
        switch (rounding_mode)
        {
            case RoundingMode::Trunc:
            {
                return x / scale * scale;
            }
            case RoundingMode::Floor:
            {
                if (x < 0)
                    x -= scale - 1;
                return x / scale * scale;
            }
            case RoundingMode::Ceil:
            {
                if (x >= 0)
                    x += scale - 1;
                return x / scale * scale;
            }
            case RoundingMode::Round:
            {
                if (x < 0)
                    x -= scale;
                switch (tie_breaking_mode)
                {
                    case TieBreakingMode::Auto:
                        x = (x + scale / 2) / scale * scale;
                        break;
                    case TieBreakingMode::Bankers:
                    {
                        T quotient = (x + scale / 2) / scale;
                        if (quotient * scale == x + scale / 2)
                            // round half to even
                            x = ((quotient + (x < 0)) & ~1) * scale;
                        else
                            // round the others as usual
                            x = quotient * scale;
                        break;
                    }
                }
                return x;
            }
        }

        UNREACHABLE();
    }

    static ALWAYS_INLINE T compute(T x, T scale)
    {
        switch (scale_mode)
        {
            case ScaleMode::Zero:
            case ScaleMode::Positive:
                return x;
            case ScaleMode::Negative:
                return computeImpl(x, scale);
        }

        UNREACHABLE();
    }

    static ALWAYS_INLINE void compute(const T * __restrict in, size_t scale, T * __restrict out) requires std::integral<T>
    {
        if constexpr (sizeof(T) <= sizeof(scale) && scale_mode == ScaleMode::Negative)
        {
            if (scale > size_t(std::numeric_limits<T>::max()))
            {
                *out = 0;
                return;
            }
        }
        *out = compute(*in, static_cast<T>(scale));
    }

    static ALWAYS_INLINE void compute(const T * __restrict in, T scale, T * __restrict out) requires(!std::integral<T>)
    {
        *out = compute(*in, scale);
    }
};


#ifdef __SSE4_1__

template <typename T>
class BaseFloatRoundingComputation;

template <>
class BaseFloatRoundingComputation<Float32>
{
public:
    using ScalarType = Float32;
    using VectorType = __m128;
    static const size_t data_count = 4;

    static VectorType load(const ScalarType * in) { return _mm_loadu_ps(in); }
    static VectorType load1(const ScalarType in) { return _mm_load1_ps(&in); }
    static void store(ScalarType * out, VectorType val) { _mm_storeu_ps(out, val);}
    static VectorType multiply(VectorType val, VectorType scale) { return _mm_mul_ps(val, scale); }
    static VectorType divide(VectorType val, VectorType scale) { return _mm_div_ps(val, scale); }
    template <RoundingMode mode> static VectorType apply(VectorType val) { return _mm_round_ps(val, int(mode)); }

    static VectorType prepare(size_t scale)
    {
        return load1(scale);
    }
};

template <>
class BaseFloatRoundingComputation<Float64>
{
public:
    using ScalarType = Float64;
    using VectorType = __m128d;
    static const size_t data_count = 2;

    static VectorType load(const ScalarType * in) { return _mm_loadu_pd(in); }
    static VectorType load1(const ScalarType in) { return _mm_load1_pd(&in); }
    static void store(ScalarType * out, VectorType val) { _mm_storeu_pd(out, val);}
    static VectorType multiply(VectorType val, VectorType scale) { return _mm_mul_pd(val, scale); }
    static VectorType divide(VectorType val, VectorType scale) { return _mm_div_pd(val, scale); }
    template <RoundingMode mode> static VectorType apply(VectorType val) { return _mm_round_pd(val, int(mode)); }

    static VectorType prepare(size_t scale)
    {
        return load1(scale);
    }
};

#else

/// Implementation for ARM. Not vectorized.

