1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
|
#include "ColumnVector.h"
#include <Columns/ColumnsCommon.h>
#include <Columns/ColumnCompressed.h>
#include <Columns/MaskOperations.h>
#include <Processors/Transforms/ColumnGathererTransform.h>
#include <IO/WriteHelpers.h>
#include <Common/Arena.h>
#include <Common/Exception.h>
#include <Common/HashTable/Hash.h>
#include <Common/NaNUtils.h>
#include <Common/RadixSort.h>
#include <Common/SipHash.h>
#include <Common/WeakHash.h>
#include <Common/TargetSpecific.h>
#include <Common/assert_cast.h>
#include <base/sort.h>
#include <base/unaligned.h>
#include <base/bit_cast.h>
#include <base/scope_guard.h>
#include <bit>
#include <cmath>
#include <cstring>
#if defined(__SSE2__)
# include <emmintrin.h>
#endif
#if USE_MULTITARGET_CODE
# include <immintrin.h>
#endif
#if USE_EMBEDDED_COMPILER
#include <DataTypes/Native.h>
#error #include <llvm/IR/IRBuilder.h>
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
extern const int LOGICAL_ERROR;
extern const int NOT_IMPLEMENTED;
}
template <typename T>
StringRef ColumnVector<T>::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin, const UInt8 * null_bit) const
{
constexpr size_t null_bit_size = sizeof(UInt8);
StringRef res;
char * pos;
if (null_bit)
{
res.size = * null_bit ? null_bit_size : null_bit_size + sizeof(T);
pos = arena.allocContinue(res.size, begin);
res.data = pos;
memcpy(pos, null_bit, null_bit_size);
if (*null_bit) return res;
pos += null_bit_size;
}
else
{
res.size = sizeof(T);
pos = arena.allocContinue(res.size, begin);
res.data = pos;
}
unalignedStore<T>(pos, data[n]);
return res;
}
template <typename T>
const char * ColumnVector<T>::deserializeAndInsertFromArena(const char * pos)
{
data.emplace_back(unalignedLoad<T>(pos));
return pos + sizeof(T);
}
template <typename T>
const char * ColumnVector<T>::skipSerializedInArena(const char * pos) const
{
return pos + sizeof(T);
}
template <typename T>
void ColumnVector<T>::updateHashWithValue(size_t n, SipHash & hash) const
{
hash.update(data[n]);
}
template <typename T>
void ColumnVector<T>::updateWeakHash32(WeakHash32 & hash) const
{
auto s = data.size();
if (hash.getData().size() != s)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Size of WeakHash32 does not match size of column: "
"column size is {}, hash size is {}", std::to_string(s), std::to_string(hash.getData().size()));
const T * begin = data.data();
const T * end = begin + s;
UInt32 * hash_data = hash.getData().data();
while (begin < end)
{
*hash_data = static_cast<UInt32>(hashCRC32(*begin, *hash_data));
++begin;
++hash_data;
}
}
template <typename T>
void ColumnVector<T>::updateHashFast(SipHash & hash) const
{
hash.update(reinterpret_cast<const char *>(data.data()), size() * sizeof(data[0]));
}
template <typename T>
struct ColumnVector<T>::less
{
const Self & parent;
int nan_direction_hint;
less(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::less_stable
{
const Self & parent;
int nan_direction_hint;
less_stable(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const
{
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
{
return lhs < rhs;
}
}
return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint);
}
};
template <typename T>
struct ColumnVector<T>::greater
{
const Self & parent;
int nan_direction_hint;
greater(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::greater_stable
{
const Self & parent;
int nan_direction_hint;
greater_stable(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const
{
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
{
return lhs < rhs;
}
}
return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint);
}
};
template <typename T>
struct ColumnVector<T>::equals
{
const Self & parent;
int nan_direction_hint;
equals(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::equals(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
namespace
{
template <typename T>
struct ValueWithIndex
{
T value;
UInt32 index;
};
template <typename T>
struct RadixSortTraits : RadixSortNumTraits<T>
{
using Element = ValueWithIndex<T>;
using Result = size_t;
static T & extractKey(Element & elem) { return elem.value; }
static size_t extractResult(Element & elem) { return elem.index; }
};
}
#if USE_EMBEDDED_COMPILER
template <typename T>
bool ColumnVector<T>::isComparatorCompilable() const
{
/// TODO: for std::is_floating_point_v<T> we need implement is_nan in LLVM IR.
