aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/clickhouse/src/Analyzer/Passes/CNF.cpp
blob: 91e973c75738adcdbf858bd873d9bfc4bfb99105 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#include <Analyzer/Passes/CNF.h>

#include <Analyzer/InDepthQueryTreeVisitor.h>
#include <Analyzer/FunctionNode.h>
#include <Analyzer/ConstantNode.h>

#include <Interpreters/TreeCNFConverter.h>

#include <IO/WriteBufferFromString.h>
#include <IO/Operators.h>

#include <Functions/FunctionFactory.h>

#include <Common/checkStackSize.h>

namespace DB
{

namespace ErrorCodes
{
    extern const int TOO_MANY_TEMPORARY_COLUMNS;
}

namespace Analyzer
{

namespace
{

bool isLogicalFunction(const FunctionNode & function_node)
{
    const std::string_view name = function_node.getFunctionName();
    return name == "and" || name == "or" || name == "not";
}

template <typename... Args>
QueryTreeNodePtr createFunctionNode(const FunctionOverloadResolverPtr & function_resolver, Args &&... args)
{
    auto function_node = std::make_shared<FunctionNode>(function_resolver->getName());
    auto & new_arguments = function_node->getArguments().getNodes();
    new_arguments.reserve(sizeof...(args));
    (new_arguments.push_back(std::forward<Args>(args)), ...);
    function_node->resolveAsFunction(function_resolver);
    return function_node;
}

size_t countAtoms(const QueryTreeNodePtr & node)
{
    checkStackSize();

    const auto * function_node = node->as<FunctionNode>();
    if (!function_node || !isLogicalFunction(*function_node))
        return 1;

    size_t atom_count = 0;
    const auto & arguments = function_node->getArguments().getNodes();
    for (const auto & argument : arguments)
        atom_count += countAtoms(argument);

    return atom_count;
}

class SplitMultiLogicVisitor
{
public:
    explicit SplitMultiLogicVisitor(ContextPtr context)
        : current_context(std::move(context))
    {}

    void visit(QueryTreeNodePtr & node)
    {
        checkStackSize();

        auto * function_node = node->as<FunctionNode>();
        if (!function_node || !isLogicalFunction(*function_node))
            return;

        const auto & name = function_node->getFunctionName();

        if (name == "and" || name == "or")
        {
            auto function_resolver = FunctionFactory::instance().get(name, current_context);

            const auto & arguments = function_node->getArguments().getNodes();
            if (arguments.size() > 2)
            {
                QueryTreeNodePtr current = arguments[0];
                for (size_t i = 1; i < arguments.size(); ++i)
                    current = createFunctionNode(function_resolver, std::move(current), arguments[i]);

                auto & new_function_node = current->as<FunctionNode &>();
                function_node->getArguments().getNodes() = std::move(new_function_node.getArguments().getNodes());
                function_node->resolveAsFunction(function_resolver);
            }
        }
        else
        {
            assert(name == "not");
        }

        auto & arguments = function_node->getArguments().getNodes();
        for (auto & argument : arguments)
            visit(argument);
    }

private:
    ContextPtr current_context;
};

class PushNotVisitor
{
public:
    explicit PushNotVisitor(const ContextPtr & context)
        : not_function_resolver(FunctionFactory::instance().get("not", context))
        , or_function_resolver(FunctionFactory::instance().get("or", context))
        , and_function_resolver(FunctionFactory::instance().get("and", context))
    {}

    void visit(QueryTreeNodePtr & node, bool add_negation)
    {
        checkStackSize();

        auto * function_node = node->as<FunctionNode>();

        if (!function_node || !isLogicalFunction(*function_node))
        {
            if (add_negation)
                node = createFunctionNode(not_function_resolver, std::move(node));
            return;
        }

        std::string_view function_name = function_node->getFunctionName();
        if (function_name == "and" || function_name == "or")
        {
            if (add_negation)
            {
                if (function_name == "and")
                    function_node->resolveAsFunction(or_function_resolver);
                else
                    function_node->resolveAsFunction(and_function_resolver);
            }

            auto & arguments = function_node->getArguments().getNodes();
            for (auto & argument : arguments)
                visit(argument, add_negation);
            return;
        }

