1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
#pragma once
#include <unordered_map>
#include <base/sort.h>
#include <AggregateFunctions/AggregateFunctionCombinatorFactory.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnMap.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnVector.h>
#include <Core/ColumnWithTypeAndName.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeMap.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesNumber.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include "DataTypes/Serializations/ISerialization.h"
#include <base/IPv4andIPv6.h>
#include "base/types.h"
#include <Common/formatIPv6.h>
#include <Common/Arena.h>
#include "AggregateFunctions/AggregateFunctionFactory.h"
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
template <typename KeyType>
struct AggregateFunctionMapCombinatorData
{
using SearchType = KeyType;
std::unordered_map<KeyType, AggregateDataPtr> merged_maps;
static void writeKey(KeyType key, WriteBuffer & buf) { writeBinary(key, buf); }
static void readKey(KeyType & key, ReadBuffer & buf) { readBinary(key, buf); }
};
template <>
struct AggregateFunctionMapCombinatorData<String>
{
struct StringHash
{
using hash_type = std::hash<std::string_view>;
using is_transparent = void;
size_t operator()(std::string_view str) const { return hash_type{}(str); }
};
#ifdef __cpp_lib_generic_unordered_lookup
using SearchType = std::string_view;
#else
using SearchType = std::string;
#endif
std::unordered_map<String, AggregateDataPtr, StringHash, std::equal_to<>> merged_maps;
static void writeKey(String key, WriteBuffer & buf)
{
writeStringBinary(key, buf);
}
static void readKey(String & key, ReadBuffer & buf)
{
readStringBinary(key, buf);
}
};
/// Specialization for IPv6 - for historical reasons it should be stored as FixedString(16)
template <>
struct AggregateFunctionMapCombinatorData<IPv6>
{
struct IPv6Hash
{
using hash_type = std::hash<IPv6>;
using is_transparent = void;
size_t operator()(const IPv6 & ip) const { return hash_type{}(ip); }
};
using SearchType = IPv6;
std::unordered_map<IPv6, AggregateDataPtr, IPv6Hash, std::equal_to<>> merged_maps;
static void writeKey(const IPv6 & key, WriteBuffer & buf)
{
writeIPv6Binary(key, buf);
}
static void readKey(IPv6 & key, ReadBuffer & buf)
{
readIPv6Binary(key, buf);
}
};
template <typename KeyType>
class AggregateFunctionMap final
: public IAggregateFunctionDataHelper<AggregateFunctionMapCombinatorData<KeyType>, AggregateFunctionMap<KeyType>>
{
private:
DataTypePtr key_type;
AggregateFunctionPtr nested_func;
using Data = AggregateFunctionMapCombinatorData<KeyType>;
using Base = IAggregateFunctionDataHelper<Data, AggregateFunctionMap<KeyType>>;
public:
bool isState() const override
{
return nested_func->isState();
}
bool isVersioned() const override
{
return nested_func->isVersioned();
}
size_t getVersionFromRevision(size_t revision) const override
{
return nested_func->getVersionFromRevision(revision);
}
size_t getDefaultVersion() const override
{
return nested_func->getDefaultVersion();
}
AggregateFunctionMap(AggregateFunctionPtr nested, const DataTypes & types)
: Base(types, nested->getParameters(), std::make_shared<DataTypeMap>(DataTypes{getKeyType(types, nested), nested->getResultType()}))
, nested_func(nested)
{
key_type = getKeyType(types, nested_func);
}
String getName() const override { return nested_func->getName() + "Map"; }
static DataTypePtr getKeyType(const DataTypes & types, const AggregateFunctionPtr & nested)
{
if (types.size() != 1)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Aggregate function {}Map requires one map argument, but {} found", nested->getName(), types.size());
const auto * map_type = checkAndGetDataType<DataTypeMap>(types[0].get());
if (!map_type)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Aggregate function {}Map requires map as argument", nested->getName());
return map_type->getKeyType();
}
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena * arena) const override
{
const auto & map_column = assert_cast<const ColumnMap &>(*columns[0]);
const auto & map_nested_tuple = map_column.getNestedData();
const IColumn::Offsets & map_array_offsets = map_column.getNestedColumn().getOffsets();
const size_t offset = map_array_offsets[row_num - 1];
const size_t size = (map_array_offsets[row_num] - offset);
const auto & key_column = map_nested_tuple.getColumn(0);
const auto & val_column = map_nested_tuple.getColumn(1);
auto & merged_maps = this->data(place).merged_maps;