return std::is_integral_v<T>;
}
template <typename T>
llvm::Value * ColumnVector<T>::compileComparator(llvm::IRBuilderBase & builder, llvm::Value * lhs, llvm::Value * rhs, llvm::Value *) const
{
llvm::IRBuilder<> & b = static_cast<llvm::IRBuilder<> &>(builder);
if constexpr (std::is_integral_v<T>)
{
// a > b ? 1 : (a < b ? -1 : 0);
bool is_signed = std::is_signed_v<T>;
auto * lhs_greater_than_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), 1);
auto * lhs_less_than_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), -1);
auto * lhs_equals_rhs_result = llvm::ConstantInt::getSigned(b.getInt8Ty(), 0);
auto * lhs_greater_than_rhs = is_signed ? b.CreateICmpSGT(lhs, rhs) : b.CreateICmpUGT(lhs, rhs);
auto * lhs_less_than_rhs = is_signed ? b.CreateICmpSLT(lhs, rhs) : b.CreateICmpULT(lhs, rhs);
auto * if_lhs_less_than_rhs_result = b.CreateSelect(lhs_less_than_rhs, lhs_less_than_rhs_result, lhs_equals_rhs_result);
return b.CreateSelect(lhs_greater_than_rhs, lhs_greater_than_rhs_result, if_lhs_less_than_rhs_result);
}
else
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Method compileComparator is not supported for type {}", TypeName<T>);
}
}
#endif
template <typename T>
void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res) const
{
size_t s = data.size();
res.resize(s);
if (s == 0)
return;
if (limit >= s)
limit = 0;
if (limit)
{
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), greater(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), greater_stable(*this, nan_direction_hint));
}
else
{
/// A case for radix sort
/// LSD RadixSort is stable
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (s >= 256 && s <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
PaddedPODArray<ValueWithIndex<T>> pairs(s);
for (UInt32 i = 0; i < static_cast<UInt32>(s); ++i)
pairs[i] = {data[i], i};
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), s, reverse, res.data());
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < s; ++i)
{
if (isNaN(data[res[reverse ? i : s - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(std::begin(res), std::begin(res) + (reverse ? nans_to_move : s - nans_to_move), std::end(res));
}
}
return;
}
}
/// Default sorting algorithm.
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
::sort(res.begin(), res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
::sort(res.begin(), res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
::sort(res.begin(), res.end(), greater(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
::sort(res.begin(), res.end(), greater_stable(*this, nan_direction_hint));
}
}
template <typename T>
void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
auto sort = [&](auto begin, auto end, auto pred)
{
/// A case for radix sort
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
size_t size = end - begin;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (size >= 256 && size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
PaddedPODArray<ValueWithIndex<T>> pairs(size);
size_t index = 0;
for (auto * it = begin; it != end; ++it)
{
pairs[index] = {data[*it], static_cast<UInt32>(*it)};
++index;
}
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), size, reverse, begin);
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < size; ++i)
{
if (isNaN(data[begin[reverse ? i : size - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(begin, begin + (reverse ? nans_to_move : size - nans_to_move), end);
}
}
return;
}
}
::sort(begin, end, pred);
};
auto partial_sort = [](auto begin, auto mid, auto end, auto pred) { ::partial_sort(begin, mid, end, pred); };
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
less(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