        assert(function_name == "not");
        auto & arguments = function_node->getArguments().getNodes();
        assert(arguments.size() == 1);
        node = arguments[0];
        visit(node, !add_negation);
    }

private:
    const FunctionOverloadResolverPtr not_function_resolver;
    const FunctionOverloadResolverPtr or_function_resolver;
    const FunctionOverloadResolverPtr and_function_resolver;
};

class PushOrVisitor
{
public:
    PushOrVisitor(ContextPtr context, size_t max_atoms_)
        : max_atoms(max_atoms_)
        , and_resolver(FunctionFactory::instance().get("and", context))
        , or_resolver(FunctionFactory::instance().get("or", context))
    {}

    bool visit(QueryTreeNodePtr & node, size_t num_atoms)
    {
        if (max_atoms && num_atoms > max_atoms)
            return false;

        checkStackSize();

        auto * function_node = node->as<FunctionNode>();

        if (!function_node)
            return true;

        std::string_view name = function_node->getFunctionName();

        if (name == "or" || name == "and")
        {
            auto & arguments = function_node->getArguments().getNodes();
            for (auto & argument : arguments)
            {
                if (!visit(argument, num_atoms))
                    return false;
            }
        }

        if (name == "or")
        {
            auto & arguments = function_node->getArguments().getNodes();
            assert(arguments.size() == 2);

            size_t and_node_id = arguments.size();

            for (size_t i = 0; i < arguments.size(); ++i)
            {
                auto & argument = arguments[i];
                if (auto * argument_function_node = argument->as<FunctionNode>();
                    argument_function_node && argument_function_node->getFunctionName() == "and")
                    and_node_id = i;
            }

            if (and_node_id == arguments.size())
                return true;

            auto & other_node = arguments[1 - and_node_id];
            auto & and_function_arguments = arguments[and_node_id]->as<FunctionNode &>().getArguments().getNodes();

            auto lhs = createFunctionNode(or_resolver, other_node->clone(), std::move(and_function_arguments[0]));
            num_atoms += countAtoms(other_node);

            auto rhs = createFunctionNode(or_resolver, std::move(other_node), std::move(and_function_arguments[1]));
            node = createFunctionNode(and_resolver, std::move(lhs), std::move(rhs));

            return visit(node, num_atoms);
        }

        return true;
    }

private:
    size_t max_atoms;

    const FunctionOverloadResolverPtr and_resolver;
    const FunctionOverloadResolverPtr or_resolver;
};

class CollectGroupsVisitor
{
public:
    void visit(QueryTreeNodePtr & node)
    {
        CNF::OrGroup or_group;
        visitImpl(node, or_group);
        if (!or_group.empty())
            and_group.insert(std::move(or_group));
    }

    CNF::AndGroup and_group;

private:
    void visitImpl(QueryTreeNodePtr & node, CNF::OrGroup & or_group)
    {
        checkStackSize();

        auto * function_node = node->as<FunctionNode>();
        if (!function_node || !isLogicalFunction(*function_node))
        {
            or_group.insert(CNF::AtomicFormula{false, std::move(node)});
            return;
        }

        std::string_view name = function_node->getFunctionName();

        if (name == "and")
        {
            auto & arguments = function_node->getArguments().getNodes();
            for (auto & argument : arguments)
            {
                CNF::OrGroup argument_or_group;
                visitImpl(argument, argument_or_group);
                if (!argument_or_group.empty())
                    and_group.insert(std::move(argument_or_group));
            }
        }
        else if (name == "or")
        {
            auto & arguments = function_node->getArguments().getNodes();
            for (auto & argument : arguments)
                visitImpl(argument, or_group);
        }
        else
        {
            assert(name == "not");
            auto & arguments = function_node->getArguments().getNodes();
            or_group.insert(CNF::AtomicFormula{true, std::move(arguments[0])});
        }
    }
};

std::optional<CNF::AtomicFormula> tryInvertFunction(
    const CNF::AtomicFormula & atom, const ContextPtr & context, const std::unordered_map<std::string, std::string> & inverse_relations)
{
    auto * function_node = atom.node_with_hash.node->as<FunctionNode>();
    if (!function_node)
        return std::nullopt;

