1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/AggregateFunctionSum.h>
#include <AggregateFunctions/Helpers.h>
#include <AggregateFunctions/FactoryHelpers.h>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
namespace
{
template <typename T>
struct SumSimple
{
/// @note It uses slow Decimal128/256 (cause we need such a variant). sumWithOverflow is faster for Decimal32/64
using ResultType = std::conditional_t<is_decimal<T>,
std::conditional_t<std::is_same_v<T, Decimal256>, Decimal256, Decimal128>,
NearestFieldType<T>>;
using AggregateDataType = AggregateFunctionSumData<ResultType>;
using Function = AggregateFunctionSum<T, ResultType, AggregateDataType, AggregateFunctionTypeSum>;
};
template <typename T>
struct SumSameType
{
using ResultType = T;
using AggregateDataType = AggregateFunctionSumData<ResultType>;
using Function = AggregateFunctionSum<T, ResultType, AggregateDataType, AggregateFunctionTypeSumWithOverflow>;
};
template <typename T>
struct SumKahan
{
using ResultType = Float64;
using AggregateDataType = AggregateFunctionSumKahanData<ResultType>;
using Function = AggregateFunctionSum<T, ResultType, AggregateDataType, AggregateFunctionTypeSumKahan>;
};
template <typename T> using AggregateFunctionSumSimple = typename SumSimple<T>::Function;
template <typename T> using AggregateFunctionSumWithOverflow = typename SumSameType<T>::Function;
template <typename T> using AggregateFunctionSumKahan =
std::conditional_t<is_decimal<T>, typename SumSimple<T>::Function, typename SumKahan<T>::Function>;
template <template <typename> class Function>
AggregateFunctionPtr createAggregateFunctionSum(const std::string & name, const DataTypes & argument_types, const Array & parameters, const Settings *)
{
assertNoParameters(name, parameters);
assertUnary(name, argument_types);
AggregateFunctionPtr res;
const DataTypePtr & data_type = argument_types[0];
if (isDecimal(data_type))
res.reset(createWithDecimalType<Function>(*data_type, *data_type, argument_types));
else
res.reset(createWithNumericType<Function>(*data_type, argument_types));
if (!res)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument for aggregate function {}",
argument_types[0]->getName(), name);
return res;
}
}
void registerAggregateFunctionSum(AggregateFunctionFactory & factory)
{
factory.registerFunction("sum", createAggregateFunctionSum<AggregateFunctionSumSimple>, AggregateFunctionFactory::CaseInsensitive);
factory.registerFunction("sumWithOverflow", createAggregateFunctionSum<AggregateFunctionSumWithOverflow>);
factory.registerFunction("sumKahan", createAggregateFunctionSum<AggregateFunctionSumKahan>);
}
}
|