1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
#pragma once
#include <atomic>
#include <chrono>
#include <list>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <unordered_set>
#include <Common/logger_useful.h>
namespace DB
{
template <typename T>
struct TrivialLRUResourceCacheWeightFunction
{
size_t operator()(const T &) const noexcept { return 1; }
};
template <typename T>
struct TrivialLRUResourceCacheReleaseFunction
{
void operator()(std::shared_ptr<T>) noexcept { }
};
/**
* Similar to implementation in LRUCachePolicy.h, but with the difference that keys can
* only be evicted when they are releasable. Release state is controlled by this implementation.
* get() and getOrSet() methods return a Holder to actual value, which does release() in destructor.
*
* Warning (!): This implementation is in development, not to be used.
*/
template <
typename TKey,
typename TMapped,
typename WeightFunction = TrivialLRUResourceCacheWeightFunction<TMapped>,
typename ReleaseFunction = TrivialLRUResourceCacheReleaseFunction<TMapped>,
typename HashFunction = std::hash<TKey>>
class LRUResourceCache
{
public:
using Key = TKey;
using Mapped = TMapped;
using MappedPtr = std::shared_ptr<Mapped>;
class MappedHolder
{
public:
MappedHolder(LRUResourceCache * cache_, const Key & key_, MappedPtr value_) : cache(cache_), key(key_), val(value_) { }
~MappedHolder() { cache->release(key); }
Mapped & value() { return *val; }
protected:
LRUResourceCache * cache;
Key key;
MappedPtr val;
};
using MappedHolderPtr = std::unique_ptr<MappedHolder>;
explicit LRUResourceCache(size_t max_weight_, size_t max_element_size_ = 0)
: max_weight(max_weight_), max_element_size(max_element_size_)
{
}
MappedHolderPtr get(const Key & key)
{
auto mapped_ptr = getImpl(key);
if (!mapped_ptr)
return nullptr;
return std::make_unique<MappedHolder>(this, key, mapped_ptr);
}
template <typename LoadFunc>
MappedHolderPtr getOrSet(const Key & key, LoadFunc && load_func)
{
auto mapped_ptr = getImpl(key, load_func);
if (!mapped_ptr)
return nullptr;
return std::make_unique<MappedHolder>(this, key, mapped_ptr);
}
// If the key's reference_count = 0, delete it immediately.
// Otherwise, mark it expired (not visible to get()), and delete when refcount is 0.
void tryRemove(const Key & key)
{
std::lock_guard lock(mutex);
auto it = cells.find(key);
if (it == cells.end())
return;
auto & cell = it->second;
if (cell.reference_count == 0)
{
queue.erase(cell.queue_iterator);
current_weight -= cell.weight;
release_function(cell.value);
cells.erase(it);
}
else
cell.expired = true;
}
size_t weight()
{
std::lock_guard lock(mutex);
return current_weight;
}
size_t size()
{
std::lock_guard lock(mutex);
return cells.size();
}
void getStats(size_t & out_hits, size_t & out_misses, size_t & out_evict_count) const
{
out_hits = hits;
out_misses = misses;
out_evict_count = evict_count;
}
private:
mutable std::mutex mutex;
using LRUQueue = std::list<Key>;
using LRUQueueIterator = typename LRUQueue::iterator;
struct Cell
{
MappedPtr value;
size_t weight = 0;
LRUQueueIterator queue_iterator;
size_t reference_count = 0;
bool expired = false;
};
using Cells = std::unordered_map<Key, Cell, HashFunction>;
Cells cells;
LRUQueue queue;
size_t current_weight = 0;
size_t max_weight = 0;
size_t max_element_size = 0;
/// Represents pending insertion attempt.
struct InsertToken
{
explicit InsertToken(LRUResourceCache & cache_) : cache(cache_) { }
std::mutex mutex;
bool cleaned_up = false; /// Protected by the token mutex
MappedPtr value; /// Protected by the token mutex
LRUResourceCache & cache;
size_t refcount = 0; /// Protected by the cache mutex
};
using InsertTokenById = std::unordered_map<Key, std::shared_ptr<InsertToken>, HashFunction>;
/// This class is responsible for removing used insert tokens from the insert_tokens map.
/// Among several concurrent threads the first successful one is responsible for removal. But if they all
/// fail, then the last one is responsible.
struct InsertTokenHolder
{
const Key * key = nullptr;
std::shared_ptr<InsertToken> token;
bool cleaned_up = false;
InsertTokenHolder() = default;
void
acquire(const Key * key_, const std::shared_ptr<InsertToken> & token_, [[maybe_unused]] std::lock_guard<std::mutex> & cache_lock)
{
key = key_;
token = token_;
++token->refcount;
}
void cleanup([[maybe_unused]] std::lock_guard<std::mutex> & token_lock, [[maybe_unused]] std::lock_guard<std::mutex> & cache_lock)
{
token->cache.insert_tokens.erase(*key);
token->cleaned_up = true;
cleaned_up = true;
}
~InsertTokenHolder()
{
if (!token)
return;
if (cleaned_up)
return;
std::lock_guard token_lock(token->mutex);
if (token->cleaned_up)
return;
std::lock_guard cache_lock(token->cache.mutex);
--token->refcount;
if (token->refcount == 0)
cleanup(token_lock, cache_lock);
}
};
friend struct InsertTokenHolder;
InsertTokenById insert_tokens;
WeightFunction weight_function;
ReleaseFunction release_function;
std::atomic<size_t> hits{0};
std::atomic<size_t> misses{0};
std::atomic<size_t> evict_count{0};
/// Returns nullptr when there is no more space for the new value or the old value is in used.
