1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
#pragma once
#include <Common/HashTable/StringHashTable.h>
template <typename SubMaps, typename ImplTable = StringHashTable<SubMaps>, size_t BITS_FOR_BUCKET = 8>
class TwoLevelStringHashTable : private boost::noncopyable
{
protected:
using HashValue = size_t;
using Self = TwoLevelStringHashTable;
public:
using Key = StringRef;
using Impl = ImplTable;
static constexpr UInt32 NUM_BUCKETS = 1ULL << BITS_FOR_BUCKET;
static constexpr UInt32 MAX_BUCKET = NUM_BUCKETS - 1;
// TODO: currently hashing contains redundant computations when doing distributed or external aggregations
size_t hash(const Key & x) const
{
return const_cast<Self &>(*this).dispatch(*this, x, [&](const auto &, const auto &, size_t hash) { return hash; });
}
size_t operator()(const Key & x) const { return hash(x); }
/// NOTE Bad for hash tables with more than 2^32 cells.
static size_t getBucketFromHash(size_t hash_value) { return (hash_value >> (32 - BITS_FOR_BUCKET)) & MAX_BUCKET; }
using key_type = typename Impl::key_type;
using mapped_type = typename Impl::mapped_type;
using value_type = typename Impl::value_type;
using cell_type = typename Impl::cell_type;
using LookupResult = typename Impl::LookupResult;
using ConstLookupResult = typename Impl::ConstLookupResult;
Impl impls[NUM_BUCKETS];
TwoLevelStringHashTable() = default;
template <typename Source>
explicit TwoLevelStringHashTable(const Source & src)
{
if (src.m0.hasZero())
impls[0].m0.setHasZero(*src.m0.zeroValue());
for (auto & v : src.m1)
{
size_t hash_value = v.getHash(src.m1);
size_t buck = getBucketFromHash(hash_value);
impls[buck].m1.insertUniqueNonZero(&v, hash_value);
}
for (auto & v : src.m2)
{
size_t hash_value = v.getHash(src.m2);
size_t buck = getBucketFromHash(hash_value);
impls[buck].m2.insertUniqueNonZero(&v, hash_value);
}
for (auto & v : src.m3)
{
size_t hash_value = v.getHash(src.m3);
size_t buck = getBucketFromHash(hash_value);
impls[buck].m3.insertUniqueNonZero(&v, hash_value);
}
for (auto & v : src.ms)
{
size_t hash_value = v.getHash(src.ms);
size_t buck = getBucketFromHash(hash_value);
impls[buck].ms.insertUniqueNonZero(&v, hash_value);
}
}
// This function is mostly the same as StringHashTable::dispatch, but with
// added bucket computation. See the comments there.
template <typename Self, typename Func, typename KeyHolder>
static auto ALWAYS_INLINE dispatch(Self & self, KeyHolder && key_holder, Func && func)
{
StringHashTableHash hash;
const StringRef & x = keyHolderGetKey(key_holder);
const size_t sz = x.size;
if (sz == 0)
{
keyHolderDiscardKey(key_holder);
return func(self.impls[0].m0, VoidKey{}, 0);
}
if (x.data[x.size - 1] == 0)
{
// Strings with trailing zeros are not representable as fixed-size
// string keys. Put them to the generic table.
auto res = hash(x);
auto buck = getBucketFromHash(res);
return func(self.impls[buck].ms, std::forward<KeyHolder>(key_holder),
res);
}
const char * p = x.data;
// pending bits that needs to be shifted out
const char s = (-sz & 7) * 8;
union
{
StringKey8 k8;
StringKey16 k16;
StringKey24 k24;
UInt64 n[3];
};
switch ((sz - 1) >> 3)
{
case 0:
{
// first half page
if ((reinterpret_cast<uintptr_t>(p) & 2048) == 0)
{
memcpy(&n[0], p, 8);
if constexpr (std::endian::native == std::endian::little)
n[0] &= -1ULL >> s;
else
n[0] &= -1ULL << s;
}
else
{
const char * lp = x.data + x.size - 8;
memcpy(&n[0], lp, 8);
if constexpr (std::endian::native == std::endian::little)
n[0] >>= s;
else
n[0] <<= s;
}
auto res = hash(k8);
auto buck = getBucketFromHash(res);
keyHolderDiscardKey(key_holder);
return func(self.impls[buck].m1, k8, res);
}
case 1:
{
memcpy(&n[0], p, 8);
const char * lp = x.data + x.size - 8;
memcpy(&n[1], lp, 8);
if constexpr (std::endian::native == std::endian::little)
n[1] >>= s;
else
n[1] <<= s;
auto res = hash(k16);
auto buck = getBucketFromHash(res);
keyHolderDiscardKey(key_holder);
return func(self.impls[buck].m2, k16, res);
}
case 2:
{
memcpy(&n[0], p, 16);
const char * lp = x.data + x.size - 8;
memcpy(&n[2], lp, 8);
if constexpr (std::endian::native == std::endian::little)
n[2] >>= s;
else
n[2] <<= s;
auto res = hash(k24);
auto buck = getBucketFromHash(res);
keyHolderDiscardKey(key_holder);
return func(self.impls[buck].m3, k24, res);
}
default:
{
auto res = hash(x);
auto buck = getBucketFromHash(res);
return func(self.impls[buck].ms, std::forward<KeyHolder>(key_holder), res);
}
}
}
template <typename KeyHolder>
void ALWAYS_INLINE emplace(KeyHolder && key_holder, LookupResult & it, bool & inserted)
{
dispatch(*this, key_holder, typename Impl::EmplaceCallable{it, inserted});
}
LookupResult ALWAYS_INLINE find(const Key x)
{
return dispatch(*this, x, typename Impl::FindCallable{});
}
ConstLookupResult ALWAYS_INLINE find(const Key x) const
{
return dispatch(*this, x, typename Impl::FindCallable{});
}
void write(DB::WriteBuffer & wb) const
{
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
impls[i].write(wb);
}
void writeText(DB::WriteBuffer & wb) const
{
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
{
if (i != 0)
DB::writeChar(',', wb);
impls[i].writeText(wb);
}
}
void read(DB::ReadBuffer & rb)
{
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
impls[i].read(rb);
}
void readText(DB::ReadBuffer & rb)
{
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
{
if (i != 0)
DB::assertChar(',', rb);
impls[i].readText(rb);
}
}
size_t size() const
{
size_t res = 0;
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
res += impls[i].size();
return res;
}
bool empty() const
{
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
if (!impls[i].empty())
return false;
return true;
}
size_t getBufferSizeInBytes() const
{
size_t res = 0;
for (UInt32 i = 0; i < NUM_BUCKETS; ++i)
res += impls[i].getBufferSizeInBytes();
return res;
}
};
|