1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
#pragma once
/** SipHash is a fast cryptographic hash function for short strings.
* Taken from here: https://www.131002.net/siphash/
*
* This is SipHash 2-4 variant.
*
* Two changes are made:
* - returns also 128 bits, not only 64;
* - done streaming (can be calculated in parts).
*
* On short strings (URL, search phrases) more than 3 times faster than MD5 from OpenSSL.
* (~ 700 MB/sec, 15 million strings per second)
*/
#include "TransformEndianness.hpp"
#include <bit>
#include <string>
#include <type_traits>
#include <Core/Defines.h>
#include <base/extended_types.h>
#include <base/types.h>
#include <base/unaligned.h>
#include <Common/Exception.h>
#include <Common/TransformEndianness.hpp>
#include <city.h>
namespace DB::ErrorCodes
{
extern const int LOGICAL_ERROR;
}
#define SIPROUND \
do \
{ \
v0 += v1; v1 = std::rotl(v1, 13); v1 ^= v0; v0 = std::rotl(v0, 32); \
v2 += v3; v3 = std::rotl(v3, 16); v3 ^= v2; \
v0 += v3; v3 = std::rotl(v3, 21); v3 ^= v0; \
v2 += v1; v1 = std::rotl(v1, 17); v1 ^= v2; v2 = std::rotl(v2, 32); \
} while(0)
/// Define macro CURRENT_BYTES_IDX for building index used in current_bytes array
/// to ensure correct byte order on different endian machines
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define CURRENT_BYTES_IDX(i) (7 - i)
#else
#define CURRENT_BYTES_IDX(i) (i)
#endif
class SipHash
{
private:
/// State.
UInt64 v0;
UInt64 v1;
UInt64 v2;
UInt64 v3;
/// How many bytes have been processed.
UInt64 cnt;
/// Whether it should use the reference algo for 128-bit or CH's version
bool is_reference_128;
/// The current 8 bytes of input data.
union
{
UInt64 current_word;
UInt8 current_bytes[8];
};
ALWAYS_INLINE void finalize()
{
/// In the last free byte, we write the remainder of the division by 256.
current_bytes[CURRENT_BYTES_IDX(7)] = static_cast<UInt8>(cnt);
v3 ^= current_word;
SIPROUND;
SIPROUND;
v0 ^= current_word;
if (is_reference_128)
v2 ^= 0xee;
else
v2 ^= 0xff;
SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
}
public:
/// Arguments - seed.
SipHash(UInt64 key0 = 0, UInt64 key1 = 0, bool is_reference_128_ = false) /// NOLINT
{
/// Initialize the state with some random bytes and seed.
v0 = 0x736f6d6570736575ULL ^ key0;
v1 = 0x646f72616e646f6dULL ^ key1;
v2 = 0x6c7967656e657261ULL ^ key0;
v3 = 0x7465646279746573ULL ^ key1;
is_reference_128 = is_reference_128_;
if (is_reference_128)
v1 ^= 0xee;
cnt = 0;
current_word = 0;
}
ALWAYS_INLINE void update(const char * data, UInt64 size)
{
const char * end = data + size;
/// We'll finish to process the remainder of the previous update, if any.
if (cnt & 7)
{
while (cnt & 7 && data < end)
{
current_bytes[CURRENT_BYTES_IDX(cnt & 7)] = *data;
++data;
++cnt;
}
/// If we still do not have enough bytes to an 8-byte word.
if (cnt & 7)
return;
v3 ^= current_word;
SIPROUND;
SIPROUND;
v0 ^= current_word;
}
cnt += end - data;
while (data + 8 <= end)
{
current_word = unalignedLoadLittleEndian<UInt64>(data);
v3 ^= current_word;
SIPROUND;
SIPROUND;
v0 ^= current_word;
data += 8;
}
/// Pad the remainder, which is missing up to an 8-byte word.