less_stable(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
greater(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
{
this->updatePermutationImpl(
limit, res, equal_ranges,
greater_stable(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
}
template <typename T>
MutableColumnPtr ColumnVector<T>::cloneResized(size_t size) const
{
auto res = this->create();
if (size > 0)
{
auto & new_col = static_cast<Self &>(*res);
new_col.data.resize(size);
size_t count = std::min(this->size(), size);
memcpy(new_col.data.data(), data.data(), count * sizeof(data[0]));
if (size > count)
memset(static_cast<void *>(&new_col.data[count]), 0, (size - count) * sizeof(ValueType));
}
return res;
}
template <typename T>
UInt64 ColumnVector<T>::get64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return bit_cast<UInt64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as UInt64", TypeName<T>);
}
template <typename T>
inline Float64 ColumnVector<T>::getFloat64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float64", TypeName<T>);
}
template <typename T>
Float32 ColumnVector<T>::getFloat32(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float32>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float32", TypeName<T>);
}
template <typename T>
void ColumnVector<T>::insertRangeFrom(const IColumn & src, size_t start, size_t length)
{
const ColumnVector & src_vec = assert_cast<const ColumnVector &>(src);
if (start + length > src_vec.data.size())
throw Exception(ErrorCodes::PARAMETER_OUT_OF_BOUND,
"Parameters start = {}, length = {} are out of bound "
"in ColumnVector<T>::insertRangeFrom method (data.size() = {}).",
toString(start), toString(length), toString(src_vec.data.size()));
size_t old_size = data.size();
data.resize(old_size + length);
memcpy(data.data() + old_size, &src_vec.data[start], length * sizeof(data[0]));
}
static inline UInt64 blsr(UInt64 mask)
{
#ifdef __BMI__
return _blsr_u64(mask);
#else
return mask & (mask-1);
#endif
}
/// If mask is a number of this kind: [0]*[1]* function returns the length of the cluster of 1s.
/// Otherwise it returns the special value: 0xFF.
uint8_t prefixToCopy(UInt64 mask)
{
if (mask == 0)
return 0;
if (mask == static_cast<UInt64>(-1))
return 64;
/// Row with index 0 correspond to the least significant bit.
/// So the length of the prefix to copy is 64 - #(leading zeroes).
const UInt64 leading_zeroes = __builtin_clzll(mask);
if (mask == ((static_cast<UInt64>(-1) << leading_zeroes) >> leading_zeroes))
return 64 - leading_zeroes;
else
return 0xFF;
}
uint8_t suffixToCopy(UInt64 mask)
{
const auto prefix_to_copy = prefixToCopy(~mask);
return prefix_to_copy >= 64 ? prefix_to_copy : 64 - prefix_to_copy;
}
DECLARE_DEFAULT_CODE(
template <typename T, typename Container, size_t SIMD_ELEMENTS>
inline void doFilterAligned(const UInt8 *& filt_pos, const UInt8 *& filt_end_aligned, const T *& data_pos, Container & res_data)
{
while (filt_pos < filt_end_aligned)
{
UInt64 mask = bytes64MaskToBits64Mask(filt_pos);
const uint8_t prefix_to_copy = prefixToCopy(mask);
if (0xFF != prefix_to_copy)
{
res_data.insert(data_pos, data_pos + prefix_to_copy);
}
else
{
const uint8_t suffix_to_copy = suffixToCopy(mask);
if (0xFF != suffix_to_copy)
{
res_data.insert(data_pos + SIMD_ELEMENTS - suffix_to_copy, data_pos + SIMD_ELEMENTS);
}
else
{
while (mask)
{
size_t index = std::countr_zero(mask);
res_data.push_back(data_pos[index]);
mask = blsr(mask);
}
}
}
filt_pos += SIMD_ELEMENTS;
data_pos += SIMD_ELEMENTS;
}
}
)
namespace
{
template <typename T, typename Container>
void resize(Container & res_data, size_t reserve_size)
{
#if defined(MEMORY_SANITIZER)
res_data.resize_fill(reserve_size, static_cast<T>(0)); // MSan doesn't recognize that all allocated memory is written by AVX-512 intrinsics.