    if (auto it = inverse_relations.find(function_node->getFunctionName()); it != inverse_relations.end())
    {
        auto inverse_function_resolver = FunctionFactory::instance().get(it->second, context);
        function_node->resolveAsFunction(inverse_function_resolver);
        return CNF::AtomicFormula{!atom.negative, atom.node_with_hash.node};
    }

    return std::nullopt;
}
}

bool CNF::AtomicFormula::operator==(const AtomicFormula & rhs) const
{
    return negative == rhs.negative && node_with_hash == rhs.node_with_hash;
}

bool CNF::AtomicFormula::operator<(const AtomicFormula & rhs) const
{
    if (node_with_hash.hash > rhs.node_with_hash.hash)
        return false;

    return node_with_hash.hash < rhs.node_with_hash.hash || negative < rhs.negative;
}

std::string CNF::dump() const
{
    WriteBufferFromOwnString res;
    bool first = true;
    for (const auto & group : statements)
    {
        if (!first)
            res << " AND ";
        first = false;
        res << "(";
        bool first_in_group = true;
        for (const auto & atom : group)
        {
            if (!first_in_group)
                res << " OR ";
            first_in_group = false;
            if (atom.negative)
                res << " NOT ";
            res << atom.node_with_hash.node->formatASTForErrorMessage();
        }
        res << ")";
    }

    return res.str();
}

CNF & CNF::transformGroups(std::function<OrGroup(const OrGroup &)> fn)
{
    AndGroup result;

    for (const auto & group : statements)
    {
        auto new_group = fn(group);
        if (!new_group.empty())
            result.insert(std::move(new_group));
    }

    statements = std::move(result);
    return *this;
}

CNF & CNF::transformAtoms(std::function<AtomicFormula(const AtomicFormula &)> fn)
{
    transformGroups([fn](const OrGroup & group)
    {
        OrGroup result;
        for (const auto & atom : group)
        {
            auto new_atom = fn(atom);
            if (new_atom.node_with_hash.node)
                result.insert(std::move(new_atom));
        }

        return result;
    });

    return *this;
}

CNF & CNF::pushNotIntoFunctions(const ContextPtr & context)
{
    transformAtoms([&](const AtomicFormula & atom)
    {
        return pushNotIntoFunction(atom, context);
    });

    return *this;
}

CNF::AtomicFormula CNF::pushNotIntoFunction(const AtomicFormula & atom, const ContextPtr & context)
{
    if (!atom.negative)
        return atom;

    static const std::unordered_map<std::string, std::string> inverse_relations = {
        {"equals", "notEquals"},
        {"less", "greaterOrEquals"},
        {"lessOrEquals", "greater"},
        {"in", "notIn"},
        {"like", "notLike"},
        {"empty", "notEmpty"},
        {"notEquals", "equals"},
        {"greaterOrEquals", "less"},
        {"greater", "lessOrEquals"},
        {"notIn", "in"},
        {"notLike", "like"},
        {"notEmpty", "empty"},
    };

    if (auto inverted_atom = tryInvertFunction(atom, context, inverse_relations);
        inverted_atom.has_value())
        return std::move(*inverted_atom);

    return atom;
}

CNF & CNF::pullNotOutFunctions(const ContextPtr & context)
{
    transformAtoms([&](const AtomicFormula & atom)
    {
        static const std::unordered_map<std::string, std::string> inverse_relations = {
            {"notEquals", "equals"},
            {"greaterOrEquals", "less"},
            {"greater", "lessOrEquals"},
            {"notIn", "in"},
            {"notLike", "like"},
            {"notEmpty", "empty"},
        };

        if (auto inverted_atom = tryInvertFunction(atom, context, inverse_relations);
            inverted_atom.has_value())
            return std::move(*inverted_atom);

        return atom;
    });

    return *this;
}

CNF & CNF::filterAlwaysTrueGroups(std::function<bool(const OrGroup &)> predicate)
{
    AndGroup filtered;
    for (const auto & or_group : statements)
    {
        if (predicate(or_group))
            filtered.insert(or_group);
    }

    statements = std::move(filtered);
    return *this;
}

CNF & CNF::filterAlwaysFalseAtoms(std::function<bool(const AtomicFormula &)> predicate)
{
    AndGroup filtered;
    for (const auto & or_group : statements)
    {
        OrGroup filtered_group;
        for (const auto & atom : or_group)
        {
            if (predicate(atom))
                filtered_group.insert(atom);
        }