inline float roundWithMode(float x, RoundingMode mode)
{
    switch (mode)
    {
        case RoundingMode::Round: return nearbyintf(x);
        case RoundingMode::Floor: return floorf(x);
        case RoundingMode::Ceil: return ceilf(x);
        case RoundingMode::Trunc: return truncf(x);
    }

    UNREACHABLE();
}

inline double roundWithMode(double x, RoundingMode mode)
{
    switch (mode)
    {
        case RoundingMode::Round: return nearbyint(x);
        case RoundingMode::Floor: return floor(x);
        case RoundingMode::Ceil: return ceil(x);
        case RoundingMode::Trunc: return trunc(x);
    }

    UNREACHABLE();
}

template <typename T>
class BaseFloatRoundingComputation
{
public:
    using ScalarType = T;
    using VectorType = T;
    static const size_t data_count = 1;

    static VectorType load(const ScalarType * in) { return *in; }
    static VectorType load1(const ScalarType in) { return in; }
    static VectorType store(ScalarType * out, ScalarType val) { return *out = val;}
    static VectorType multiply(VectorType val, VectorType scale) { return val * scale; }
    static VectorType divide(VectorType val, VectorType scale) { return val / scale; }
    template <RoundingMode mode> static VectorType apply(VectorType val) { return roundWithMode(val, mode); }

    static VectorType prepare(size_t scale)
    {
        return load1(scale);
    }
};

#endif


/** Implementation of low-level round-off functions for floating-point values.
  */
template <typename T, RoundingMode rounding_mode, ScaleMode scale_mode>
class FloatRoundingComputation : public BaseFloatRoundingComputation<T>
{
    using Base = BaseFloatRoundingComputation<T>;

public:
    static inline void compute(const T * __restrict in, const typename Base::VectorType & scale, T * __restrict out)
    {
        auto val = Base::load(in);

        if (scale_mode == ScaleMode::Positive)
            val = Base::multiply(val, scale);
        else if (scale_mode == ScaleMode::Negative)
            val = Base::divide(val, scale);

        val = Base::template apply<rounding_mode>(val);

        if (scale_mode == ScaleMode::Positive)
            val = Base::divide(val, scale);
        else if (scale_mode == ScaleMode::Negative)
            val = Base::multiply(val, scale);

        Base::store(out, val);
    }
};


/** Implementing high-level rounding functions.
  */
template <typename T, RoundingMode rounding_mode, ScaleMode scale_mode>
struct FloatRoundingImpl
{
private:
    static_assert(!is_decimal<T>);

    using Op = FloatRoundingComputation<T, rounding_mode, scale_mode>;
    using Data = std::array<T, Op::data_count>;
    using ColumnType = ColumnVector<T>;
    using Container = typename ColumnType::Container;

public:
    static NO_INLINE void apply(const Container & in, size_t scale, Container & out)
    {
        auto mm_scale = Op::prepare(scale);

        const size_t data_count = std::tuple_size<Data>();

        const T* end_in = in.data() + in.size();
        const T* limit = in.data() + in.size() / data_count * data_count;

        const T* __restrict p_in = in.data();
        T* __restrict p_out = out.data();

        while (p_in < limit)
        {
            Op::compute(p_in, mm_scale, p_out);
            p_in += data_count;
            p_out += data_count;
        }

        if (p_in < end_in)
        {
            Data tmp_src{{}};
            Data tmp_dst;

            size_t tail_size_bytes = (end_in - p_in) * sizeof(*p_in);

            memcpy(&tmp_src, p_in, tail_size_bytes);
            Op::compute(reinterpret_cast<T *>(&tmp_src), mm_scale, reinterpret_cast<T *>(&tmp_dst));
            memcpy(p_out, &tmp_dst, tail_size_bytes);
        }
    }
};

template <typename T, RoundingMode rounding_mode, ScaleMode scale_mode, TieBreakingMode tie_breaking_mode>
struct IntegerRoundingImpl
{
private:
    using Op = IntegerRoundingComputation<T, rounding_mode, scale_mode, tie_breaking_mode>;
    using Container = typename ColumnVector<T>::Container;

