1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
#pragma once
#include <cmath>
#include <type_traits>
#include <Common/Exception.h>
#include <Common/NaNUtils.h>
#include <DataTypes/NumberTraits.h>
#include "clickhouse_config.h"
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_DIVISION;
}
template <typename A, typename B>
inline void throwIfDivisionLeadsToFPE(A a, B b)
{
/// Is it better to use siglongjmp instead of checks?
if (unlikely(b == 0))
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Division by zero");
/// http://avva.livejournal.com/2548306.html
if (unlikely(is_signed_v<A> && is_signed_v<B> && a == std::numeric_limits<A>::min() && b == -1))
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Division of minimal signed number by minus one");
}
template <typename A, typename B>
inline bool divisionLeadsToFPE(A a, B b)
{
if (unlikely(b == 0))
return true;
if (unlikely(is_signed_v<A> && is_signed_v<B> && a == std::numeric_limits<A>::min() && b == -1))
return true;
return false;
}
template <typename A, typename B>
inline auto checkedDivision(A a, B b)
{
throwIfDivisionLeadsToFPE(a, b);
if constexpr (is_big_int_v<A> && std::is_floating_point_v<B>)
return static_cast<B>(a) / b;
else if constexpr (is_big_int_v<B> && std::is_floating_point_v<A>)
return a / static_cast<A>(b);
else if constexpr (is_big_int_v<A> && is_big_int_v<B>)
return static_cast<A>(a / b);
else if constexpr (!is_big_int_v<A> && is_big_int_v<B>)
return static_cast<A>(B(a) / b);
else
return a / b;
}
template <typename A, typename B>
struct DivideIntegralImpl
{
using ResultType = typename NumberTraits::ResultOfIntegerDivision<A, B>::Type;
static const constexpr bool allow_fixed_string = false;
static const constexpr bool allow_string_integer = false;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
using CastA = std::conditional_t<is_big_int_v<B> && std::is_same_v<A, UInt8>, uint8_t, A>;
using CastB = std::conditional_t<is_big_int_v<A> && std::is_same_v<B, UInt8>, uint8_t, B>;
/// Otherwise overflow may occur due to integer promotion. Example: int8_t(-1) / uint64_t(2).
/// NOTE: overflow is still possible when dividing large signed number to large unsigned number or vice-versa. But it's less harmful.
if constexpr (is_integer<A> && is_integer<B> && (is_signed_v<A> || is_signed_v<B>))
{
using SignedCastA = make_signed_t<CastA>;
using SignedCastB = std::conditional_t<sizeof(A) <= sizeof(B), make_signed_t<CastB>, SignedCastA>;
return static_cast<Result>(checkedDivision(static_cast<SignedCastA>(a), static_cast<SignedCastB>(b)));
}
else
{
/// Comparisons are not strict to avoid rounding issues when operand is implicitly casted to float.
if constexpr (std::is_floating_point_v<A>)
if (isNaN(a) || a >= std::numeric_limits<CastA>::max() || a <= std::numeric_limits<CastA>::lowest())
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Cannot perform integer division on infinite or too large floating point numbers");
if constexpr (std::is_floating_point_v<B>)
if (isNaN(b) || b >= std::numeric_limits<CastB>::max() || b <= std::numeric_limits<CastB>::lowest())
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Cannot perform integer division on infinite or too large floating point numbers");
auto res = checkedDivision(CastA(a), CastB(b));
if constexpr (std::is_floating_point_v<decltype(res)>)
if (isNaN(res) || res >= static_cast<double>(std::numeric_limits<Result>::max()) || res <= std::numeric_limits<Result>::lowest())
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Cannot perform integer division, because it will produce infinite or too large number");
return static_cast<Result>(res);
}
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// don't know how to throw from LLVM IR
#endif
};
template <typename A, typename B>
struct ModuloImpl
{
using ResultType = typename NumberTraits::ResultOfModulo<A, B>::Type;
using IntegerAType = typename NumberTraits::ToInteger<A>::Type;
using IntegerBType = typename NumberTraits::ToInteger<B>::Type;
static const constexpr bool allow_fixed_string = false;
static const constexpr bool allow_string_integer = false;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
if constexpr (std::is_floating_point_v<ResultType>)
{
/// This computation is similar to `fmod` but the latter is not inlined and has 40 times worse performance.
return static_cast<ResultType>(a) - trunc(static_cast<ResultType>(a) / static_cast<ResultType>(b)) * static_cast<ResultType>(b);
}
else
{
if constexpr (std::is_floating_point_v<A>)
if (isNaN(a) || a > std::numeric_limits<IntegerAType>::max() || a < std::numeric_limits<IntegerAType>::lowest())
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Cannot perform integer division on infinite or too large floating point numbers");
if constexpr (std::is_floating_point_v<B>)
if (isNaN(b) || b > std::numeric_limits<IntegerBType>::max() || b < std::numeric_limits<IntegerBType>::lowest())
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Cannot perform integer division on infinite or too large floating point numbers");
throwIfDivisionLeadsToFPE(IntegerAType(a), IntegerBType(b));
if constexpr (is_big_int_v<IntegerAType> || is_big_int_v<IntegerBType>)
{
using CastA = std::conditional_t<std::is_same_v<IntegerAType, UInt8>, uint8_t, IntegerAType>;
using CastB = std::conditional_t<std::is_same_v<IntegerBType, UInt8>, uint8_t, IntegerBType>;
CastA int_a(a);
CastB int_b(b);
if constexpr (is_big_int_v<IntegerBType> && sizeof(IntegerAType) <= sizeof(IntegerBType))
return static_cast<Result>(static_cast<CastB>(int_a) % int_b);
else
return static_cast<Result>(int_a % static_cast<CastA>(int_b));
}
else
return static_cast<Result>(IntegerAType(a) % IntegerBType(b));
}
}
#if USE_EMBEDDED_COMPILER
static constexpr bool compilable = false; /// don't know how to throw from LLVM IR
#endif
};
template <typename A, typename B>
struct ModuloLegacyImpl : ModuloImpl<A, B>
{
using ResultType = typename NumberTraits::ResultOfModuloLegacy<A, B>::Type;
};
template <typename A, typename B>
struct PositiveModuloImpl : ModuloImpl<A, B>
{
using OriginResultType = typename ModuloImpl<A, B>::ResultType;
using ResultType = typename NumberTraits::ResultOfPositiveModulo<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
auto res = ModuloImpl<A, B>::template apply<OriginResultType>(a, b);
if constexpr (is_signed_v<A>)
{
if (res < 0)
{
if constexpr (is_unsigned_v<B>)
res += static_cast<OriginResultType>(b);
else
{
if (b == std::numeric_limits<B>::lowest())
throw Exception(ErrorCodes::ILLEGAL_DIVISION, "Division by the most negative number");
res += b >= 0 ? static_cast<OriginResultType>(b) : static_cast<OriginResultType>(-b);
}
}
}
return static_cast<ResultType>(res);
}
};
}
|