current_word = 0;
switch (end - data)
{
case 7: current_bytes[CURRENT_BYTES_IDX(6)] = data[6]; [[fallthrough]];
case 6: current_bytes[CURRENT_BYTES_IDX(5)] = data[5]; [[fallthrough]];
case 5: current_bytes[CURRENT_BYTES_IDX(4)] = data[4]; [[fallthrough]];
case 4: current_bytes[CURRENT_BYTES_IDX(3)] = data[3]; [[fallthrough]];
case 3: current_bytes[CURRENT_BYTES_IDX(2)] = data[2]; [[fallthrough]];
case 2: current_bytes[CURRENT_BYTES_IDX(1)] = data[1]; [[fallthrough]];
case 1: current_bytes[CURRENT_BYTES_IDX(0)] = data[0]; [[fallthrough]];
case 0: break;
}
}
template <typename Transform = void, typename T>
ALWAYS_INLINE void update(const T & x)
{
if constexpr (std::endian::native == std::endian::big)
{
auto transformed_x = x;
if constexpr (!std::is_same_v<Transform, void>)
transformed_x = Transform()(x);
else
DB::transformEndianness<std::endian::little>(transformed_x);
update(reinterpret_cast<const char *>(&transformed_x), sizeof(transformed_x)); /// NOLINT
}
else
update(reinterpret_cast<const char *>(&x), sizeof(x)); /// NOLINT
}
ALWAYS_INLINE void update(const std::string & x) { update(x.data(), x.length()); }
ALWAYS_INLINE void update(const std::string_view x) { update(x.data(), x.size()); }
ALWAYS_INLINE void update(const char * s) { update(std::string_view(s)); }
ALWAYS_INLINE UInt64 get64()
{
finalize();
return v0 ^ v1 ^ v2 ^ v3;
}
template <typename T>
requires (sizeof(T) == 8)
ALWAYS_INLINE void get128(T & lo, T & hi)
{
finalize();
lo = v0 ^ v1;
hi = v2 ^ v3;
}
ALWAYS_INLINE UInt128 get128()
{
UInt128 res;
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
get128(res.items[1], res.items[0]);
#else
get128(res.items[0], res.items[1]);
#endif
return res;
}
UInt128 get128Reference()
{
if (!is_reference_128)
throw DB::Exception(
DB::ErrorCodes::LOGICAL_ERROR, "Logical error: can't call get128Reference when is_reference_128 is not set");
finalize();
auto lo = v0 ^ v1 ^ v2 ^ v3;
v1 ^= 0xdd;
SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
auto hi = v0 ^ v1 ^ v2 ^ v3;
if constexpr (std::endian::native == std::endian::big)
{
lo = DB::byteswap(lo);
hi = DB::byteswap(hi);
std::swap(lo, hi);
}
UInt128 res = hi;
res <<= 64;
res |= lo;
return res;
}
};
#undef ROTL
#undef SIPROUND
#include <cstddef>
inline std::array<char, 16> getSipHash128AsArray(SipHash & sip_hash)
{
std::array<char, 16> arr;
*reinterpret_cast<UInt128*>(arr.data()) = sip_hash.get128();
return arr;
}
inline CityHash_v1_0_2::uint128 getSipHash128AsPair(SipHash & sip_hash)
{
CityHash_v1_0_2::uint128 result;
sip_hash.get128(result.low64, result.high64);
return result;
}
inline UInt128 sipHash128Keyed(UInt64 key0, UInt64 key1, const char * data, const size_t size)
{
SipHash hash(key0, key1);
hash.update(data, size);
return hash.get128();
}
inline UInt128 sipHash128(const char * data, const size_t size)
{
return sipHash128Keyed(0, 0, data, size);
}
inline UInt128 sipHash128ReferenceKeyed(UInt64 key0, UInt64 key1, const char * data, const size_t size)
{
SipHash hash(key0, key1, true);
hash.update(data, size);
return hash.get128Reference();
}
inline UInt128 sipHash128Reference(const char * data, const size_t size)
{
return sipHash128ReferenceKeyed(0, 0, data, size);
}
inline UInt64 sipHash64Keyed(UInt64 key0, UInt64 key1, const char * data, const size_t size)
{
SipHash hash(key0, key1);
hash.update(data, size);
return hash.get64();
}
inline UInt64 sipHash64(const char * data, const size_t size)
{
return sipHash64Keyed(0, 0, data, size);
}
template <typename T>
inline UInt64 sipHash64(const T & x)
{
SipHash hash;
hash.update(x);
return hash.get64();
}
inline UInt64 sipHash64(const std::string & s)
{
return sipHash64(s.data(), s.size());
}
#undef CURRENT_BYTES_IDX
|