public:
    template <size_t scale>
    static NO_INLINE void applyImpl(const Container & in, Container & out)
    {
        const T * end_in = in.data() + in.size();

        const T * __restrict p_in = in.data();
        T * __restrict p_out = out.data();

        while (p_in < end_in)
        {
            Op::compute(p_in, scale, p_out);
            ++p_in;
            ++p_out;
        }
    }

    static NO_INLINE void apply(const Container & in, size_t scale, Container & out)
    {
        /// Manual function cloning for compiler to generate integer division by constant.
        switch (scale)
        {
            case 1ULL: return applyImpl<1ULL>(in, out);
            case 10ULL: return applyImpl<10ULL>(in, out);
            case 100ULL: return applyImpl<100ULL>(in, out);
            case 1000ULL: return applyImpl<1000ULL>(in, out);
            case 10000ULL: return applyImpl<10000ULL>(in, out);
            case 100000ULL: return applyImpl<100000ULL>(in, out);
            case 1000000ULL: return applyImpl<1000000ULL>(in, out);
            case 10000000ULL: return applyImpl<10000000ULL>(in, out);
            case 100000000ULL: return applyImpl<100000000ULL>(in, out);
            case 1000000000ULL: return applyImpl<1000000000ULL>(in, out);
            case 10000000000ULL: return applyImpl<10000000000ULL>(in, out);
            case 100000000000ULL: return applyImpl<100000000000ULL>(in, out);
            case 1000000000000ULL: return applyImpl<1000000000000ULL>(in, out);
            case 10000000000000ULL: return applyImpl<10000000000000ULL>(in, out);
            case 100000000000000ULL: return applyImpl<100000000000000ULL>(in, out);
            case 1000000000000000ULL: return applyImpl<1000000000000000ULL>(in, out);
            case 10000000000000000ULL: return applyImpl<10000000000000000ULL>(in, out);
            case 100000000000000000ULL: return applyImpl<100000000000000000ULL>(in, out);
            case 1000000000000000000ULL: return applyImpl<1000000000000000000ULL>(in, out);
            case 10000000000000000000ULL: return applyImpl<10000000000000000000ULL>(in, out);
            default:
                throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unexpected 'scale' parameter passed to function");
        }
    }
};


template <is_decimal T, RoundingMode rounding_mode, TieBreakingMode tie_breaking_mode>
class DecimalRoundingImpl
{
private:
    using NativeType = typename T::NativeType;
    using Op = IntegerRoundingComputation<NativeType, rounding_mode, ScaleMode::Negative, tie_breaking_mode>;
    using Container = typename ColumnDecimal<T>::Container;

public:
    static NO_INLINE void apply(const Container & in, UInt32 in_scale, Container & out, Scale scale_arg)
    {
        scale_arg = in_scale - scale_arg;
        if (scale_arg > 0)
        {
            auto scale = intExp10OfSize<NativeType>(scale_arg);

            const NativeType * __restrict p_in = reinterpret_cast<const NativeType *>(in.data());
            const NativeType * end_in = reinterpret_cast<const NativeType *>(in.data()) + in.size();
            NativeType * __restrict p_out = reinterpret_cast<NativeType *>(out.data());

            while (p_in < end_in)
            {
                Op::compute(p_in, scale, p_out);
                ++p_in;
                ++p_out;
            }
        }
        else
        {
            memcpy(out.data(), in.data(), in.size() * sizeof(T));
        }
    }
};


