aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/clickhouse/src/Common/HyperLogLogCounter.h
blob: 32c04d85d57da057d2a5517a9697ec53e964c38d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#pragma once

#include <base/types.h>
#include <Common/HyperLogLogBiasEstimator.h>
#include <Common/CompactArray.h>
#include <Common/HashTable/Hash.h>

#include <IO/ReadBuffer.h>
#include <IO/WriteBuffer.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Core/Defines.h>

#include <bit>
#include <cmath>
#include <cstring>


namespace DB
{
namespace ErrorCodes
{
    extern const int LOGICAL_ERROR;
}
}


/// Sets denominator type.
enum class DenominatorMode
{
    Compact,        /// Compact denominator.
    StableIfBig,    /// Stable denominator falling back to Compact if rank storage is not big enough.
    ExactType       /// Denominator of specified exact type.
};

namespace details
{

/// Look-up table of logarithms for integer numbers, used in HyperLogLogCounter.
template <UInt8 K>
struct LogLUT
{
    LogLUT()
    {
        log_table[0] = 0.0;
        for (size_t i = 1; i <= M; ++i)
            log_table[i] = log(static_cast<double>(i));
    }

    double getLog(size_t x) const
    {
        if (x <= M)
            return log_table[x];
        else
            return log(static_cast<double>(x));
    }

private:
    static constexpr size_t M = 1 << ((static_cast<unsigned int>(K) <= 12) ? K : 12);

    double log_table[M + 1];
};

template <UInt8 K> struct MinCounterTypeHelper;
template <> struct MinCounterTypeHelper<0>    { using Type = UInt8; };
template <> struct MinCounterTypeHelper<1>    { using Type = UInt16; };
template <> struct MinCounterTypeHelper<2>    { using Type = UInt32; };
template <> struct MinCounterTypeHelper<3>    { using Type = UInt64; };

/// Auxiliary structure for automatic determining minimum size of counter's type depending on its maximum value.
/// Used in HyperLogLogCounter in order to spend memory efficiently.
template <UInt64 MaxValue> struct MinCounterType
{
    using Type = typename MinCounterTypeHelper<
        (MaxValue >= 1 << 8) +
        (MaxValue >= 1 << 16) +
        (MaxValue >= 1ULL << 32)
        >::Type;
};

/// Denominator of expression for HyperLogLog algorithm.
template <UInt8 precision, int max_rank, typename HashValueType, typename DenominatorType, DenominatorMode denominator_mode>
class Denominator;

/// Returns true if rank storage is big.
constexpr bool isBigRankStore(UInt8 precision)
{
    return precision >= 12;
}

/// Used to deduce denominator type depending on options provided.
template <typename HashValueType, typename DenominatorType, DenominatorMode denominator_mode>
struct IntermediateDenominator;

template <typename DenominatorType, DenominatorMode denominator_mode>
requires (denominator_mode != DenominatorMode::ExactType)
struct IntermediateDenominator<UInt32, DenominatorType, denominator_mode>
{
    using Type = double;
};

template <typename DenominatorType, DenominatorMode denominator_mode>
struct IntermediateDenominator<UInt64, DenominatorType, denominator_mode>
{
    using Type = long double;
};

template <typename HashValueType, typename DenominatorType>
struct IntermediateDenominator<HashValueType, DenominatorType, DenominatorMode::ExactType>
{
    using Type = DenominatorType;
};

/// "Lightweight" implementation of expression's denominator for HyperLogLog algorithm.
/// Uses minimum amount of memory, but estimates may be unstable.
/// Satisfiable when rank storage is small enough.
template <UInt8 precision, int max_rank, typename HashValueType, typename DenominatorType, DenominatorMode denominator_mode>
requires (!details::isBigRankStore(precision)) || (!(denominator_mode == DenominatorMode::StableIfBig))
class __attribute__((__packed__)) Denominator<precision, max_rank, HashValueType, DenominatorType, denominator_mode>
{
private:
    using T = typename IntermediateDenominator<HashValueType, DenominatorType, denominator_mode>::Type;

public:
    Denominator(DenominatorType initial_value) /// NOLINT
        : denominator(initial_value)
    {
    }

    inline void update(UInt8 cur_rank, UInt8 new_rank)
    {
        denominator -= static_cast<T>(1.0) / (1ULL << cur_rank);
        denominator += static_cast<T>(1.0) / (1ULL << new_rank);
    }

    inline void update(UInt8 rank)
    {
        denominator += static_cast<T>(1.0) / (1ULL << rank);
    }

    void clear()
    {
        denominator = 0;
    }

    DenominatorType get() const
    {
        return denominator;
    }

private:
    T denominator;
};