        if (!filtered_group.empty())
            filtered.insert(std::move(filtered_group));
        else
        {
            filtered.clear();
            filtered_group.insert(AtomicFormula{false, QueryTreeNodePtrWithHash{std::make_shared<ConstantNode>(static_cast<UInt8>(0))}});
            filtered.insert(std::move(filtered_group));
            break;
        }
    }

    statements = std::move(filtered);
    return *this;
}

CNF & CNF::reduce()
{
    while (true)
    {
        AndGroup new_statements = reduceOnceCNFStatements(statements);
        if (statements == new_statements)
        {
            statements = filterCNFSubsets(statements);
            return *this;
        }
        else
            statements = new_statements;
    }
}

void CNF::appendGroup(const AndGroup & and_group)
{
    for (const auto & or_group : and_group)
        statements.emplace(or_group);
}

CNF::CNF(AndGroup statements_)
    : statements(std::move(statements_))
{}

std::optional<CNF> CNF::tryBuildCNF(const QueryTreeNodePtr & node, ContextPtr context, size_t max_growth_multiplier)
{
    auto node_cloned = node->clone();

    size_t atom_count = countAtoms(node_cloned);
    size_t max_atoms = max_growth_multiplier ? std::max(MAX_ATOMS_WITHOUT_CHECK, atom_count * max_growth_multiplier) : 0;

    {
        SplitMultiLogicVisitor visitor(context);
        visitor.visit(node_cloned);
    }

    {
        PushNotVisitor visitor(context);
        visitor.visit(node_cloned, false);
    }

    if (PushOrVisitor visitor(context, max_atoms);
        !visitor.visit(node_cloned, atom_count))
            return std::nullopt;

    CollectGroupsVisitor collect_visitor;
    collect_visitor.visit(node_cloned);

    if (collect_visitor.and_group.empty())
        return std::nullopt;

    return CNF{std::move(collect_visitor.and_group)};
}

CNF CNF::toCNF(const QueryTreeNodePtr & node, ContextPtr context, size_t max_growth_multiplier)
{
    auto cnf = tryBuildCNF(node, context, max_growth_multiplier);
    if (!cnf)
        throw Exception(ErrorCodes::TOO_MANY_TEMPORARY_COLUMNS,
            "Cannot convert expression '{}' to CNF, because it produces to many clauses."
            "Size of boolean formula in CNF can be exponential of size of source formula.");

    return *cnf;
}

QueryTreeNodePtr CNF::toQueryTree(ContextPtr context) const
{
    if (statements.empty())
        return nullptr;

    QueryTreeNodes and_arguments;
    and_arguments.reserve(statements.size());

    auto not_resolver = FunctionFactory::instance().get("not", context);
    auto or_resolver = FunctionFactory::instance().get("or", context);
    auto and_resolver = FunctionFactory::instance().get("and", context);

    const auto function_node_from_atom = [&](const auto & atom) -> QueryTreeNodePtr
    {
        auto cloned_node = atom.node_with_hash.node->clone();
        if (atom.negative)
            return createFunctionNode(not_resolver, std::move(cloned_node));

        return std::move(cloned_node);
    };

    for (const auto & or_group : statements)
    {
        if (or_group.size() == 1)
        {
            const auto & atom = *or_group.begin();
            and_arguments.push_back(function_node_from_atom(atom));
        }
        else
        {
            QueryTreeNodes or_arguments;
            or_arguments.reserve(or_group.size());

            for (const auto & atom : or_group)
                or_arguments.push_back(function_node_from_atom(atom));

            auto or_function = std::make_shared<FunctionNode>("or");
            or_function->getArguments().getNodes() = std::move(or_arguments);
            or_function->resolveAsFunction(or_resolver);

            and_arguments.push_back(std::move(or_function));
        }
    }

    if (and_arguments.size() == 1)
        return std::move(and_arguments[0]);

    auto and_function = std::make_shared<FunctionNode>("and");
    and_function->getArguments().getNodes() = std::move(and_arguments);
    and_function->resolveAsFunction(and_resolver);

    return and_function;
}

}

}