1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
#include <Columns/IColumn.h>
#include <Columns/ColumnVector.h>
#include <Common/typeid_cast.h>
#include <Common/HashTable/HashSet.h>
#include <bit>
#include "ColumnsCommon.h"
namespace DB
{
#if defined(__SSE2__)
/// Transform 64-byte mask to 64-bit mask.
static UInt64 toBits64(const Int8 * bytes64)
{
static const __m128i zero16 = _mm_setzero_si128();
UInt64 res =
static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64)), zero16)))
| (static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64 + 16)), zero16))) << 16)
| (static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64 + 32)), zero16))) << 32)
| (static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64 + 48)), zero16))) << 48);
return ~res;
}
#endif
size_t countBytesInFilter(const UInt8 * filt, size_t start, size_t end)
{
size_t count = 0;
/** NOTE: In theory, `filt` should only contain zeros and ones.
* But, just in case, here the condition > 0 (to signed bytes) is used.
* It would be better to use != 0, then this does not allow SSE2.
*/
const Int8 * pos = reinterpret_cast<const Int8 *>(filt);
pos += start;
const Int8 * end_pos = pos + (end - start);
#if defined(__SSE2__)
const Int8 * end_pos64 = pos + (end - start) / 64 * 64;
for (; pos < end_pos64; pos += 64)
count += std::popcount(toBits64(pos));
/// TODO Add duff device for tail?
#endif
for (; pos < end_pos; ++pos)
count += *pos != 0;
return count;
}
size_t countBytesInFilter(const IColumn::Filter & filt)
{
return countBytesInFilter(filt.data(), 0, filt.size());
}
size_t countBytesInFilterWithNull(const IColumn::Filter & filt, const UInt8 * null_map, size_t start, size_t end)
{
size_t count = 0;
/** NOTE: In theory, `filt` should only contain zeros and ones.
* But, just in case, here the condition > 0 (to signed bytes) is used.
* It would be better to use != 0, then this does not allow SSE2.
*/
const Int8 * pos = reinterpret_cast<const Int8 *>(filt.data()) + start;
const Int8 * pos2 = reinterpret_cast<const Int8 *>(null_map) + start;
const Int8 * end_pos = pos + (end - start);
#if defined(__SSE2__)
const Int8 * end_pos64 = pos + (end - start) / 64 * 64;
for (; pos < end_pos64; pos += 64, pos2 += 64)
count += std::popcount(toBits64(pos) & ~toBits64(pos2));
/// TODO Add duff device for tail?
#endif
for (; pos < end_pos; ++pos, ++pos2)
count += (*pos & ~*pos2) != 0;
return count;
}
std::vector<size_t> countColumnsSizeInSelector(IColumn::ColumnIndex num_columns, const IColumn::Selector & selector)
{
std::vector<size_t> counts(num_columns);
for (auto idx : selector)
++counts[idx];
return counts;
}
bool memoryIsByte(const void * data, size_t start, size_t end, uint8_t byte)
{
size_t size = end - start;
if (size == 0)
return true;
const auto * ptr = reinterpret_cast<const uint8_t *>(data) + start;
return *ptr == byte && memcmp(ptr, ptr + 1, size - 1) == 0;
}
bool memoryIsZero(const void * data, size_t start, size_t end)
{
return memoryIsByte(data, start, end, 0x0);
}
namespace ErrorCodes
{
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
}
namespace
{
/// Implementation details of filterArraysImpl function, used as template parameter.
/// Allow to build or not to build offsets array.
struct ResultOffsetsBuilder
{
IColumn::Offsets & res_offsets;
IColumn::Offset current_src_offset = 0;
explicit ResultOffsetsBuilder(IColumn::Offsets * res_offsets_) : res_offsets(*res_offsets_) {}
void reserve(ssize_t result_size_hint, size_t src_size)
{
res_offsets.reserve(result_size_hint > 0 ? result_size_hint : src_size);
}
void insertOne(size_t array_size)
{
current_src_offset += array_size;
res_offsets.push_back(current_src_offset);
}
template <size_t SIMD_BYTES>
void insertChunk(
const IColumn::Offset * src_offsets_pos,
bool first,
IColumn::Offset chunk_offset,
size_t chunk_size)
{
const auto offsets_size_old = res_offsets.size();
res_offsets.resize(offsets_size_old + SIMD_BYTES);
memcpy(&res_offsets[offsets_size_old], src_offsets_pos, SIMD_BYTES * sizeof(IColumn::Offset));
if (!first)
{
/// difference between current and actual offset
const auto diff_offset = chunk_offset - current_src_offset;
if (diff_offset > 0)
{
auto * res_offsets_pos = &res_offsets[offsets_size_old];
/// adjust offsets
for (size_t i = 0; i < SIMD_BYTES; ++i)
res_offsets_pos[i] -= diff_offset;
}
}
current_src_offset += chunk_size;
}
};
struct NoResultOffsetsBuilder
{
explicit NoResultOffsetsBuilder(IColumn::Offsets *) {}
void reserve(ssize_t, size_t) {}
void insertOne(size_t) {}
template <size_t SIMD_BYTES>
void insertChunk(
const IColumn::Offset *,
bool,
IColumn::Offset,
size_t)
{
}
};
template <typename T, typename ResultOffsetsBuilder>
void filterArraysImplGeneric(
const PaddedPODArray<T> & src_elems, const IColumn::Offsets & src_offsets,
PaddedPODArray<T> & res_elems, IColumn::Offsets * res_offsets,
const IColumn::Filter & filt, ssize_t result_size_hint)
{
const size_t size = src_offsets.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
ResultOffsetsBuilder result_offsets_builder(res_offsets);
if (result_size_hint)
{
result_offsets_builder.reserve(result_size_hint, size);
if (result_size_hint < 0)
res_elems.reserve(src_elems.size());
else if (result_size_hint < 1000000000 && src_elems.size() < 1000000000) /// Avoid overflow.