#else
res_data.resize(reserve_size);
#endif
}
}
DECLARE_AVX512VBMI2_SPECIFIC_CODE(
template <size_t ELEMENT_WIDTH>
inline void compressStoreAVX512(const void *src, void *dst, const UInt64 mask)
{
__m512i vsrc = _mm512_loadu_si512(src);
if constexpr (ELEMENT_WIDTH == 1)
_mm512_mask_compressstoreu_epi8(dst, static_cast<__mmask64>(mask), vsrc);
else if constexpr (ELEMENT_WIDTH == 2)
_mm512_mask_compressstoreu_epi16(dst, static_cast<__mmask32>(mask), vsrc);
else if constexpr (ELEMENT_WIDTH == 4)
_mm512_mask_compressstoreu_epi32(dst, static_cast<__mmask16>(mask), vsrc);
else if constexpr (ELEMENT_WIDTH == 8)
_mm512_mask_compressstoreu_epi64(dst, static_cast<__mmask8>(mask), vsrc);
}
template <typename T, typename Container, size_t SIMD_ELEMENTS>
inline void doFilterAligned(const UInt8 *& filt_pos, const UInt8 *& filt_end_aligned, const T *& data_pos, Container & res_data)
{
static constexpr size_t VEC_LEN = 64; /// AVX512 vector length - 64 bytes
static constexpr size_t ELEMENT_WIDTH = sizeof(T);
static constexpr size_t ELEMENTS_PER_VEC = VEC_LEN / ELEMENT_WIDTH;
static constexpr UInt64 KMASK = 0xffffffffffffffff >> (64 - ELEMENTS_PER_VEC);
size_t current_offset = res_data.size();
size_t reserve_size = res_data.size();
size_t alloc_size = SIMD_ELEMENTS * 2;
while (filt_pos < filt_end_aligned)
{
/// to avoid calling resize too frequently, resize to reserve buffer.
if (reserve_size - current_offset < SIMD_ELEMENTS)
{
reserve_size += alloc_size;
resize<T>(res_data, reserve_size);
alloc_size *= 2;
}
UInt64 mask = bytes64MaskToBits64Mask(filt_pos);
if (0xffffffffffffffff == mask)
{
for (size_t i = 0; i < SIMD_ELEMENTS; i += ELEMENTS_PER_VEC)
_mm512_storeu_si512(reinterpret_cast<void *>(&res_data[current_offset + i]),
_mm512_loadu_si512(reinterpret_cast<const void *>(data_pos + i)));
current_offset += SIMD_ELEMENTS;
}
else
{
if (mask)
{
for (size_t i = 0; i < SIMD_ELEMENTS; i += ELEMENTS_PER_VEC)
{
compressStoreAVX512<ELEMENT_WIDTH>(reinterpret_cast<const void *>(data_pos + i),
reinterpret_cast<void *>(&res_data[current_offset]), mask & KMASK);
current_offset += std::popcount(mask & KMASK);
/// prepare mask for next iter, if ELEMENTS_PER_VEC = 64, no next iter
if (ELEMENTS_PER_VEC < 64)
{
mask >>= ELEMENTS_PER_VEC;
}
}
}
}
filt_pos += SIMD_ELEMENTS;
data_pos += SIMD_ELEMENTS;
}
/// resize to the real size.
res_data.resize(current_offset);
}
)
template <typename T>
ColumnPtr ColumnVector<T>::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const
{
size_t size = data.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
auto res = this->create();
Container & res_data = res->getData();
if (result_size_hint)
res_data.reserve(result_size_hint > 0 ? result_size_hint : size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
const T * data_pos = data.data();
/** A slightly more optimized version.
* Based on the assumption that often pieces of consecutive values
* completely pass or do not pass the filter.
* Therefore, we will optimistically check the parts of `SIMD_ELEMENTS` values.
