1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
#pragma once
#include <unordered_set>
#include <AggregateFunctions/AggregateFunctionNull.h>
#include <Columns/ColumnsNumber.h>
#include <Common/assert_cast.h>
#include <base/arithmeticOverflow.h>
#include <base/sort.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypesNumber.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
namespace DB
{
namespace ErrorCodes
{
extern const int TOO_LARGE_ARRAY_SIZE;
}
/** Calculate total length of intervals without intersections. Each interval is the pair of numbers [begin, end];
* Returns UInt64 for integral types (UInt/Int*, Date/DateTime) and returns Float64 for Float*.
*
* Implementation simply stores intervals sorted by beginning and sums lengths at final.
*/
template <typename T>
struct AggregateFunctionIntervalLengthSumData
{
constexpr static size_t MAX_ARRAY_SIZE = 0xFFFFFF;
using Segment = std::pair<T, T>;
using Segments = PODArrayWithStackMemory<Segment, 64>;
bool sorted = false;
Segments segments;
void add(T begin, T end)
{
/// Reversed intervals are counted by absolute value of their length.
if (unlikely(end < begin))
std::swap(begin, end);
else if (unlikely(begin == end))
return;
if (sorted && !segments.empty())
sorted = segments.back().first <= begin;
segments.emplace_back(begin, end);
}
void merge(const AggregateFunctionIntervalLengthSumData & other)
{
if (other.segments.empty())
return;
const auto size = segments.size();
segments.insert(std::begin(other.segments), std::end(other.segments));
/// either sort whole container or do so partially merging ranges afterwards
if (!sorted && !other.sorted)
{
::sort(std::begin(segments), std::end(segments));
}
else
{
const auto begin = std::begin(segments);
const auto middle = std::next(begin, size);
const auto end = std::end(segments);
if (!sorted)
::sort(begin, middle);
if (!other.sorted)
::sort(middle, end);
std::inplace_merge(begin, middle, end);
}
sorted = true;
}
void sort()
{
if (sorted)
return;
::sort(std::begin(segments), std::end(segments));
sorted = true;
}
void serialize(WriteBuffer & buf) const
{
writeBinary(sorted, buf);
writeBinary(segments.size(), buf);
for (const auto & time_gap : segments)
{
writeBinary(time_gap.first, buf);
writeBinary(time_gap.second, buf);
}
}
void deserialize(ReadBuffer & buf)
{
readBinary(sorted, buf);
size_t size;
readBinary(size, buf);
if (unlikely(size > MAX_ARRAY_SIZE))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Too large array size (maximum: {})", MAX_ARRAY_SIZE);
segments.clear();
segments.reserve(size);
Segment segment;
for (size_t i = 0; i < size; ++i)
{
readBinary(segment.first, buf);
readBinary(segment.second, buf);
segments.emplace_back(segment);
}
}
};
template <typename T, typename Data>
class AggregateFunctionIntervalLengthSum final : public IAggregateFunctionDataHelper<Data, AggregateFunctionIntervalLengthSum<T, Data>>
{
private:
static auto NO_SANITIZE_UNDEFINED length(typename Data::Segment segment)
{
return segment.second - segment.first;
}
template <typename TResult>
TResult getIntervalLengthSum(Data & data) const
{
if (data.segments.empty())
return 0;
data.sort();
TResult res = 0;
typename Data::Segment curr_segment = data.segments[0];
for (size_t i = 1, size = data.segments.size(); i < size; ++i)
{
const typename Data::Segment & next_segment = data.segments[i];
/// Check if current interval intersects with next one then add length, otherwise advance interval end.
if (curr_segment.second < next_segment.first)
{
res += length(curr_segment);
curr_segment = next_segment;
}
else if (next_segment.second > curr_segment.second)
{
curr_segment.second = next_segment.second;
}
}
res += length(curr_segment);
return res;
}
public:
String getName() const override { return "intervalLengthSum"; }
explicit AggregateFunctionIntervalLengthSum(const DataTypes & arguments)
: IAggregateFunctionDataHelper<Data, AggregateFunctionIntervalLengthSum<T, Data>>(arguments, {}, createResultType())
{
}
static DataTypePtr createResultType()
{
if constexpr (std::is_floating_point_v<T>)
return std::make_shared<DataTypeFloat64>();
return std::make_shared<DataTypeUInt64>();
}
bool allocatesMemoryInArena() const override { return false; }
AggregateFunctionPtr getOwnNullAdapter(
const AggregateFunctionPtr & nested_function,
const DataTypes & arguments,
const Array & params,
const AggregateFunctionProperties & /*properties*/) const override
{
return std::make_shared<AggregateFunctionNullVariadic<false, false>>(nested_function, arguments, params);
}
void add(AggregateDataPtr __restrict place, const IColumn ** columns, const size_t row_num, Arena *) const override
{
auto begin = assert_cast<const ColumnVector<T> *>(columns[0])->getData()[row_num];
auto end = assert_cast<const ColumnVector<T> *>(columns[1])->getData()[row_num];
this->data(place).add(begin, end);
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf, std::optional<size_t> /* version */) const override
{
this->data(place).serialize(buf);
}
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, std::optional<size_t> /* version */, Arena *) const override
{
this->data(place).deserialize(buf);
}
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena *) const override
{
if constexpr (std::is_floating_point_v<T>)
assert_cast<ColumnFloat64 &>(to).getData().push_back(getIntervalLengthSum<Float64>(this->data(place)));
else
assert_cast<ColumnUInt64 &>(to).getData().push_back(getIntervalLengthSum<UInt64>(this->data(place)));
}
};
}
|