/// Fully-functional version of expression's denominator for HyperLogLog algorithm.
/// Spends more space that lightweight version. Estimates will always be stable.
/// Used when rank storage is big.
template <UInt8 precision, int max_rank, typename HashValueType, typename DenominatorType, DenominatorMode denominator_mode>
requires (details::isBigRankStore(precision)) && (denominator_mode == DenominatorMode::StableIfBig)
class __attribute__((__packed__)) Denominator<precision, max_rank, HashValueType, DenominatorType, denominator_mode>
{
public:
    Denominator(DenominatorType initial_value) /// NOLINT
    {
        rank_count[0] = static_cast<UInt32>(initial_value);
    }

    inline void update(UInt8 cur_rank, UInt8 new_rank)
    {
        --rank_count[cur_rank];
        ++rank_count[new_rank];
    }

    inline void update(UInt8 rank)
    {
        ++rank_count[rank];
    }

    void clear()
    {
        memset(rank_count, 0, size * sizeof(UInt32));
    }

    DenominatorType get() const
    {
        long double val = rank_count[size - 1];
        for (int i = size - 2; i >= 0; --i)
        {
            val /= 2.0;
            val += rank_count[i];
        }
        return static_cast<DenominatorType>(val);
    }

private:
    static constexpr size_t size = max_rank + 1;
    UInt32 rank_count[size] = { 0 };
};

/// Number of trailing zeros.
template <typename T>
struct TrailingZerosCounter;

template <>
struct TrailingZerosCounter<UInt32>
{
    static int apply(UInt32 val)
    {
        return std::countr_zero(val);
    }
};

template <>
struct TrailingZerosCounter<UInt64>
{
    static int apply(UInt64 val)
    {
        return std::countr_zero(val);
    }
};

/// Size of counter's rank in bits.
template <typename T>
struct RankWidth;

template <>
struct RankWidth<UInt32>
{
    static constexpr UInt8 get()
    {
        return 5;
    }
};

template <>
struct RankWidth<UInt64>
{
    static constexpr UInt8 get()
    {
        return 6;
    }
};

}


/// Sets behavior of HyperLogLog class.
enum class HyperLogLogMode
{
    Raw,            /// No error correction.
    LinearCounting, /// LinearCounting error correction.
    BiasCorrected,  /// HyperLogLog++ error correction.
    FullFeatured    /// LinearCounting or HyperLogLog++ error correction (depending).
};

/// Estimation of number of unique values using HyperLogLog algorithm.
///
/// Theoretical relative error is ~1.04 / sqrt(2^precision), where
/// precision is size of prefix of hash-function used for indexing (number of buckets M = 2^precision).
/// Recommended values for precision are: 3..20.
///
/// Source: "HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm"
/// (P. Flajolet et al., AOFA '07: Proceedings of the 2007 International Conference on Analysis
/// of Algorithms).
template <
    UInt8 precision,
    typename Key = UInt64,
    typename Hash = IntHash32<Key>,
    typename HashValueType = UInt32,
    typename DenominatorType = double,
    typename BiasEstimator = TrivialBiasEstimator,
    HyperLogLogMode mode = HyperLogLogMode::FullFeatured,
    DenominatorMode denominator_mode = DenominatorMode::StableIfBig>
class HyperLogLogCounter : private Hash
{
private:
    /// Number of buckets.
    static constexpr size_t bucket_count = 1ULL << precision;

    /// Size of counter's rank in bits.
    static constexpr UInt8 rank_width = details::RankWidth<HashValueType>::get();

    using Value = UInt64;
    using RankStore = DB::CompactArray<HashValueType, rank_width, bucket_count>;

public:
    using value_type = Value;

    /// ALWAYS_INLINE is required to have better code layout for uniqCombined function
    void ALWAYS_INLINE insert(Value value)
    {
        HashValueType hash = getHash(value);

