1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
#pragma once
#include <Columns/IColumn.h>
#include <Columns/ColumnNullable.h>
#include <Common/assert_cast.h>
#include <Common/HashTable/HashTableKeyHolder.h>
#include <Interpreters/AggregationCommon.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
}
namespace ColumnsHashing
{
/// Generic context for HashMethod. Context is shared between multiple threads, all methods must be thread-safe.
/// Is used for caching.
class HashMethodContext
{
public:
virtual ~HashMethodContext() = default;
struct Settings
{
size_t max_threads;
};
};
using HashMethodContextPtr = std::shared_ptr<HashMethodContext>;
namespace columns_hashing_impl
{
template <typename Value, bool consecutive_keys_optimization_>
struct LastElementCache
{
static constexpr bool consecutive_keys_optimization = consecutive_keys_optimization_;
Value value;
bool empty = true;
bool found = false;
bool check(const Value & value_) { return !empty && value == value_; }
template <typename Key>
bool check(const Key & key) { return !empty && value.first == key; }
};
template <typename Data>
struct LastElementCache<Data, false>
{
static constexpr bool consecutive_keys_optimization = false;
};
template <typename Mapped>
class EmplaceResultImpl
{
Mapped & value;
Mapped & cached_value;
bool inserted;
public:
EmplaceResultImpl(Mapped & value_, Mapped & cached_value_, bool inserted_)
: value(value_), cached_value(cached_value_), inserted(inserted_) {}
bool isInserted() const { return inserted; }
auto & getMapped() const { return value; }
void setMapped(const Mapped & mapped)
{
cached_value = mapped;
value = mapped;
}
};
template <>
class EmplaceResultImpl<void>
{
bool inserted;
public:
explicit EmplaceResultImpl(bool inserted_) : inserted(inserted_) {}
bool isInserted() const { return inserted; }
};
/// FindResult optionally may contain pointer to value and offset in hashtable buffer.
/// Only bool found is required.
/// So we will have 4 different specializations for FindResultImpl
class FindResultImplBase
{
bool found;
public:
explicit FindResultImplBase(bool found_) : found(found_) {}
bool isFound() const { return found; }
};
template <bool need_offset = false>
class FindResultImplOffsetBase
{
public:
constexpr static bool has_offset = need_offset;
explicit FindResultImplOffsetBase(size_t /* off */) {}
};
template <>
class FindResultImplOffsetBase<true>
{
size_t offset;
public:
constexpr static bool has_offset = true;
explicit FindResultImplOffsetBase(size_t off) : offset(off) {}
ALWAYS_INLINE size_t getOffset() const { return offset; }
};
template <typename Mapped, bool need_offset = false>
class FindResultImpl : public FindResultImplBase, public FindResultImplOffsetBase<need_offset>
{
Mapped * value;
public:
FindResultImpl()
: FindResultImplBase(false), FindResultImplOffsetBase<need_offset>(0) // NOLINT(clang-analyzer-optin.cplusplus.UninitializedObject) intentionally allow uninitialized value here
{}
FindResultImpl(Mapped * value_, bool found_, size_t off)
: FindResultImplBase(found_), FindResultImplOffsetBase<need_offset>(off), value(value_) {}
Mapped & getMapped() const { return *value; }
};
template <bool need_offset>
class FindResultImpl<void, need_offset> : public FindResultImplBase, public FindResultImplOffsetBase<need_offset>
{
public:
FindResultImpl(bool found_, size_t off) : FindResultImplBase(found_), FindResultImplOffsetBase<need_offset>(off) {}
};
template <typename Derived, typename Value, typename Mapped, bool consecutive_keys_optimization, bool need_offset = false, bool nullable = false>
class HashMethodBase
{
public:
using EmplaceResult = EmplaceResultImpl<Mapped>;
using FindResult = FindResultImpl<Mapped, need_offset>;
static constexpr bool has_mapped = !std::is_same_v<Mapped, void>;
using Cache = LastElementCache<Value, consecutive_keys_optimization>;
static HashMethodContextPtr createContext(const HashMethodContext::Settings &) { return nullptr; }
template <typename Data>
ALWAYS_INLINE EmplaceResult emplaceKey(Data & data, size_t row, Arena & pool)
{
if constexpr (nullable)
{
if (isNullAt(row))
{
bool has_null_key = data.hasNullKeyData();
data.hasNullKeyData() = true;
if constexpr (has_mapped)
return EmplaceResult(data.getNullKeyData(), data.getNullKeyData(), !has_null_key);
else
return EmplaceResult(!has_null_key);
}
}
auto key_holder = static_cast<Derived &>(*this).getKeyHolder(row, pool);
return emplaceImpl(key_holder, data);
}
template <typename Data>
ALWAYS_INLINE FindResult findKey(Data & data, size_t row, Arena & pool)
{
if constexpr (nullable)
{
if (isNullAt(row))
{
if constexpr (has_mapped)
return FindResult(&data.getNullKeyData(), data.hasNullKeyData(), 0);
else
return FindResult(data.hasNullKeyData(), 0);
}
}
auto key_holder = static_cast<Derived &>(*this).getKeyHolder(row, pool);
return findKeyImpl(keyHolderGetKey(key_holder), data);
}
template <typename Data>
ALWAYS_INLINE size_t getHash(const Data & data, size_t row, Arena & pool)
{
auto key_holder = static_cast<Derived &>(*this).getKeyHolder(row, pool);
return data.hash(keyHolderGetKey(key_holder));
}
ALWAYS_INLINE bool isNullAt(size_t row) const
{
if constexpr (nullable)
{
return null_map->getBool(row);
}
else
{
return false;
}
}
protected:
Cache cache;
const IColumn * null_map = nullptr;
bool has_null_data = false;
/// column argument only for nullable column
explicit HashMethodBase(const IColumn * column = nullptr)
{
if constexpr (consecutive_keys_optimization)
{
if constexpr (has_mapped)
{
/// Init PairNoInit elements.