/** Select the appropriate processing algorithm depending on the scale.
  */
template <typename T, RoundingMode rounding_mode, TieBreakingMode tie_breaking_mode>
struct Dispatcher
{
    template <ScaleMode scale_mode>
    using FunctionRoundingImpl = std::conditional_t<std::is_floating_point_v<T>,
        FloatRoundingImpl<T, rounding_mode, scale_mode>,
        IntegerRoundingImpl<T, rounding_mode, scale_mode, tie_breaking_mode>>;

    static ColumnPtr apply(const IColumn * col_general, Scale scale_arg)
    {
        const auto * const col = checkAndGetColumn<ColumnVector<T>>(col_general);
        auto col_res = ColumnVector<T>::create();

        typename ColumnVector<T>::Container & vec_res = col_res->getData();
        vec_res.resize(col->getData().size());

        if (!vec_res.empty())
        {
            if (scale_arg == 0)
            {
                size_t scale = 1;
                FunctionRoundingImpl<ScaleMode::Zero>::apply(col->getData(), scale, vec_res);
            }
            else if (scale_arg > 0)
            {
                size_t scale = intExp10(scale_arg);
                FunctionRoundingImpl<ScaleMode::Positive>::apply(col->getData(), scale, vec_res);
            }
            else
            {
                size_t scale = intExp10(-scale_arg);
                FunctionRoundingImpl<ScaleMode::Negative>::apply(col->getData(), scale, vec_res);
            }
        }

        return col_res;
    }
};

template <is_decimal T, RoundingMode rounding_mode, TieBreakingMode tie_breaking_mode>
struct Dispatcher<T, rounding_mode, tie_breaking_mode>
{
public:
    static ColumnPtr apply(const IColumn * col_general, Scale scale_arg)
    {
        const auto * const col = checkAndGetColumn<ColumnDecimal<T>>(col_general);
        const typename ColumnDecimal<T>::Container & vec_src = col->getData();

        auto col_res = ColumnDecimal<T>::create(vec_src.size(), col->getScale());
        auto & vec_res = col_res->getData();

        if (!vec_res.empty())
            DecimalRoundingImpl<T, rounding_mode, tie_breaking_mode>::apply(col->getData(), col->getScale(), vec_res, scale_arg);

        return col_res;
    }
};

/** A template for functions that round the value of an input parameter of type
  * (U)Int8/16/32/64, Float32/64 or Decimal32/64/128, and accept an additional optional parameter (default is 0).
  */
template <typename Name, RoundingMode rounding_mode, TieBreakingMode tie_breaking_mode>
class FunctionRounding : public IFunction
{
public:
    static constexpr auto name = Name::name;
    static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionRounding>(); }

    String getName() const override
    {
        return name;
    }

    bool isVariadic() const override { return true; }
    size_t getNumberOfArguments() const override { return 0; }
    bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }

    /// Get result types by argument types. If the function does not apply to these arguments, throw an exception.
    DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
    {
        if ((arguments.empty()) || (arguments.size() > 2))
            throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
                "Number of arguments for function {} doesn't match: passed {}, should be 1 or 2.",
                getName(), arguments.size());

        for (const auto & type : arguments)
            if (!isNumber(type))
                throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}",
                    arguments[0]->getName(), getName());

        return arguments[0];
    }

    static Scale getScaleArg(const ColumnsWithTypeAndName & arguments)
    {
        if (arguments.size() == 2)
        {
            const IColumn & scale_column = *arguments[1].column;
            if (!isColumnConst(scale_column))
                throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Scale argument for rounding functions must be constant");

            Field scale_field = assert_cast<const ColumnConst &>(scale_column).getField();
            if (scale_field.getType() != Field::Types::UInt64
                && scale_field.getType() != Field::Types::Int64)
                throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Scale argument for rounding functions must have integer type");

            Int64 scale64 = scale_field.get<Int64>();
            if (scale64 > std::numeric_limits<Scale>::max()
                || scale64 < std::numeric_limits<Scale>::min())
                throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "Scale argument for rounding function is too large");

            return scale64;
        }
        return 0;
    }

    bool useDefaultImplementationForConstants() const override { return true; }
    ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }

    ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const override
    {
        const ColumnWithTypeAndName & column = arguments[0];
        Scale scale_arg = getScaleArg(arguments);