        /// Divide hash to two sub-values. First is bucket number, second will be used to calculate rank.
        HashValueType bucket = extractBitSequence(hash, 0, precision);
        HashValueType tail = extractBitSequence(hash, precision, sizeof(HashValueType) * 8);
        UInt8 rank = calculateRank(tail);

        /// Update maximum rank for current bucket.
        update(bucket, rank);
    }

    UInt64 size() const
    {
        /// Normalizing factor for harmonic mean.
        static constexpr double alpha_m =
            bucket_count == 2 ? 0.351 :
            bucket_count == 4 ? 0.532 :
            bucket_count == 8 ? 0.626 :
            bucket_count == 16 ? 0.673 :
            bucket_count == 32 ? 0.697 :
            bucket_count == 64 ? 0.709 : 0.7213 / (1 + 1.079 / bucket_count);

        /// Harmonic mean for all buckets of 2^rank values is: bucket_count / ∑ 2^-rank_i,
        /// where ∑ 2^-rank_i - is denominator.

        double raw_estimate = alpha_m * bucket_count * bucket_count / denominator.get();

        double final_estimate = fixRawEstimate(raw_estimate);

        return static_cast<UInt64>(final_estimate + 0.5); /// NOLINT
    }

    void merge(const HyperLogLogCounter & rhs)
    {
        const auto & rhs_rank_store = rhs.rank_store;
        for (HashValueType bucket = 0; bucket < bucket_count; ++bucket)
            update(bucket, rhs_rank_store[bucket]);
    }

    void read(DB::ReadBuffer & in)
    {
        in.readStrict(reinterpret_cast<char *>(this), sizeof(*this));
    }

    void readAndMerge(DB::ReadBuffer & in)
    {
        typename RankStore::Reader reader(in);
        while (reader.next())
        {
            const auto & data = reader.get();
            update(data.first, data.second);
        }

        in.ignore(sizeof(DenominatorCalculatorType) + sizeof(ZerosCounterType));
    }

    static void skip(DB::ReadBuffer & in)
    {
        in.ignore(sizeof(RankStore) + sizeof(DenominatorCalculatorType) + sizeof(ZerosCounterType));
    }

    void write(DB::WriteBuffer & out) const
    {
        out.write(reinterpret_cast<const char *>(this), sizeof(*this));
    }

    /// Read and write in text mode is suboptimal (but compatible with OLAPServer and Metrage).
    void readText(DB::ReadBuffer & in)
    {
        rank_store.readText(in);

        zeros = 0;
        denominator.clear();
        for (HashValueType bucket = 0; bucket < bucket_count; ++bucket)
        {
            UInt8 rank = rank_store[bucket];
            if (rank == 0)
                ++zeros;
            denominator.update(rank);
        }
    }

    static void skipText(DB::ReadBuffer & in)
    {
        UInt8 dummy;
        for (size_t i = 0; i < RankStore::size(); ++i)
        {
            if (i != 0)
                DB::assertChar(',', in);
            DB::readIntText(dummy, in);
        }
    }

    void writeText(DB::WriteBuffer & out) const
    {
        rank_store.writeText(out);
    }

private:
    /// Extract subset of bits in [begin, end[ range.
    inline HashValueType extractBitSequence(HashValueType val, UInt8 begin, UInt8 end) const
    {
        return (val >> begin) & ((1ULL << (end - begin)) - 1);
    }

    /// Rank is number of trailing zeros.
    inline UInt8 calculateRank(HashValueType val) const
    {
        if (unlikely(val == 0))
            return max_rank;

        auto zeros_plus_one = details::TrailingZerosCounter<HashValueType>::apply(val) + 1;

        if (unlikely(zeros_plus_one) > max_rank)
            return max_rank;

        return zeros_plus_one;
    }

    inline HashValueType getHash(Value key) const
    {
        /// NOTE: this should be OK, since value is the same as key for HLL.
        return static_cast<HashValueType>(
            Hash::operator()(static_cast<Key>(key)));
    }

