1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
#pragma once
#include <limits>
#include <algorithm>
#include <climits>
#include <AggregateFunctions/ReservoirSampler.h>
#include <base/types.h>
#include <base/sort.h>
#include <Common/HashTable/Hash.h>
#include <IO/ReadBuffer.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Common/PODArray.h>
#include <Common/NaNUtils.h>
#include <Poco/Exception.h>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int TOO_LARGE_ARRAY_SIZE;
}
}
/// Implementation of Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the `sample_count` size.
/// Can approximately get quantiles.
/// The `quantile` call takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call to insert. Otherwise, O(1).
/// That is, it makes sense to first add, then get quantiles without adding.
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int MEMORY_LIMIT_EXCEEDED;
}
}
namespace detail
{
const size_t DEFAULT_MAX_SAMPLE_SIZE = 8192;
const auto MAX_SKIP_DEGREE = sizeof(UInt32) * 8;
}
/// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double?
enum class ReservoirSamplerDeterministicOnEmpty
{
THROW,
RETURN_NAN_OR_ZERO,
};
template <typename T,
ReservoirSamplerDeterministicOnEmpty OnEmpty = ReservoirSamplerDeterministicOnEmpty::THROW>
class ReservoirSamplerDeterministic
{
private:
bool good(UInt32 hash) const
{
return (hash & skip_mask) == 0;
}
public:
explicit ReservoirSamplerDeterministic(const size_t max_sample_size_ = detail::DEFAULT_MAX_SAMPLE_SIZE)
: max_sample_size{max_sample_size_}
{
}
void clear()
{
samples.clear();
sorted = false;
total_values = 0;
}
void insert(const T & v, UInt64 determinator)
{
if (isNaN(v))
return;
UInt32 hash = static_cast<UInt32>(intHash64(determinator));
insertImpl(v, hash);
sorted = false;
++total_values;
}
size_t size() const
{
return total_values;
}
bool empty() const
{
return samples.empty();
}
T quantileNearest(double level)
{
if (samples.empty())
return onEmpty<T>();
sortIfNeeded();
double index = level * (samples.size() - 1);
size_t int_index = static_cast<size_t>(index + 0.5); /// NOLINT
int_index = std::max(0LU, std::min(samples.size() - 1, int_index));
return samples[int_index].first;
}
/** If T is not a numeric type, using this method causes a compilation error,
* but use of error class does not cause. SFINAE.
* Not SFINAE. Functions members of type templates are simply not checked until they are used.
*/
double quantileInterpolated(double level)
{
if (samples.empty())
return onEmpty<double>();
sortIfNeeded();
const double index = std::max(0., std::min(samples.size() - 1., level * (samples.size() - 1)));
/// To get a value from a fractional index, we linearly interpolate between adjacent values.
size_t left_index = static_cast<size_t>(index);
size_t right_index = left_index + 1;
if (right_index == samples.size())
return static_cast<double>(samples[left_index].first);
const double left_coef = right_index - index;
const double right_coef = index - left_index;
return static_cast<double>(samples[left_index].first) * left_coef + static_cast<double>(samples[right_index].first) * right_coef;
}
void merge(const ReservoirSamplerDeterministic & b)
{
if (max_sample_size != b.max_sample_size)
throw Poco::Exception("Cannot merge ReservoirSamplerDeterministic's with different max sample size");
sorted = false;
if (skip_degree < b.skip_degree)
setSkipDegree(b.skip_degree);
for (const auto & sample : b.samples)
insertImpl(sample.first, sample.second);
total_values += b.total_values;
}
void read(DB::ReadBuffer & buf)
{
size_t size = 0;
readBinaryLittleEndian(size, buf);
readBinaryLittleEndian(total_values, buf);
/// Compatibility with old versions.
if (size > total_values)
size = total_values;
static constexpr size_t MAX_RESERVOIR_SIZE = 1_GiB;
if (unlikely(size > MAX_RESERVOIR_SIZE))
throw DB::Exception(DB::ErrorCodes::TOO_LARGE_ARRAY_SIZE,
"Too large array size (maximum: {})", MAX_RESERVOIR_SIZE);
samples.resize(size);
for (size_t i = 0; i < size; ++i)
readBinaryLittleEndian(samples[i], buf);
sorted = false;
}
void write(DB::WriteBuffer & buf) const
{
const size_t size = samples.size();
writeBinaryLittleEndian(size, buf);
writeBinaryLittleEndian(total_values, buf);
for (size_t i = 0; i < size; ++i)
{
/// There was a mistake in this function.
/// Instead of correctly serializing the elements,
/// it was writing them with uninitialized padding.
/// Here we ensure that padding is zero without changing the protocol.
/// TODO: After implementation of "versioning aggregate function state",
/// change the serialization format.
Element elem;
memset(&elem, 0, sizeof(elem));
elem = samples[i];
DB::transformEndianness<std::endian::little>(elem);
DB::writeString(reinterpret_cast<const char*>(&elem), sizeof(elem), buf);
}
}
private:
/// We allocate some memory on the stack to avoid allocations when there are many objects with a small number of elements.
using Element = std::pair<T, UInt32>;
using Array = DB::PODArray<Element, 64>;
const size_t max_sample_size; /// Maximum amount of stored values.
size_t total_values = 0; /// How many values were inserted (regardless if they remain in sample or not).
bool sorted = false;
Array samples;
/// The number N determining that we store only one per 2^N elements in average.
UInt8 skip_degree = 0;
/// skip_mask is calculated as (2 ^ skip_degree - 1). We store an element only if (hash & skip_mask) == 0.
/// For example, if skip_degree==0 then skip_mask==0 means we store each element;
/// if skip_degree==1 then skip_mask==0b0001 means we store one per 2 elements in average;
/// if skip_degree==4 then skip_mask==0b1111 means we store one per 16 elements in average.
UInt32 skip_mask = 0;
void insertImpl(const T & v, const UInt32 hash)
{
if (!good(hash))
return;
/// Make a room for plus one element.
while (samples.size() >= max_sample_size)
{
setSkipDegree(skip_degree + 1);
/// Still good?
if (!good(hash))
return;
}
samples.emplace_back(v, hash);
}
void setSkipDegree(UInt8 skip_degree_)
{
if (skip_degree_ == skip_degree)
return;
if (skip_degree_ > detail::MAX_SKIP_DEGREE)
throw DB::Exception(DB::ErrorCodes::MEMORY_LIMIT_EXCEEDED, "skip_degree exceeds maximum value");
skip_degree = skip_degree_;
if (skip_degree == detail::MAX_SKIP_DEGREE)
skip_mask = static_cast<UInt32>(-1);
else
skip_mask = (1 << skip_degree) - 1;
thinOut();
}
void thinOut()
{
samples.resize(std::distance(samples.begin(),
std::remove_if(samples.begin(), samples.end(), [this](const auto & elem){ return !good(elem.second); })));
sorted = false;
}
void sortIfNeeded()
{
if (sorted)
return;
/// In order to provide deterministic result we must sort by value and hash
::sort(samples.begin(), samples.end(), [](const auto & lhs, const auto & rhs) { return lhs < rhs; });
sorted = true;
}
template <typename ResultType>
ResultType onEmpty() const
{
if (OnEmpty == ReservoirSamplerDeterministicOnEmpty::THROW)
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Quantile of empty ReservoirSamplerDeterministic");
else
return NanLikeValueConstructor<ResultType, std::is_floating_point_v<ResultType>>::getValue();
}
};
namespace DB
{
template <typename T>
void readBinary(std::pair<T, UInt32> & x, ReadBuffer & buf)
{
readPODBinary(x, buf);
}
}
|