*/
static constexpr size_t SIMD_ELEMENTS = 64;
const UInt8 * filt_end_aligned = filt_pos + size / SIMD_ELEMENTS * SIMD_ELEMENTS;
#if USE_MULTITARGET_CODE
static constexpr bool VBMI2_CAPABLE = sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8;
if (VBMI2_CAPABLE && isArchSupported(TargetArch::AVX512VBMI2))
TargetSpecific::AVX512VBMI2::doFilterAligned<T, Container, SIMD_ELEMENTS>(filt_pos, filt_end_aligned, data_pos, res_data);
else
#endif
TargetSpecific::Default::doFilterAligned<T, Container, SIMD_ELEMENTS>(filt_pos, filt_end_aligned, data_pos, res_data);
while (filt_pos < filt_end)
{
if (*filt_pos)
res_data.push_back(*data_pos);
++filt_pos;
++data_pos;
}
return res;
}
template <typename T>
void ColumnVector<T>::expand(const IColumn::Filter & mask, bool inverted)
{
expandDataByMask<T>(data, mask, inverted);
}
template <typename T>
void ColumnVector<T>::applyZeroMap(const IColumn::Filter & filt, bool inverted)
{
size_t size = data.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
T * data_pos = data.data();
if (inverted)
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (!*filt_pos)
*data_pos = 0;
}
else
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (*filt_pos)
*data_pos = 0;
}
}
template <typename T>
ColumnPtr ColumnVector<T>::permute(const IColumn::Permutation & perm, size_t limit) const
{
return permuteImpl(*this, perm, limit);
}
template <typename T>
ColumnPtr ColumnVector<T>::index(const IColumn & indexes, size_t limit) const
{
return selectIndexImpl(*this, indexes, limit);
}
#ifdef __SSE2__
namespace
{
/** Optimization for ColumnVector replicate using SIMD instructions.
* For such optimization it is important that data is right padded with 15 bytes.
*
* Replicate span size is offsets[i] - offsets[i - 1].
*
* Split spans into 3 categories.
* 1. Span with 0 size. Continue iteration.
*
* 2. Span with 1 size. Update pointer from which data must be copied into result.
* Then if we see span with size 1 or greater than 1 copy data directly into result data and reset pointer.
* Example:
* Data: 1 2 3 4
* Offsets: 1 2 3 4
* Result data: 1 2 3 4
*
* 3. Span with size greater than 1. Save single data element into register and copy it into result data.
* Example:
* Data: 1 2 3 4
* Offsets: 4 4 4 4
* Result data: 1 1 1 1
*
* Additional handling for tail is needed if pointer from which data must be copied from span with size 1 is not null.
*/
template<typename IntType>
requires (std::is_same_v<IntType, Int32> || std::is_same_v<IntType, UInt32>)
void replicateSSE2Int32(const IntType * __restrict data, IntType * __restrict result_data, const IColumn::Offsets & offsets)
{
const IntType * data_copy_begin_ptr = nullptr;
size_t offsets_size = offsets.size();
for (size_t offset_index = 0; offset_index < offsets_size; ++offset_index)
{
size_t span = offsets[offset_index] - offsets[offset_index - 1];
if (span == 1)
{
if (!data_copy_begin_ptr)
data_copy_begin_ptr = data + offset_index;
continue;
}
/// Copy data
if (data_copy_begin_ptr)
{
size_t copy_size = (data + offset_index) - data_copy_begin_ptr;
bool remainder = copy_size % 4;
size_t sse_copy_counter = (copy_size / 4) + remainder;
auto * result_data_copy = result_data;
while (sse_copy_counter)
{
__m128i copy_batch = _mm_loadu_si128(reinterpret_cast<const __m128i *>(data_copy_begin_ptr));
_mm_storeu_si128(reinterpret_cast<__m128i *>(result_data_copy), copy_batch);
result_data_copy += 4;
data_copy_begin_ptr += 4;
--sse_copy_counter;
}
result_data += copy_size;
data_copy_begin_ptr = nullptr;
}
if (span == 0)
continue;
/// Copy single data element into result data
bool span_remainder = span % 4;
size_t copy_counter = (span / 4) + span_remainder;
auto * result_data_tmp = result_data;
__m128i copy_element_data = _mm_set1_epi32(data[offset_index]);
while (copy_counter)
{
_mm_storeu_si128(reinterpret_cast<__m128i *>(result_data_tmp), copy_element_data);
result_data_tmp += 4;
--copy_counter;
}
result_data += span;
}
/// Copy tail if needed
if (data_copy_begin_ptr)
{
size_t copy_size = (data + offsets_size) - data_copy_begin_ptr;