res_elems.reserve((result_size_hint * src_elems.size() + size - 1) / size);
}
const UInt8 * filt_pos = filt.data();
const auto * filt_end = filt_pos + size;
const auto * offsets_pos = src_offsets.data();
const auto * offsets_begin = offsets_pos;
/// copy array ending at *end_offset_ptr
const auto copy_array = [&] (const IColumn::Offset * offset_ptr)
{
const auto arr_offset = offset_ptr == offsets_begin ? 0 : offset_ptr[-1];
const auto arr_size = *offset_ptr - arr_offset;
result_offsets_builder.insertOne(arr_size);
const auto elems_size_old = res_elems.size();
res_elems.resize(elems_size_old + arr_size);
memcpy(&res_elems[elems_size_old], &src_elems[arr_offset], arr_size * sizeof(T));
};
/** A slightly more optimized version.
* Based on the assumption that often pieces of consecutive values
* completely pass or do not pass the filter.
* Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
*/
static constexpr size_t SIMD_BYTES = 64;
const auto * filt_end_aligned = filt_pos + size / SIMD_BYTES * SIMD_BYTES;
while (filt_pos < filt_end_aligned)
{
uint64_t mask = bytes64MaskToBits64Mask(filt_pos);
if (0xffffffffffffffff == mask)
{
/// SIMD_BYTES consecutive rows pass the filter
const auto first = offsets_pos == offsets_begin;
const auto chunk_offset = first ? 0 : offsets_pos[-1];
const auto chunk_size = offsets_pos[SIMD_BYTES - 1] - chunk_offset;
result_offsets_builder.template insertChunk<SIMD_BYTES>(offsets_pos, first, chunk_offset, chunk_size);
/// copy elements for SIMD_BYTES arrays at once
const auto elems_size_old = res_elems.size();
res_elems.resize(elems_size_old + chunk_size);
memcpy(&res_elems[elems_size_old], &src_elems[chunk_offset], chunk_size * sizeof(T));
}
else
{
while (mask)
{
size_t index = std::countr_zero(mask);
copy_array(offsets_pos + index);
#ifdef __BMI__
mask = _blsr_u64(mask);
#else
mask = mask & (mask-1);
#endif
}
}
filt_pos += SIMD_BYTES;
offsets_pos += SIMD_BYTES;
}
while (filt_pos < filt_end)
{
if (*filt_pos)
copy_array(offsets_pos);
++filt_pos;
++offsets_pos;
}
}
}
template <typename T>
void filterArraysImpl(
const PaddedPODArray<T> & src_elems, const IColumn::Offsets & src_offsets,
PaddedPODArray<T> & res_elems, IColumn::Offsets & res_offsets,
const IColumn::Filter & filt, ssize_t result_size_hint)
{
return filterArraysImplGeneric<T, ResultOffsetsBuilder>(src_elems, src_offsets, res_elems, &res_offsets, filt, result_size_hint);
}
template <typename T>
void filterArraysImplOnlyData(
const PaddedPODArray<T> & src_elems, const IColumn::Offsets & src_offsets,
PaddedPODArray<T> & res_elems,
const IColumn::Filter & filt, ssize_t result_size_hint)
{
return filterArraysImplGeneric<T, NoResultOffsetsBuilder>(src_elems, src_offsets, res_elems, nullptr, filt, result_size_hint);
}
/// Explicit instantiations - not to place the implementation of the function above in the header file.
#define INSTANTIATE(TYPE) \
template void filterArraysImpl<TYPE>( \
const PaddedPODArray<TYPE> &, const IColumn::Offsets &, \
PaddedPODArray<TYPE> &, IColumn::Offsets &, \
const IColumn::Filter &, ssize_t); \
template void filterArraysImplOnlyData<TYPE>( \
const PaddedPODArray<TYPE> &, const IColumn::Offsets &, \
PaddedPODArray<TYPE> &, \
const IColumn::Filter &, ssize_t);
INSTANTIATE(UInt8)
INSTANTIATE(UInt16)
INSTANTIATE(UInt32)
INSTANTIATE(UInt64)
INSTANTIATE(UInt128)
INSTANTIATE(UInt256)
INSTANTIATE(Int8)
INSTANTIATE(Int16)
INSTANTIATE(Int32)
INSTANTIATE(Int64)
INSTANTIATE(Int128)
INSTANTIATE(Int256)
INSTANTIATE(Float32)
INSTANTIATE(Float64)
INSTANTIATE(Decimal32)
INSTANTIATE(Decimal64)
INSTANTIATE(Decimal128)
INSTANTIATE(Decimal256)
#undef INSTANTIATE
namespace detail
{
template <typename T>
const PaddedPODArray<T> * getIndexesData(const IColumn & indexes)
{
auto * column = typeid_cast<const ColumnVector<T> *>(&indexes);
if (column)
return &column->getData();
return nullptr;
}
template const PaddedPODArray<UInt8> * getIndexesData<UInt8>(const IColumn & indexes);
template const PaddedPODArray<UInt16> * getIndexesData<UInt16>(const IColumn & indexes);
template const PaddedPODArray<UInt32> * getIndexesData<UInt32>(const IColumn & indexes);
template const PaddedPODArray<UInt64> * getIndexesData<UInt64>(const IColumn & indexes);
}
size_t getLimitForPermutation(size_t column_size, size_t perm_size, size_t limit)
{
if (limit == 0)
limit = column_size;
else
limit = std::min(column_size, limit);
if (perm_size < limit)
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH,
"Size of permutation ({}) is less than required ({})", perm_size, limit);
return limit;
}
}
|