aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/clickhouse/src/AggregateFunctions/QuantileExact.h
blob: a92d1979bab14dd992ce7406e4f74979d564ecc6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#pragma once

#include <IO/ReadBuffer.h>
#include <IO/VarInt.h>
#include <IO/WriteBuffer.h>
#include <Common/NaNUtils.h>
#include <Common/PODArray.h>
#include <base/sort.h>
#include <base/types.h>

#define QUANTILE_EXACT_MAX_ARRAY_SIZE 1'000'000'000


namespace DB
{
struct Settings;

namespace ErrorCodes
{
    extern const int NOT_IMPLEMENTED;
    extern const int BAD_ARGUMENTS;
    extern const int TOO_LARGE_ARRAY_SIZE;
}


template <typename Value, typename Derived>
struct QuantileExactBase
{
    /// The memory will be allocated to several elements at once, so that the state occupies 64 bytes.
    static constexpr size_t bytes_in_arena = 64 - sizeof(PODArray<Value>);
    using Array = PODArrayWithStackMemory<Value, bytes_in_arena>;
    Array array;

    void add(const Value & x)
    {
        /// We must skip NaNs as they are not compatible with comparison sorting.
        if (!isNaN(x))
            array.push_back(x);
    }

    template <typename Weight>
    void add(const Value &, const Weight &)
    {
        throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method add with weight is not implemented for QuantileExact");
    }

    void merge(const QuantileExactBase & rhs) { array.insert(rhs.array.begin(), rhs.array.end()); }

    void serialize(WriteBuffer & buf) const
    {
        size_t size = array.size();
        writeVarUInt(size, buf);
        buf.write(reinterpret_cast<const char *>(array.data()), size * sizeof(array[0]));
    }

    void deserialize(ReadBuffer & buf)
    {
        size_t size = 0;
        readVarUInt(size, buf);
        if (unlikely(size > QUANTILE_EXACT_MAX_ARRAY_SIZE))
            throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE,
                            "Too large array size (maximum: {})", QUANTILE_EXACT_MAX_ARRAY_SIZE);
        array.resize(size);
        buf.readStrict(reinterpret_cast<char *>(array.data()), size * sizeof(array[0]));
    }

    Value get(Float64 level)
    {
        auto derived = static_cast<Derived*>(this);
        return derived->getImpl(level);
    }

    void getMany(const Float64 * levels, const size_t * indices, size_t size, Value * result)
    {
        auto derived = static_cast<Derived*>(this);
        return derived->getManyImpl(levels, indices, size, result);
    }
};

/** Calculates quantile by collecting all values into array
  *  and applying n-th element (introselect) algorithm for the resulting array.
  *
  * It uses O(N) memory and it is very inefficient in case of high amount of identical values.
  * But it is very CPU efficient for not large datasets.
  */
template <typename Value>
struct QuantileExact : QuantileExactBase<Value, QuantileExact<Value>>
{
    using QuantileExactBase<Value, QuantileExact<Value>>::array;

    // Get the value of the `level` quantile. The level must be between 0 and 1.
    Value getImpl(Float64 level)
    {
        if (!array.empty())
        {
            size_t n = level < 1 ? static_cast<size_t>(level * array.size()) : (array.size() - 1);
            ::nth_element(array.begin(), array.begin() + n, array.end());  /// NOTE: You can think of the radix-select algorithm.
            return array[n];
        }

        return std::numeric_limits<Value>::quiet_NaN();
    }

    /// Get the `size` values of `levels` quantiles. Write `size` results starting with `result` address.
    /// indices - an array of index levels such that the corresponding elements will go in ascending order.
    void getManyImpl(const Float64 * levels, const size_t * indices, size_t size, Value * result)
    {
        if (!array.empty())
        {
            size_t prev_n = 0;
            for (size_t i = 0; i < size; ++i)
            {
                auto level = levels[indices[i]];

                size_t n = level < 1 ? static_cast<size_t>(level * array.size()) : (array.size() - 1);
                ::nth_element(array.begin() + prev_n, array.begin() + n, array.end());
                result[indices[i]] = array[n];
                prev_n = n;
            }
        }
        else
        {
            for (size_t i = 0; i < size; ++i)
                result[i] = Value();
        }
    }
};

