1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
#include "FST.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <vector>
#include <Common/Exception.h>
#include <city.h>
/// "paper" in the comments in this file refers to:
/// [Direct Construction of Minimal Acyclic Subsequential Transduers] by Stoyan Mihov and Denis Maurel, University of Tours, France
namespace DB
{
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
};
namespace FST
{
Arc::Arc(Output output_, const StatePtr & target_)
: output(output_)
, target(target_)
{}
UInt64 Arc::serialize(WriteBuffer & write_buffer) const
{
UInt64 written_bytes = 0;
bool has_output = output != 0;
/// First UInt64 is target_index << 1 + has_output
assert(target != nullptr);
UInt64 first = ((target->state_index) << 1) + has_output;
writeVarUInt(first, write_buffer);
written_bytes += getLengthOfVarUInt(first);
/// Second UInt64 is output (optional based on whether has_output is not zero)
if (has_output)
{
writeVarUInt(output, write_buffer);
written_bytes += getLengthOfVarUInt(output);
}
return written_bytes;
}
bool operator==(const Arc & arc1, const Arc & arc2)
{
assert(arc1.target != nullptr && arc2.target != nullptr);
return (arc1.output == arc2.output && arc1.target->id == arc2.target->id);
}
void LabelsAsBitmap::addLabel(char label)
{
UInt8 index = label;
UInt256 bit_label = 1;
bit_label <<= index;
data |= bit_label;
}
bool LabelsAsBitmap::hasLabel(char label) const
{
UInt8 index = label;
UInt256 bit_label = 1;
bit_label <<= index;
return ((data & bit_label) != 0);
}
UInt64 LabelsAsBitmap::getIndex(char label) const
{
UInt64 bit_count = 0;
UInt8 index = label;
int which_int64 = 0;
while (true)
{
if (index < 64)
{
UInt64 mask = index == 63 ? (-1) : (1ULL << (index + 1)) - 1;
bit_count += std::popcount(mask & data.items[which_int64]);
break;
}
index -= 64;
bit_count += std::popcount(data.items[which_int64]);
which_int64++;
}
return bit_count;
}
UInt64 LabelsAsBitmap::serialize(WriteBuffer & write_buffer)
{
writeVarUInt(data.items[0], write_buffer);
writeVarUInt(data.items[1], write_buffer);
writeVarUInt(data.items[2], write_buffer);
writeVarUInt(data.items[3], write_buffer);
return getLengthOfVarUInt(data.items[0])
+ getLengthOfVarUInt(data.items[1])
+ getLengthOfVarUInt(data.items[2])
+ getLengthOfVarUInt(data.items[3]);
}
UInt64 State::hash() const
{
std::vector<char> values;
values.reserve(arcs.size() * (sizeof(Output) + sizeof(UInt64) + 1));
for (const auto & [label, arc] : arcs)
{
values.push_back(label);
const auto * ptr = reinterpret_cast<const char *>(&arc.output);
std::copy(ptr, ptr + sizeof(Output), std::back_inserter(values));
ptr = reinterpret_cast<const char *>(&arc.target->id);
std::copy(ptr, ptr + sizeof(UInt64), std::back_inserter(values));
}
return CityHash_v1_0_2::CityHash64(values.data(), values.size());
}
Arc * State::getArc(char label) const
{
auto it = arcs.find(label);
if (it == arcs.end())
return nullptr;
return const_cast<Arc *>(&it->second);
}
void State::addArc(char label, Output output, StatePtr target)
{
arcs[label] = Arc(output, target);
}
void State::clear()
{
id = 0;
state_index = 0;
arcs.clear();
flag = 0;
}
UInt64 State::serialize(WriteBuffer & write_buffer)
{
UInt64 written_bytes = 0;
/// Serialize flag
write_buffer.write(flag);
written_bytes += 1;
if (getEncodingMethod() == EncodingMethod::Sequential)
{
/// Serialize all labels
std::vector<char> labels;
labels.reserve(arcs.size());
for (auto & [label, state] : arcs)
labels.push_back(label);
UInt8 label_size = labels.size();
write_buffer.write(label_size);
written_bytes += 1;
write_buffer.write(labels.data(), labels.size());
written_bytes += labels.size();
/// Serialize all arcs
for (char label : labels)
{
Arc * arc = getArc(label);
assert(arc != nullptr);
written_bytes += arc->serialize(write_buffer);
}
}
else
{
/// Serialize bitmap
LabelsAsBitmap bmp;
for (auto & [label, state] : arcs)
bmp.addLabel(label);
written_bytes += bmp.serialize(write_buffer);
/// Serialize all arcs
for (auto & [label, state] : arcs)
{
Arc * arc = getArc(label);
assert(arc != nullptr);
written_bytes += arc->serialize(write_buffer);
}
}
return written_bytes;
}
bool operator==(const State & state1, const State & state2)
{
if (state1.arcs.size() != state2.arcs.size())
return false;
for (const auto & [label, arc] : state1.arcs)
{
const auto it = state2.arcs.find(label);
if (it == state2.arcs.end())
return false;
if (it->second != arc)
return false;
}
return true;
}
void State::readFlag(ReadBuffer & read_buffer)
{
read_buffer.readStrict(reinterpret_cast<char &>(flag));
}
FstBuilder::FstBuilder(WriteBuffer & write_buffer_) : write_buffer(write_buffer_)
{
for (auto & temp_state : temp_states)
temp_state = std::make_shared<State>();
}
/// See FindMinimized in the paper pseudo code l11-l21.
