1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
#pragma once
#include <AggregateFunctions/IAggregateFunction.h>
#include <AggregateFunctions/StatCommon.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnTuple.h>
#include <Common/assert_cast.h>
#include <Common/PODArray_fwd.h>
#include <base/types.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypeArray.h>
namespace DB
{
struct Settings;
struct RankCorrelationData : public StatisticalSample<Float64, Float64>
{
Float64 getResult()
{
RanksArray ranks_x;
std::tie(ranks_x, std::ignore) = computeRanksAndTieCorrection(this->x);
RanksArray ranks_y;
std::tie(ranks_y, std::ignore) = computeRanksAndTieCorrection(this->y);
/// Sizes can be non-equal due to skipped NaNs.
const Float64 size = static_cast<Float64>(std::min(this->size_x, this->size_y));
/// Count d^2 sum
Float64 answer = 0;
for (size_t j = 0; j < size; ++j)
answer += (ranks_x[j] - ranks_y[j]) * (ranks_x[j] - ranks_y[j]);
answer *= 6;
answer /= size * (size * size - 1);
answer = 1 - answer;
return answer;
}
};
class AggregateFunctionRankCorrelation :
public IAggregateFunctionDataHelper<RankCorrelationData, AggregateFunctionRankCorrelation>
{
public:
explicit AggregateFunctionRankCorrelation(const DataTypes & arguments)
:IAggregateFunctionDataHelper<RankCorrelationData, AggregateFunctionRankCorrelation> ({arguments}, {}, std::make_shared<DataTypeNumber<Float64>>())
{}
String getName() const override
{
return "rankCorr";
}
bool allocatesMemoryInArena() const override { return true; }
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena * arena) const override
{
Float64 new_x = columns[0]->getFloat64(row_num);
Float64 new_y = columns[1]->getFloat64(row_num);
this->data(place).addX(new_x, arena);
this->data(place).addY(new_y, arena);
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
auto & a = this->data(place);
const auto & b = this->data(rhs);
a.merge(b, arena);
}
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf, std::optional<size_t> /* version */) const override
{
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, std::optional<size_t> /* version */, Arena * arena) const override
{
this->data(place).read(buf, arena);
}
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena *) const override
{
auto answer = this->data(place).getResult();
auto & column = static_cast<ColumnVector<Float64> &>(to);
column.getData().push_back(answer);
}
};
}
|