/// QuantileExactExclusive is equivalent to Excel PERCENTILE.EXC, R-6, SAS-4, SciPy-(0,0)
template <typename Value>
/// There are no virtual-like functions. So we don't inherit from QuantileExactBase.
struct QuantileExactExclusive : public QuantileExact<Value>
{
    using QuantileExact<Value>::array;

    /// Get the value of the `level` quantile. The level must be between 0 and 1 excluding bounds.
    Float64 getFloat(Float64 level)
    {
        if (!array.empty())
        {
            if (level == 0. || level == 1.)
                throw Exception(ErrorCodes::BAD_ARGUMENTS, "QuantileExactExclusive cannot interpolate for the percentiles 1 and 0");

            Float64 h = level * (array.size() + 1);
            auto n = static_cast<size_t>(h);

            if (n >= array.size())
                return static_cast<Float64>(*std::max_element(array.begin(), array.end()));
            else if (n < 1)
                return static_cast<Float64>(*std::min_element(array.begin(), array.end()));

            ::nth_element(array.begin(), array.begin() + n - 1, array.end());
            auto nth_elem = std::min_element(array.begin() + n, array.end());

            return static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
        }

        return std::numeric_limits<Float64>::quiet_NaN();
    }

    void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result)
    {
        if (!array.empty())
        {
            size_t prev_n = 0;
            for (size_t i = 0; i < size; ++i)
            {
                auto level = levels[indices[i]];
                if (level == 0. || level == 1.)
                    throw Exception(ErrorCodes::BAD_ARGUMENTS, "QuantileExactExclusive cannot interpolate for the percentiles 1 and 0");

                Float64 h = level * (array.size() + 1);
                auto n = static_cast<size_t>(h);

                if (n >= array.size())
                    result[indices[i]] = static_cast<Float64>(*std::max_element(array.begin(), array.end()));
                else if (n < 1)
                    result[indices[i]] = static_cast<Float64>(*std::min_element(array.begin(), array.end()));
                else
                {
                    ::nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end());
                    auto nth_elem = std::min_element(array.begin() + n, array.end());

                    result[indices[i]] = static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
                    prev_n = n - 1;
                }
            }
        }
        else
        {
            for (size_t i = 0; i < size; ++i)
                result[i] = std::numeric_limits<Float64>::quiet_NaN();
        }
    }
};

/// QuantileExactInclusive is equivalent to Excel PERCENTILE and PERCENTILE.INC, R-7, SciPy-(1,1)
template <typename Value>
/// There are no virtual-like functions. So we don't inherit from QuantileExactBase.
struct QuantileExactInclusive : public QuantileExact<Value>
{
    using QuantileExact<Value>::array;

    /// Get the value of the `level` quantile. The level must be between 0 and 1 including bounds.
    Float64 getFloat(Float64 level)
    {
        if (!array.empty())
        {
            Float64 h = level * (array.size() - 1) + 1;
            auto n = static_cast<size_t>(h);

            if (n >= array.size())
                return static_cast<Float64>(*std::max_element(array.begin(), array.end()));
            else if (n < 1)
                return static_cast<Float64>(*std::min_element(array.begin(), array.end()));
            ::nth_element(array.begin(), array.begin() + n - 1, array.end());
            auto nth_elem = std::min_element(array.begin() + n, array.end());

            return static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
        }

        return std::numeric_limits<Float64>::quiet_NaN();
    }

    void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result)
    {
        if (!array.empty())
        {
            size_t prev_n = 0;
            for (size_t i = 0; i < size; ++i)
            {
                auto level = levels[indices[i]];

                Float64 h = level * (array.size() - 1) + 1;
                auto n = static_cast<size_t>(h);

                if (n >= array.size())
                    result[indices[i]] = static_cast<Float64>(*std::max_element(array.begin(), array.end()));
                else if (n < 1)
                    result[indices[i]] = static_cast<Float64>(*std::min_element(array.begin(), array.end()));
                else
                {
                    ::nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end());
                    auto nth_elem = std::min_element(array.begin() + n, array.end());

                    result[indices[i]] = static_cast<Float64>(array[n - 1]) + (h - n) * (static_cast<Float64>(*nth_elem) - array[n - 1]);
                    prev_n = n - 1;
                }
            }
        }
        else
        {
            for (size_t i = 0; i < size; ++i)
                result[i] = std::numeric_limits<Float64>::quiet_NaN();
        }
    }
};