StatePtr FstBuilder::findMinimized(const State & state, bool & found)
{
found = false;
auto hash = state.hash();
/// MEMBER: in the paper pseudo code l15
auto it = minimized_states.find(hash);
if (it != minimized_states.end() && *it->second == state)
{
found = true;
return it->second;
}
/// COPY_STATE: in the paper pseudo code l17
StatePtr p = std::make_shared<State>(state);
/// INSERT: in the paper pseudo code l18
minimized_states[hash] = p;
return p;
}
namespace
{
/// See the paper pseudo code l33-34.
size_t getCommonPrefixLength(std::string_view word1, std::string_view word2)
{
size_t i = 0;
while (i < word1.size() && i < word2.size() && word1[i] == word2[i])
i++;
return i;
}
}
/// See the paper pseudo code l33-39 and l70-72(when down_to is 0).
void FstBuilder::minimizePreviousWordSuffix(Int64 down_to)
{
for (Int64 i = static_cast<Int64>(previous_word.size()); i >= down_to; --i)
{
bool found = false;
auto minimized_state = findMinimized(*temp_states[i], found);
if (i != 0)
{
Output output = 0;
Arc * arc = temp_states[i - 1]->getArc(previous_word[i - 1]);
if (arc)
output = arc->output;
/// SET_TRANSITION
temp_states[i - 1]->addArc(previous_word[i - 1], output, minimized_state);
}
if (minimized_state->id == 0)
minimized_state->id = next_id++;
if (i > 0 && temp_states[i - 1]->id == 0)
temp_states[i - 1]->id = next_id++;
if (!found)
{
minimized_state->state_index = previous_state_index;
previous_written_bytes = minimized_state->serialize(write_buffer);
previous_state_index += previous_written_bytes;
}
}
}
void FstBuilder::add(std::string_view current_word, Output current_output)
{
/// We assume word size is no greater than MAX_TERM_LENGTH(256).
/// FSTs without word size limitation would be inefficient and easy to cause memory bloat
/// Note that when using "split" tokenizer, if a granule has tokens which are longer than
/// MAX_TERM_LENGTH, the granule cannot be dropped and will be fully-scanned. It doesn't affect "ngram" tokenizers.
/// Another limitation is that if the query string has tokens which exceed this length
/// it will fallback to default searching when using "split" tokenizers.