template <typename LoadFunc>
MappedPtr getImpl(const Key & key, LoadFunc && load_func)
{
InsertTokenHolder token_holder;
{
std::lock_guard lock(mutex);
auto it = cells.find(key);
if (it != cells.end() && !it->second.expired)
{
if (!it->second.expired)
{
++hits;
it->second.reference_count += 1;
queue.splice(queue.end(), queue, it->second.queue_iterator);
return it->second.value;
}
else if (it->second.reference_count > 0)
return nullptr;
else
{
// should not reach here
LOG_ERROR(&Poco::Logger::get("LRUResourceCache"), "element is in invalid status.");
abort();
}
}
++misses;
auto & token = insert_tokens[key];
if (!token)
token = std::make_shared<InsertToken>(*this);
token_holder.acquire(&key, token, lock);
}
auto * token = token_holder.token.get();
std::lock_guard token_lock(token->mutex);
token_holder.cleaned_up = token->cleaned_up;
if (!token->value)
token->value = load_func();
std::lock_guard lock(mutex);
auto token_it = insert_tokens.find(key);
Cell * cell_ptr = nullptr;
if (token_it != insert_tokens.end() && token_it->second.get() == token)
{
cell_ptr = set(key, token->value);
}
else
{
auto cell_it = cells.find(key);
if (cell_it != cells.end() && !cell_it->second.expired)
{
cell_ptr = &cell_it->second;
}
}
if (!token->cleaned_up)
token_holder.cleanup(token_lock, lock);
if (cell_ptr)
{
queue.splice(queue.end(), queue, cell_ptr->queue_iterator);
cell_ptr->reference_count++;
return cell_ptr->value;
}
return nullptr;
}
MappedPtr getImpl(const Key & key)
{
std::lock_guard lock(mutex);
auto it = cells.find(key);
if (it == cells.end() || it->second.expired)
{
++misses;
return nullptr;
}
++hits;
it->second.reference_count += 1;
queue.splice(queue.end(), queue, it->second.queue_iterator);
return it->second.value;
}
// mark a reference is released
void release(const Key & key)
{
std::lock_guard lock(mutex);
auto it = cells.find(key);
if (it == cells.end() || it->second.reference_count == 0)
{
LOG_ERROR(&Poco::Logger::get("LRUResourceCache"), "try to release an invalid element");
abort();
}
auto & cell = it->second;
cell.reference_count -= 1;
if (cell.expired && cell.reference_count == 0)
{
queue.erase(cell.queue_iterator);
current_weight -= cell.weight;
release_function(cell.value);
cells.erase(it);
}
}
InsertToken * acquireInsertToken(const Key & key)
{
auto & token = insert_tokens[key];
token.reference_count += 1;
return &token;
}
void releaseInsertToken(const Key & key)
{
auto it = insert_tokens.find(key);
if (it != insert_tokens.end())
{
it->second.reference_count -= 1;
if (it->second.reference_count == 0)
insert_tokens.erase(it);
}
}
// key mustn't be in the cache
Cell * set(const Key & insert_key, MappedPtr value)
{
size_t weight = value ? weight_function(*value) : 0;
size_t queue_size = cells.size() + 1;
size_t loss_weight = 0;
auto is_overflow = [&] {
return current_weight + weight > max_weight + loss_weight || (max_element_size != 0 && queue_size > max_element_size);
};
auto key_it = queue.begin();
std::unordered_set<Key, HashFunction> to_release_keys;
while (is_overflow() && queue_size > 1 && key_it != queue.end())
{
const Key & key = *key_it;
auto cell_it = cells.find(key);
if (cell_it == cells.end())
{
LOG_ERROR(&Poco::Logger::get("LRUResourceCache"), "LRUResourceCache became inconsistent. There must be a bug in it.");
abort();
}
auto & cell = cell_it->second;
if (cell.reference_count == 0)
{
loss_weight += cell.weight;
queue_size--;
to_release_keys.insert(key);
}
++key_it;
}
if (is_overflow())
return nullptr;
if (loss_weight > current_weight + weight)
{
LOG_ERROR(&Poco::Logger::get("LRUResourceCache"), "LRUResourceCache became inconsistent. There must be a bug in it.");
abort();
}
for (auto & key : to_release_keys)
{
auto & cell = cells[key];
queue.erase(cell.queue_iterator);
release_function(cell.value);
cells.erase(key);
++evict_count;
}
current_weight = current_weight + weight - loss_weight;
auto & new_cell = cells[insert_key];
new_cell.value = value;
new_cell.weight = weight;
new_cell.queue_iterator = queue.insert(queue.end(), insert_key);
return &new_cell;
}
};
}
|