bool remainder = copy_size % 4;
size_t sse_copy_counter = (copy_size / 4) + remainder;
while (sse_copy_counter)
{
__m128i copy_batch = _mm_loadu_si128(reinterpret_cast<const __m128i *>(data_copy_begin_ptr));
_mm_storeu_si128(reinterpret_cast<__m128i *>(result_data), copy_batch);
result_data += 4;
data_copy_begin_ptr += 4;
--sse_copy_counter;
}
}
}
}
#endif
template <typename T>
ColumnPtr ColumnVector<T>::replicate(const IColumn::Offsets & offsets) const
{
const size_t size = data.size();
if (size != offsets.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of offsets {} doesn't match size of column {}", offsets.size(), size);
if (0 == size)
return this->create();
auto res = this->create(offsets.back());
#ifdef __SSE2__
if constexpr (std::is_same_v<T, UInt32>)
{
replicateSSE2Int32(getData().data(), res->getData().data(), offsets);
return res;
}
#endif
auto it = res->getData().begin(); // NOLINT
for (size_t i = 0; i < size; ++i)
{
const auto span_end = res->getData().begin() + offsets[i]; // NOLINT
for (; it != span_end; ++it)
*it = data[i];
}
return res;
}
template <typename T>
void ColumnVector<T>::gather(ColumnGathererStream & gatherer)
{
gatherer.gather(*this);
}
template <typename T>
void ColumnVector<T>::getExtremes(Field & min, Field & max) const
{
size_t size = data.size();
if (size == 0)
{
min = T(0);
max = T(0);
return;
}
bool has_value = false;
/** Skip all NaNs in extremes calculation.
* If all values are NaNs, then return NaN.
* NOTE: There exist many different NaNs.
* Different NaN could be returned: not bit-exact value as one of NaNs from column.
*/
T cur_min = NaNOrZero<T>();
T cur_max = NaNOrZero<T>();
for (const T & x : data)
{
if (isNaN(x))
continue;
if (!has_value)
{
cur_min = x;
cur_max = x;
has_value = true;
continue;
}
if (x < cur_min)
cur_min = x;
else if (x > cur_max)
cur_max = x;
}
min = NearestFieldType<T>(cur_min);
max = NearestFieldType<T>(cur_max);
}
template <typename T>
ColumnPtr ColumnVector<T>::compress() const
{
const size_t data_size = data.size();
const size_t source_size = data_size * sizeof(T);
/// Don't compress small blocks.
if (source_size < 4096) /// A wild guess.
return ColumnCompressed::wrap(this->getPtr());
auto compressed = ColumnCompressed::compressBuffer(data.data(), source_size, false);
if (!compressed)
return ColumnCompressed::wrap(this->getPtr());
const size_t compressed_size = compressed->size();
return ColumnCompressed::create(data_size, compressed_size,
[my_compressed = std::move(compressed), column_size = data_size]
{
auto res = ColumnVector<T>::create(column_size);
ColumnCompressed::decompressBuffer(
my_compressed->data(), res->getData().data(), my_compressed->size(), column_size * sizeof(T));
return res;
});
}
template <typename T>
ColumnPtr ColumnVector<T>::createWithOffsets(const IColumn::Offsets & offsets, const Field & default_field, size_t total_rows, size_t shift) const
{
if (offsets.size() + shift != size())
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Incompatible sizes of offsets ({}), shift ({}) and size of column {}", offsets.size(), shift, size());
auto res = this->create();
auto & res_data = res->getData();
T default_value = static_cast<T>(default_field.safeGet<T>());
res_data.resize_fill(total_rows, default_value);
for (size_t i = 0; i < offsets.size(); ++i)
res_data[offsets[i]] = data[i + shift];
return res;
}
/// Explicit template instantiations - to avoid code bloat in headers.
template class ColumnVector<UInt8>;
template class ColumnVector<UInt16>;
template class ColumnVector<UInt32>;
template class ColumnVector<UInt64>;
template class ColumnVector<UInt128>;
template class ColumnVector<UInt256>;
template class ColumnVector<Int8>;
template class ColumnVector<Int16>;
template class ColumnVector<Int32>;
template class ColumnVector<Int64>;
template class ColumnVector<Int128>;
template class ColumnVector<Int256>;
template class ColumnVector<Float32>;
template class ColumnVector<Float64>;
template class ColumnVector<UUID>;
template class ColumnVector<IPv4>;
template class ColumnVector<IPv6>;
}
|