size_t current_word_len = current_word.size();
if (current_word_len > MAX_TERM_LENGTH)
throw DB::Exception(DB::ErrorCodes::BAD_ARGUMENTS, "Cannot build inverted index: The maximum term length is {}, this is exceeded by term {}", MAX_TERM_LENGTH, current_word_len);
size_t prefix_length_plus1 = getCommonPrefixLength(current_word, previous_word) + 1;
minimizePreviousWordSuffix(prefix_length_plus1);
/// Initialize the tail state, see paper pseudo code l39-43
for (size_t i = prefix_length_plus1; i <= current_word.size(); ++i)
{
/// CLEAR_STATE: l41
temp_states[i]->clear();
/// SET_TRANSITION: l42
temp_states[i - 1]->addArc(current_word[i - 1], 0, temp_states[i]);
}
/// We assume the current word is different with previous word
/// See paper pseudo code l44-47
temp_states[current_word_len]->setFinal(true);
/// Adjust outputs on the arcs
/// See paper pseudo code l48-63
for (size_t i = 1; i <= prefix_length_plus1 - 1; ++i)
{
Arc * arc_ptr = temp_states[i - 1]->getArc(current_word[i - 1]);
assert(arc_ptr != nullptr);
Output common_prefix = std::min(arc_ptr->output, current_output);
Output word_suffix = arc_ptr->output - common_prefix;
arc_ptr->output = common_prefix;
/// For each arc, adjust its output
if (word_suffix != 0)
{
for (auto & [label, arc] : temp_states[i]->arcs)
arc.output += word_suffix;
}
/// Reduce current_output
current_output -= common_prefix;
}
/// Set last temp state's output
/// paper pseudo code l66-67 (assuming CurrentWord != PreviousWorld)
Arc * arc = temp_states[prefix_length_plus1 - 1]->getArc(current_word[prefix_length_plus1 - 1]);
assert(arc != nullptr);
arc->output = current_output;
previous_word = current_word;
}
UInt64 FstBuilder::build()
{
minimizePreviousWordSuffix(0);
/// Save initial state index
previous_state_index -= previous_written_bytes;
UInt8 length = getLengthOfVarUInt(previous_state_index);
writeVarUInt(previous_state_index, write_buffer);
write_buffer.write(length);
return previous_state_index + previous_written_bytes + length + 1;
}
FiniteStateTransducer::FiniteStateTransducer(std::vector<UInt8> data_)
: data(std::move(data_))
{
}
void FiniteStateTransducer::clear()
{
data.clear();
}
std::pair<UInt64, bool> FiniteStateTransducer::getOutput(std::string_view term)
{
std::pair<UInt64, bool> result(0, false);
/// Read index of initial state
ReadBufferFromMemory read_buffer(data.data(), data.size());
read_buffer.seek(data.size() - 1, SEEK_SET);
UInt8 length = 0;
read_buffer.readStrict(reinterpret_cast<char &>(length));
/// FST contains no terms
if (length == 0)
return {0, false};
read_buffer.seek(data.size() - 1 - length, SEEK_SET);
UInt64 state_index = 0;
readVarUInt(state_index, read_buffer);
for (size_t i = 0; i <= term.size(); ++i)
{
UInt64 arc_output = 0;
/// Read flag
State temp_state;
read_buffer.seek(state_index, SEEK_SET);
temp_state.readFlag(read_buffer);
if (i == term.size())
{
result.second = temp_state.isFinal();
break;
}
UInt8 label = term[i];
if (temp_state.getEncodingMethod() == State::EncodingMethod::Sequential)
{
/// Read number of labels
UInt8 label_num = 0;
read_buffer.readStrict(reinterpret_cast<char &>(label_num));
if (label_num == 0)
return {0, false};
auto labels_position = read_buffer.getPosition();
/// Find the index of the label from "labels" bytes
auto begin_it = data.begin() + labels_position;
auto end_it = data.begin() + labels_position + label_num;
auto pos = std::find(begin_it, end_it, label);
if (pos == end_it)
return {0, false};
/// Read the arc for the label
UInt64 arc_index = (pos - begin_it);
auto arcs_start_postion = labels_position + label_num;
read_buffer.seek(arcs_start_postion, SEEK_SET);
for (size_t j = 0; j <= arc_index; j++)
{
state_index = 0;
arc_output = 0;
readVarUInt(state_index, read_buffer);
if (state_index & 0x1) // output is followed
readVarUInt(arc_output, read_buffer);
state_index >>= 1;
}
}
else
{
LabelsAsBitmap bmp;
readVarUInt(bmp.data.items[0], read_buffer);
readVarUInt(bmp.data.items[1], read_buffer);
readVarUInt(bmp.data.items[2], read_buffer);
readVarUInt(bmp.data.items[3], read_buffer);
if (!bmp.hasLabel(label))
return {0, false};
/// Read the arc for the label
size_t arc_index = bmp.getIndex(label);
for (size_t j = 0; j < arc_index; j++)
{
state_index = 0;
arc_output = 0;
readVarUInt(state_index, read_buffer);
if (state_index & 0x1) // output is followed
readVarUInt(arc_output, read_buffer);
state_index >>= 1;
}
}
/// Accumulate the output value
result.first += arc_output;
}
return result;
}
}
}
|