cache.value.second = Mapped();
cache.value.first = {};
}
else
cache.value = Value();
}
if constexpr (nullable)
{
null_map = &checkAndGetColumn<ColumnNullable>(column)->getNullMapColumn();
}
}
template <typename Data, typename KeyHolder>
ALWAYS_INLINE EmplaceResult emplaceImpl(KeyHolder & key_holder, Data & data)
{
if constexpr (Cache::consecutive_keys_optimization)
{
if (cache.found && cache.check(keyHolderGetKey(key_holder)))
{
if constexpr (has_mapped)
return EmplaceResult(cache.value.second, cache.value.second, false);
else
return EmplaceResult(false);
}
}
typename Data::LookupResult it;
bool inserted = false;
data.emplace(key_holder, it, inserted);
[[maybe_unused]] Mapped * cached = nullptr;
if constexpr (has_mapped)
cached = &it->getMapped();
if constexpr (has_mapped)
{
if (inserted)
{
new (&it->getMapped()) Mapped();
}
}
if constexpr (consecutive_keys_optimization)
{
cache.found = true;
cache.empty = false;
if constexpr (has_mapped)
{
cache.value.first = it->getKey();
cache.value.second = it->getMapped();
cached = &cache.value.second;
}
else
{
cache.value = it->getKey();
}
}
if constexpr (has_mapped)
return EmplaceResult(it->getMapped(), *cached, inserted);
else
return EmplaceResult(inserted);
}
template <typename Data, typename Key>
ALWAYS_INLINE FindResult findKeyImpl(Key key, Data & data)
{
if constexpr (Cache::consecutive_keys_optimization)
{
/// It's possible to support such combination, but code will became more complex.
/// Now there's not place where we need this options enabled together
static_assert(!FindResult::has_offset, "`consecutive_keys_optimization` and `has_offset` are conflicting options");
if (cache.check(key))
{
if constexpr (has_mapped)
return FindResult(&cache.value.second, cache.found, 0);
else
return FindResult(cache.found, 0);
}
}
auto it = data.find(key);
if constexpr (consecutive_keys_optimization)
{
cache.found = it != nullptr;
cache.empty = false;
if constexpr (has_mapped)
{
cache.value.first = key;
if (it)
{
cache.value.second = it->getMapped();
}
}
else
{
cache.value = key;
}
}
size_t offset = 0;
if constexpr (FindResult::has_offset)
{
offset = it ? data.offsetInternal(it) : 0;
}
if constexpr (has_mapped)
return FindResult(it ? &it->getMapped() : nullptr, it != nullptr, offset);
else
return FindResult(it != nullptr, offset);
}
};
template <typename T>
struct MappedCache : public PaddedPODArray<T> {};
template <>
struct MappedCache<void> {};
/// This class is designed to provide the functionality that is required for
/// supporting nullable keys in HashMethodKeysFixed. If there are
/// no nullable keys, this class is merely implemented as an empty shell.
template <typename Key, bool has_nullable_keys>
class BaseStateKeysFixed;
/// Case where nullable keys are supported.
template <typename Key>
class BaseStateKeysFixed<Key, true>
{
protected:
explicit BaseStateKeysFixed(const ColumnRawPtrs & key_columns)
{
null_maps.reserve(key_columns.size());
actual_columns.reserve(key_columns.size());
for (const auto & col : key_columns)
{
if (const auto * nullable_col = checkAndGetColumn<ColumnNullable>(col))
{
actual_columns.push_back(&nullable_col->getNestedColumn());
null_maps.push_back(&nullable_col->getNullMapColumn());
}
else
{
actual_columns.push_back(col);
null_maps.push_back(nullptr);
}
}
}
/// Return the columns which actually contain the values of the keys.
/// For a given key column, if it is nullable, we return its nested
/// column. Otherwise we return the key column itself.
inline const ColumnRawPtrs & getActualColumns() const
{
return actual_columns;
}
/// Create a bitmap that indicates whether, for a particular row,
/// a key column bears a null value or not.
KeysNullMap<Key> createBitmap(size_t row) const
{
KeysNullMap<Key> bitmap{};
for (size_t k = 0; k < null_maps.size(); ++k)
{
if (null_maps[k] != nullptr)
{
const auto & null_map = assert_cast<const ColumnUInt8 &>(*null_maps[k]).getData();
if (null_map[row] == 1)
{
size_t bucket = k / 8;
size_t offset = k % 8;
bitmap[bucket] |= UInt8(1) << offset;
}
}
}
return bitmap;
}
private:
ColumnRawPtrs actual_columns;
ColumnRawPtrs null_maps;
};
/// Case where nullable keys are not supported.
template <typename Key>
class BaseStateKeysFixed<Key, false>
{
protected:
explicit BaseStateKeysFixed(const ColumnRawPtrs & columns) : actual_columns(columns) {}
const ColumnRawPtrs & getActualColumns() const { return actual_columns; }
KeysNullMap<Key> createBitmap(size_t) const
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Internal error: calling createBitmap() for non-nullable keys is forbidden");
}
private:
ColumnRawPtrs actual_columns;
};
}
}
}
|