        ColumnPtr res;
        auto call = [&](const auto & types) -> bool
        {
            using Types = std::decay_t<decltype(types)>;
            using DataType = typename Types::LeftType;

            if constexpr (IsDataTypeNumber<DataType> || IsDataTypeDecimal<DataType>)
            {
                using FieldType = typename DataType::FieldType;
                res = Dispatcher<FieldType, rounding_mode, tie_breaking_mode>::apply(column.column.get(), scale_arg);
                return true;
            }
            return false;
        };

#if !defined(__SSE4_1__)
        /// In case of "nearbyint" function is used, we should ensure the expected rounding mode for the Banker's rounding.
        /// Actually it is by default. But we will set it just in case.

        if constexpr (rounding_mode == RoundingMode::Round)
            if (0 != fesetround(FE_TONEAREST))
                throw Exception(ErrorCodes::CANNOT_SET_ROUNDING_MODE, "Cannot set floating point rounding mode");
#endif

        if (!callOnIndexAndDataType<void>(column.type->getTypeId(), call))
        {
            throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of argument of function {}", column.name, getName());
        }

        return res;
    }

    bool hasInformationAboutMonotonicity() const override
    {
        return true;
    }

    Monotonicity getMonotonicityForRange(const IDataType &, const Field &, const Field &) const override
    {
        return { .is_monotonic = true, .is_always_monotonic = true };
    }
};


/** Rounds down to a number within explicitly specified array.
  * If the value is less than the minimal bound - returns the minimal bound.
  */
class FunctionRoundDown : public IFunction
{
public:
    static constexpr auto name = "roundDown";
    static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionRoundDown>(); }

    String getName() const override { return name; }

    bool isVariadic() const override { return false; }
    size_t getNumberOfArguments() const override { return 2; }
    bool useDefaultImplementationForConstants() const override { return true; }
    ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }
    bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }

    DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
    {
        const DataTypePtr & type_x = arguments[0];

        if (!isNumber(type_x))
            throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
                            "Unsupported type {} of first argument of function {}, must be numeric type.",
                            type_x->getName(), getName());

        const DataTypeArray * type_arr = checkAndGetDataType<DataTypeArray>(arguments[1].get());

        if (!type_arr)
            throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
                            "Second argument of function {}, must be array of boundaries to round to.", getName());

        const auto type_arr_nested = type_arr->getNestedType();

        if (!isNumber(type_arr_nested))
        {
            throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
                            "Elements of array of second argument of function {} must be numeric type.", getName());
        }
        return getLeastSupertype(DataTypes{type_x, type_arr_nested});
    }

    ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t) const override
    {
        auto in_column = arguments[0].column;
        const auto & in_type = arguments[0].type;

        auto array_column = arguments[1].column;
        const auto & array_type = arguments[1].type;

        const auto & return_type = result_type;
        auto column_result = return_type->createColumn();
        auto * out = column_result.get();

        if (!in_type->equals(*return_type))
            in_column = castColumn(arguments[0], return_type);

        if (!array_type->equals(*return_type))
            array_column = castColumn(arguments[1], std::make_shared<DataTypeArray>(return_type));

        const auto * in = in_column.get();
        auto boundaries = typeid_cast<const ColumnConst &>(*array_column).getValue<Array>();
        size_t num_boundaries = boundaries.size();
        if (!num_boundaries)
            throw Exception(ErrorCodes::BAD_ARGUMENTS, "Empty array is illegal for boundaries in {} function", getName());

        if (!executeNum<UInt8>(in, out, boundaries)
            && !executeNum<UInt16>(in, out, boundaries)
            && !executeNum<UInt32>(in, out, boundaries)
            && !executeNum<UInt64>(in, out, boundaries)
            && !executeNum<Int8>(in, out, boundaries)
            && !executeNum<Int16>(in, out, boundaries)
            && !executeNum<Int32>(in, out, boundaries)
            && !executeNum<Int64>(in, out, boundaries)
            && !executeNum<Float32>(in, out, boundaries)
            && !executeNum<Float64>(in, out, boundaries)
            && !executeDecimal<Decimal32>(in, out, boundaries)
            && !executeDecimal<Decimal64>(in, out, boundaries)
            && !executeDecimal<Decimal128>(in, out, boundaries)
            && !executeDecimal<Decimal256>(in, out, boundaries))
        {
            throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}", in->getName(), getName());
        }

