1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
#pragma once
#include <type_traits>
#include <Core/AccurateComparison.h>
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnsNumber.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/castTypeToEither.h>
#include <IO/WriteHelpers.h>
#include <Poco/Logger.h>
#include <Loggers/Loggers.h>
namespace DB
{
namespace ErrorCodes
{
extern const int DECIMAL_OVERFLOW;
extern const int ILLEGAL_COLUMN;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
struct DecimalOpHelpers
{
/* These functions perform main arithmetic logic.
* As soon as intermediate results may not fit Decimal256 (e.g. 1e36, scale 10),
* we may not operate with Decimals. Later on this big number may be shrunk (e.g. result scale is 0 in the case above).
* That's why we need to store intermediate results in a flexible extendable storage (here we use std::vector)
* Here we operate on numbers using simple digit arithmetic.
* This is the reason these functions are slower than traditional ones.
*
* Here and below we use UInt8 for storing digits (0-9 range with maximum carry of 9 will definitely fit this)
*/
static std::vector<UInt8> multiply(const std::vector<UInt8> & num1, const std::vector<UInt8> & num2)
{
UInt16 const len1 = num1.size();
UInt16 const len2 = num2.size();
if (len1 == 0 || len2 == 0)
return {0};
std::vector<UInt8> result(len1 + len2, 0);
UInt16 i_n1 = 0;
UInt16 i_n2;
for (Int32 i = len1 - 1; i >= 0; --i)
{
UInt16 carry = 0;
i_n2 = 0;
for (Int32 j = len2 - 1; j >= 0; --j)
{
if (unlikely(i_n1 + i_n2 >= len1 + len2))
throw DB::Exception(ErrorCodes::DECIMAL_OVERFLOW, "Numeric overflow: result bigger that Decimal256");
UInt16 sum = num1[i] * num2[j] + result[i_n1 + i_n2] + carry;
carry = sum / 10;
result[i_n1 + i_n2] = sum % 10;
++i_n2;
}
if (carry > 0)
{
if (unlikely(i_n1 + i_n2 >= len1 + len2))
throw DB::Exception(ErrorCodes::DECIMAL_OVERFLOW, "Numeric overflow: result bigger that Decimal256");
result[i_n1 + i_n2] += carry;
}
++i_n1;
}
// Maximum Int32 value exceeds 2 billion, we can safely use it for array length storing
Int32 i = static_cast<Int32>(result.size() - 1);
while (i >= 0 && result[i] == 0)
{
result.pop_back();
--i;
}
if (i == -1)
return {0};
std::reverse(result.begin(), result.end());
return result;
}
static std::vector<UInt8> divide(const std::vector<UInt8> & number, const Int256 & divisor)
{
std::vector<UInt8> result;
const auto max_index = number.size() - 1;
UInt16 idx = 0;
Int256 temp = 0;
while (temp < divisor && max_index > idx)
{
temp = temp * 10 + number[idx];
++idx;
}
if (unlikely(temp == 0))
return {0};
while (max_index >= idx)
{
result.push_back(temp / divisor);
temp = (temp % divisor) * 10 + number[idx];
++idx;
}
result.push_back(temp / divisor);
return result;
}
static std::vector<UInt8> toDigits(Int256 x)
{
std::vector<UInt8> result;
if (x >= 10)
result = toDigits(x / 10);
result.push_back(x % 10);
return result;
}
static UInt256 fromDigits(const std::vector<UInt8> & digits)
{
Int256 result = 0;
Int256 scale = 0;
for (auto i = digits.rbegin(); i != digits.rend(); ++i)
{
result += DecimalUtils::scaleMultiplier<Decimal256>(scale) * (*i);
++scale;
}
return result;
}
};
template <typename ResultType, typename Transform>
struct Processor
{
const Transform transform;
explicit Processor(Transform transform_)
: transform(std::move(transform_))
{}
template <typename FirstArgVectorType, typename SecondArgType>
void NO_INLINE
vectorConstant(const FirstArgVectorType & vec_first, const SecondArgType second_value,
PaddedPODArray<typename ResultType::FieldType> & vec_to, UInt16 scale_a, UInt16 scale_b, UInt16 result_scale) const
{
size_t size = vec_first.size();
vec_to.resize(size);
for (size_t i = 0; i < size; ++i)
vec_to[i] = transform.execute(vec_first[i], second_value, scale_a, scale_b, result_scale);
}
template <typename FirstArgVectorType, typename SecondArgVectorType>
void NO_INLINE
vectorVector(const FirstArgVectorType & vec_first, const SecondArgVectorType & vec_second,
PaddedPODArray<typename ResultType::FieldType> & vec_to, UInt16 scale_a, UInt16 scale_b, UInt16 result_scale) const
{
size_t size = vec_first.size();
vec_to.resize(size);
for (size_t i = 0; i < size; ++i)
vec_to[i] = transform.execute(vec_first[i], vec_second[i], scale_a, scale_b, result_scale);
}
template <typename FirstArgType, typename SecondArgVectorType>
void NO_INLINE
constantVector(const FirstArgType & first_value, const SecondArgVectorType & vec_second,
PaddedPODArray<typename ResultType::FieldType> & vec_to, UInt16 scale_a, UInt16 scale_b, UInt16 result_scale) const
{
size_t size = vec_second.size();
vec_to.resize(size);
for (size_t i = 0; i < size; ++i)
vec_to[i] = transform.execute(first_value, vec_second[i], scale_a, scale_b, result_scale);
}
};
template <typename FirstArgType, typename SecondArgType, typename ResultType, typename Transform>
struct DecimalArithmeticsImpl
{
static ColumnPtr execute(Transform transform, const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type)
{
using FirstArgValueType = typename FirstArgType::FieldType;
using FirstArgColumnType = typename FirstArgType::ColumnType;
using SecondArgValueType = typename SecondArgType::FieldType;
using SecondArgColumnType = typename SecondArgType::ColumnType;
using ResultColumnType = typename ResultType::ColumnType;
UInt16 scale_a = getDecimalScale(*arguments[0].type);
UInt16 scale_b = getDecimalScale(*arguments[1].type);
UInt16 result_scale = getDecimalScale(*result_type->getPtr());
auto op = Processor<ResultType, Transform>{std::move(transform)};
auto result_col = result_type->createColumn();
auto col_to = assert_cast<ResultColumnType *>(result_col.get());
const auto * first_col = checkAndGetColumn<FirstArgColumnType>(arguments[0].column.get());
const auto * second_col = checkAndGetColumn<SecondArgColumnType>(arguments[1].column.get());