for (size_t i = 0; i < size; ++i)
{
typename Data::SearchType key;
if constexpr (std::is_same_v<KeyType, String>)
{
StringRef key_ref;
if (key_type->getTypeId() == TypeIndex::FixedString)
key_ref = assert_cast<const ColumnFixedString &>(key_column).getDataAt(offset + i);
else if (key_type->getTypeId() == TypeIndex::IPv6)
key_ref = assert_cast<const ColumnIPv6 &>(key_column).getDataAt(offset + i);
else
key_ref = assert_cast<const ColumnString &>(key_column).getDataAt(offset + i);
#ifdef __cpp_lib_generic_unordered_lookup
key = key_ref.toView();
#else
key = key_ref.toString();
#endif
}
else
{
key = assert_cast<const ColumnVector<KeyType> &>(key_column).getData()[offset + i];
}
AggregateDataPtr nested_place;
auto it = merged_maps.find(key);
if (it == merged_maps.end())
{
// create a new place for each key
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(key, nested_place);
}
else
nested_place = it->second;
const IColumn * nested_columns[1] = {&val_column};
nested_func->add(nested_place, nested_columns, offset + i, arena);
}
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
auto & merged_maps = this->data(place).merged_maps;
const auto & rhs_maps = this->data(rhs).merged_maps;
for (const auto & elem : rhs_maps)
{
const auto & it = merged_maps.find(elem.first);
AggregateDataPtr nested_place;
if (it == merged_maps.end())
{
// elem.second cannot be copied since this it will be destroyed after merging,
// and lead to use-after-free.
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(elem.first, nested_place);
}
else
{
nested_place = it->second;
}
nested_func->merge(nested_place, elem.second, arena);
}
}
template <bool up_to_state>
void destroyImpl(AggregateDataPtr __restrict place) const noexcept
{
AggregateFunctionMapCombinatorData<KeyType> & state = Base::data(place);
for (const auto & [key, nested_place] : state.merged_maps)
{
if constexpr (up_to_state)
nested_func->destroyUpToState(nested_place);
else
nested_func->destroy(nested_place);
}
state.~Data();
}
void destroy(AggregateDataPtr __restrict place) const noexcept override
{
destroyImpl<false>(place);
}
bool hasTrivialDestructor() const override
{
return std::is_trivially_destructible_v<Data> && nested_func->hasTrivialDestructor();
}
void destroyUpToState(AggregateDataPtr __restrict place) const noexcept override
{
destroyImpl<true>(place);
}
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf, std::optional<size_t> /* version */) const override
{
auto & merged_maps = this->data(place).merged_maps;
writeVarUInt(merged_maps.size(), buf);
for (const auto & elem : merged_maps)
{
this->data(place).writeKey(elem.first, buf);
nested_func->serialize(elem.second, buf);
}
}
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, std::optional<size_t> /* version */, Arena * arena) const override
{
auto & merged_maps = this->data(place).merged_maps;
UInt64 size;
readVarUInt(size, buf);
for (UInt64 i = 0; i < size; ++i)
{
KeyType key;
AggregateDataPtr nested_place;
this->data(place).readKey(key, buf);
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(key, nested_place);
nested_func->deserialize(nested_place, buf, std::nullopt, arena);
}
}
template <bool merge>
void insertResultIntoImpl(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const
{
auto & map_column = assert_cast<ColumnMap &>(to);
auto & nested_column = map_column.getNestedColumn();
auto & nested_data_column = map_column.getNestedData();
auto & key_column = nested_data_column.getColumn(0);
auto & val_column = nested_data_column.getColumn(1);
auto & merged_maps = this->data(place).merged_maps;
// sort the keys
std::vector<KeyType> keys;
keys.reserve(merged_maps.size());
for (auto & it : merged_maps)
{
keys.push_back(it.first);
}
::sort(keys.begin(), keys.end());
// insert using sorted keys to result column
for (auto & key : keys)
{
key_column.insert(key);
if constexpr (merge)
nested_func->insertMergeResultInto(merged_maps[key], val_column, arena);
else
nested_func->insertResultInto(merged_maps[key], val_column, arena);
}
IColumn::Offsets & res_offsets = nested_column.getOffsets();
res_offsets.push_back(val_column.size());
}
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const override
{
insertResultIntoImpl<false>(place, to, arena);
}
void insertMergeResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const override
{
insertResultIntoImpl<true>(place, to, arena);
}
bool allocatesMemoryInArena() const override { return true; }
AggregateFunctionPtr getNestedFunction() const override { return nested_func; }
};
}
|