        return column_result;
    }

private:
    template <typename T>
    bool executeNum(const IColumn * in_untyped, IColumn * out_untyped, const Array & boundaries) const
    {
        const auto in = checkAndGetColumn<ColumnVector<T>>(in_untyped);
        auto out = typeid_cast<ColumnVector<T> *>(out_untyped);
        if (!in || !out)
            return false;

        executeImplNumToNum(in->getData(), out->getData(), boundaries);
        return true;
    }

    template <typename T>
    bool executeDecimal(const IColumn * in_untyped, IColumn * out_untyped, const Array & boundaries) const
    {
        const auto in = checkAndGetColumn<ColumnDecimal<T>>(in_untyped);
        auto out = typeid_cast<ColumnDecimal<T> *>(out_untyped);
        if (!in || !out)
            return false;

        executeImplNumToNum(in->getData(), out->getData(), boundaries);
        return true;
    }

    template <typename Container>
    void NO_INLINE executeImplNumToNum(const Container & src, Container & dst, const Array & boundaries) const
    {
        using ValueType = typename Container::value_type;
        std::vector<ValueType> boundary_values(boundaries.size());
        for (size_t i = 0; i < boundaries.size(); ++i)
            boundary_values[i] = static_cast<ValueType>(boundaries[i].get<ValueType>());

        ::sort(boundary_values.begin(), boundary_values.end());
        boundary_values.erase(std::unique(boundary_values.begin(), boundary_values.end()), boundary_values.end());

        size_t size = src.size();
        dst.resize(size);

        if (boundary_values.size() < 32)    /// Just a guess
        {
            /// Linear search with value on previous iteration as a hint.
            /// Not optimal if the size of list is large and distribution of values is uniform random.

            auto begin = boundary_values.begin();
            auto end = boundary_values.end();
            auto it = begin + (end - begin) / 2;

            for (size_t i = 0; i < size; ++i)
            {
                auto value = src[i];

                if (*it < value)
                {
                    while (it != end && *it <= value)
                        ++it;
                    if (it != begin)
                        --it;
                }
                else
                {
                    while (*it > value && it != begin)
                        --it;
                }

                dst[i] = *it;
            }
        }
        else
        {
            for (size_t i = 0; i < size; ++i)
            {
                auto it = std::upper_bound(boundary_values.begin(), boundary_values.end(), src[i]);
                if (it == boundary_values.end())
                {
                    dst[i] = boundary_values.back();
                }
                else if (it == boundary_values.begin())
                {
                    dst[i] = boundary_values.front();
                }
                else
                {
                    dst[i] = *(it - 1);
                }
            }
        }
    }
};


struct NameRound { static constexpr auto name = "round"; };
struct NameRoundBankers { static constexpr auto name = "roundBankers"; };
struct NameCeil { static constexpr auto name = "ceil"; };
struct NameFloor { static constexpr auto name = "floor"; };
struct NameTrunc { static constexpr auto name = "trunc"; };

using FunctionRound = FunctionRounding<NameRound, RoundingMode::Round, TieBreakingMode::Auto>;
using FunctionRoundBankers = FunctionRounding<NameRoundBankers, RoundingMode::Round, TieBreakingMode::Bankers>;
using FunctionFloor = FunctionRounding<NameFloor, RoundingMode::Floor, TieBreakingMode::Auto>;
using FunctionCeil = FunctionRounding<NameCeil, RoundingMode::Ceil, TieBreakingMode::Auto>;
using FunctionTrunc = FunctionRounding<NameTrunc, RoundingMode::Trunc, TieBreakingMode::Auto>;

}