const auto * first_col_const = typeid_cast<const ColumnConst *>(arguments[0].column.get());
const auto * second_col_const = typeid_cast<const ColumnConst *>(arguments[1].column.get());
if (first_col)
{
if (second_col_const)
op.vectorConstant(first_col->getData(), second_col_const->template getValue<SecondArgValueType>(), col_to->getData(), scale_a, scale_b, result_scale);
else
op.vectorVector(first_col->getData(), second_col->getData(), col_to->getData(), scale_a, scale_b, result_scale);
}
else if (first_col_const)
{
op.constantVector(first_col_const->template getValue<FirstArgValueType>(), second_col->getData(), col_to->getData(), scale_a, scale_b, result_scale);
}
else
{
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
arguments[0].column->getName(), Transform::name);
}
return result_col;
}
};
template <typename Transform>
class FunctionsDecimalArithmetics : public IFunction
{
public:
static constexpr auto name = Transform::name;
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionsDecimalArithmetics>(); }
String getName() const override
{
return name;
}
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
if (arguments.size() != 2 && arguments.size() != 3)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Number of arguments for function {} does not match: 2 or 3 expected", getName());
if (!isDecimal(arguments[0].type) || !isDecimal(arguments[1].type))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Arguments for {} function must be Decimal", getName());
UInt8 scale = std::max(getDecimalScale(*arguments[0].type->getPtr()), getDecimalScale(*arguments[1].type->getPtr()));
if (arguments.size() == 3)
{
WhichDataType which_scale(arguments[2].type.get());
if (!which_scale.isUInt8())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of third argument of function {}. "
"Should be constant UInt8 from range[0, 76]", arguments[2].type->getName(), getName());
const ColumnConst * scale_column = checkAndGetColumnConst<ColumnUInt8>(arguments[2].column.get());
if (!scale_column)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column of third argument of function {}. "
"Should be constant UInt8", getName());
scale = scale_column->getValue<UInt8>();
}
/**
At compile time, result is unknown. We only know the Scale (number of fractional digits) at runtime.
Also nothing is known about size of whole part.
As in simple division/multiplication for decimals, we scale the result up, but is is explicit here and no downscale is performed.
It guarantees that result will have given scale and it can also be MANUALLY converted to other decimal types later.
**/
if (scale > DecimalUtils::max_precision<Decimal256>)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal value of third argument of function {}: "
"must be integer in range [0, 76]", this->getName());
return std::make_shared<DataTypeDecimal256>(DecimalUtils::max_precision<Decimal256>, scale);
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {2}; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t /*input_rows_count*/) const override
{
return resolveOverload(arguments, result_type);
}
private:
// long resolver to call proper templated func
ColumnPtr resolveOverload(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type) const
{
WhichDataType which_dividend(arguments[0].type.get());
WhichDataType which_divisor(arguments[1].type.get());
if (which_dividend.isDecimal32())
{
using DividendType = DataTypeDecimal32;
if (which_divisor.isDecimal32())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal32, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal64())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal64, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal128())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal128, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal256())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal256, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
}
else if (which_dividend.isDecimal64())
{
using DividendType = DataTypeDecimal64;
if (which_divisor.isDecimal32())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal32, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal64())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal64, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal128())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal128, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal256())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal256, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
}
else if (which_dividend.isDecimal128())
{
using DividendType = DataTypeDecimal128;
if (which_divisor.isDecimal32())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal32, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal64())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal64, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal128())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal128, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal256())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal256, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
}
else if (which_dividend.isDecimal256())
{
using DividendType = DataTypeDecimal256;
if (which_divisor.isDecimal32())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal32, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal64())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal64, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal128())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal128, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
else if (which_divisor.isDecimal256())
return DecimalArithmeticsImpl<DividendType, DataTypeDecimal256, DataTypeDecimal256, Transform>::execute(Transform{}, arguments, result_type);
}
// the compiler is happy now
return nullptr;
}
};
}
|