// QuantileExactLow returns the low median of given data.
// Implementation is as per "medium_low" function from python:
// https://docs.python.org/3/library/statistics.html#statistics.median_low
template <typename Value>
struct QuantileExactLow : public QuantileExactBase<Value, QuantileExactLow<Value>>
{
    using QuantileExactBase<Value, QuantileExactLow<Value>>::array;

    Value getImpl(Float64 level)
    {
        if (!array.empty())
        {
            size_t n = 0;
            // if level is 0.5 then compute the "low" median of the sorted array
            // by the method of rounding.
            if (level == 0.5)
            {
                auto s = array.size();
                if (s % 2 == 1)
                {
                    n = static_cast<size_t>(floor(s / 2));
                }
                else
                {
                    n = static_cast<size_t>((floor(s / 2)) - 1);
                }
            }
            else
            {
                // else quantile is the nth index of the sorted array obtained by multiplying
                // level and size of array. Example if level = 0.1 and size of array is 10,
                // then return array[1].
                n = level < 1 ? static_cast<size_t>(level * array.size()) : (array.size() - 1);
            }
            ::nth_element(array.begin(), array.begin() + n, array.end());
            return array[n];
        }
        return std::numeric_limits<Value>::quiet_NaN();
    }

    void getManyImpl(const Float64 * levels, const size_t * indices, size_t size, Value * result)
    {
        if (!array.empty())
        {
            size_t prev_n = 0;
            for (size_t i = 0; i < size; ++i)
            {
                auto level = levels[indices[i]];
                size_t n = 0;
                // if level is 0.5 then compute the "low" median of the sorted array
                // by the method of rounding.
                if (level == 0.5)
                {
                    auto s = array.size();
                    if (s % 2 == 1)
                    {
                        n = static_cast<size_t>(floor(s / 2));
                    }
                    else
                    {
                        n = static_cast<size_t>(floor((s / 2) - 1));
                    }
                }
                else
                {
                    // else quantile is the nth index of the sorted array obtained by multiplying
                    // level and size of array. Example if level = 0.1 and size of array is 10.
                    n = level < 1 ? static_cast<size_t>(level * array.size()) : (array.size() - 1);
                }
                ::nth_element(array.begin() + prev_n, array.begin() + n, array.end());
                result[indices[i]] = array[n];
                prev_n = n;
            }
        }
        else
        {
            for (size_t i = 0; i < size; ++i)
                result[i] = Value();
        }
    }
};

// QuantileExactLow returns the high median of given data.
// Implementation is as per "medium_high function from python:
// https://docs.python.org/3/library/statistics.html#statistics.median_high
template <typename Value>
struct QuantileExactHigh : public QuantileExactBase<Value, QuantileExactHigh<Value>>
{
    using QuantileExactBase<Value, QuantileExactHigh<Value>>::array;

    Value getImpl(Float64 level)
    {
        if (!array.empty())
        {
            size_t n = 0;
            // if level is 0.5 then compute the "high" median of the sorted array
            // by the method of rounding.
            if (level == 0.5)
            {
                auto s = array.size();
                n = static_cast<size_t>(floor(s / 2));
            }
            else
            {
                // else quantile is the nth index of the sorted array obtained by multiplying
                // level and size of array. Example if level = 0.1 and size of array is 10.
                n = level < 1 ? static_cast<size_t>(level * array.size()) : (array.size() - 1);
            }
            ::nth_element(array.begin(), array.begin() + n, array.end());
            return array[n];
        }
        return std::numeric_limits<Value>::quiet_NaN();
    }

    void getManyImpl(const Float64 * levels, const size_t * indices, size_t size, Value * result)
    {
        if (!array.empty())
        {
            size_t prev_n = 0;
            for (size_t i = 0; i < size; ++i)
            {
                auto level = levels[indices[i]];
                size_t n = 0;
                // if level is 0.5 then compute the "high" median of the sorted array
                // by the method of rounding.
                if (level == 0.5)
                {
                    auto s = array.size();
                    n = static_cast<size_t>(floor(s / 2));
                }
                else
                {
                    // else quantile is the nth index of the sorted array obtained by multiplying
                    // level and size of array. Example if level = 0.1 and size of array is 10.
                    n = level < 1 ? static_cast<size_t>(level * array.size()) : (array.size() - 1);
                }
                ::nth_element(array.begin() + prev_n, array.begin() + n, array.end());
                result[indices[i]] = array[n];
                prev_n = n;
            }
        }
        else
        {
            for (size_t i = 0; i < size; ++i)
                result[i] = Value();
        }
    }
};

}