    /// Update maximum rank for current bucket.
    /// ALWAYS_INLINE is required to have better code layout for uniqCombined function
    void ALWAYS_INLINE update(HashValueType bucket, UInt8 rank)
    {
        typename RankStore::Locus content = rank_store[bucket];
        UInt8 cur_rank = static_cast<UInt8>(content);

        if (rank > cur_rank)
        {
            if (cur_rank == 0)
                --zeros;
            denominator.update(cur_rank, rank);
            content = rank;
        }
    }

    double fixRawEstimate(double raw_estimate) const
    {
        if ((mode == HyperLogLogMode::Raw) || ((mode == HyperLogLogMode::BiasCorrected) && BiasEstimator::isTrivial()))
            return raw_estimate;
        else if (mode == HyperLogLogMode::LinearCounting)
            return applyLinearCorrection(raw_estimate);
        else if ((mode == HyperLogLogMode::BiasCorrected) && !BiasEstimator::isTrivial())
            return applyBiasCorrection(raw_estimate);
        else if (mode == HyperLogLogMode::FullFeatured)
        {
            static constexpr double pow2_32 = 4294967296.0;

            double fixed_estimate;

            if (raw_estimate > (pow2_32 / 30.0))
                fixed_estimate = raw_estimate;
            else
                fixed_estimate = applyCorrection(raw_estimate);

            return fixed_estimate;
        }
        else
            throw Poco::Exception("Internal error", DB::ErrorCodes::LOGICAL_ERROR);
    }

    inline double applyCorrection(double raw_estimate) const
    {
        double fixed_estimate;

        if (BiasEstimator::isTrivial())
        {
            if (raw_estimate <= (2.5 * bucket_count))
            {
                /// Correction in case of small estimate.
                fixed_estimate = applyLinearCorrection(raw_estimate);
            }
            else
                fixed_estimate = raw_estimate;
        }
        else
        {
            fixed_estimate = applyBiasCorrection(raw_estimate);
            double linear_estimate = applyLinearCorrection(fixed_estimate);

            if (linear_estimate < BiasEstimator::getThreshold())
                fixed_estimate = linear_estimate;
        }

        return fixed_estimate;
    }

    /// Correction used in HyperLogLog++ algorithm.
    /// Source: "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm"
    /// (S. Heule et al., Proceedings of the EDBT 2013 Conference).
    inline double applyBiasCorrection(double raw_estimate) const
    {
        double fixed_estimate;

        if (raw_estimate <= (5 * bucket_count))
            fixed_estimate = raw_estimate - BiasEstimator::getBias(raw_estimate);
        else
            fixed_estimate = raw_estimate;

        return fixed_estimate;
    }

    /// Calculation of unique values using LinearCounting algorithm.
    /// Source: "A Linear-time Probabilistic Counting Algorithm for Database Applications"
    /// (Whang et al., ACM Trans. Database Syst., pp. 208-229, 1990).
    inline double applyLinearCorrection(double raw_estimate) const
    {
        double fixed_estimate;

        if (zeros != 0)
            fixed_estimate = bucket_count * (log_lut.getLog(bucket_count) - log_lut.getLog(zeros));
        else
            fixed_estimate = raw_estimate;

        return fixed_estimate;
    }

    static constexpr int max_rank = sizeof(HashValueType) * 8 - precision + 1;

    RankStore rank_store;

    /// Expression's denominator for HyperLogLog algorithm.
    using DenominatorCalculatorType = details::Denominator<precision, max_rank, HashValueType, DenominatorType, denominator_mode>;
    DenominatorCalculatorType denominator{bucket_count};

    /// Number of zeros in rank storage.
    using ZerosCounterType = typename details::MinCounterType<bucket_count>::Type;
    ZerosCounterType zeros = bucket_count;

    static details::LogLUT<precision> log_lut;

    /// Checks.
    static_assert(precision < (sizeof(HashValueType) * 8), "Invalid parameter value");
};


/// Declaration of static variables for linker.
template
<
    UInt8 precision,
    typename Key,
    typename Hash,
    typename HashValueType,
    typename DenominatorType,
    typename BiasEstimator,
    HyperLogLogMode mode,
    DenominatorMode denominator_mode
>
details::LogLUT<precision> HyperLogLogCounter
<
    precision,
    Key,
    Hash,
    HashValueType,
    DenominatorType,
    BiasEstimator,
    mode,
    denominator_mode
>::log_lut;


/// Lightweight implementation of expression's denominator is used in Metrage.
/// Serialization format must not be changed.
using HLL12 = HyperLogLogCounter<
    12,
    UInt64,
    IntHash32<UInt64>,
    UInt32,
    double,
    TrivialBiasEstimator,
    HyperLogLogMode::FullFeatured,
    DenominatorMode::Compact
>;