diff options
Diffstat (limited to 'contrib/tools/python3/src/Python/ceval.c')
-rw-r--r-- | contrib/tools/python3/src/Python/ceval.c | 5699 |
1 files changed, 5699 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Python/ceval.c b/contrib/tools/python3/src/Python/ceval.c new file mode 100644 index 0000000000..9a61f8a3c3 --- /dev/null +++ b/contrib/tools/python3/src/Python/ceval.c @@ -0,0 +1,5699 @@ + +/* Execute compiled code */ + +/* XXX TO DO: + XXX speed up searching for keywords by using a dictionary + XXX document it! + */ + +/* enable more aggressive intra-module optimizations, where available */ +#define PY_LOCAL_AGGRESSIVE + +#include "Python.h" +#include "pycore_abstract.h" // _PyIndex_Check() +#include "pycore_call.h" +#include "pycore_ceval.h" +#include "pycore_code.h" +#include "pycore_initconfig.h" +#include "pycore_object.h" +#include "pycore_pyerrors.h" +#include "pycore_pylifecycle.h" +#include "pycore_pymem.h" // _PyMem_IsPtrFreed() +#include "pycore_pystate.h" // _PyInterpreterState_GET() +#include "pycore_sysmodule.h" +#include "pycore_tupleobject.h" + +#include "code.h" +#include "dictobject.h" +#include "frameobject.h" +#include "opcode.h" +#include "pydtrace.h" +#include "setobject.h" + +#include <ctype.h> + +#ifdef Py_DEBUG +/* For debugging the interpreter: */ +#define LLTRACE 1 /* Low-level trace feature */ +#define CHECKEXC 1 /* Double-check exception checking */ +#endif + +#if !defined(Py_BUILD_CORE) +# error "ceval.c must be build with Py_BUILD_CORE define for best performance" +#endif + +_Py_IDENTIFIER(__name__); + +/* Forward declarations */ +Py_LOCAL_INLINE(PyObject *) call_function( + PyThreadState *tstate, PyObject ***pp_stack, + Py_ssize_t oparg, PyObject *kwnames); +static PyObject * do_call_core( + PyThreadState *tstate, PyObject *func, + PyObject *callargs, PyObject *kwdict); + +#ifdef LLTRACE +static int lltrace; +static int prtrace(PyThreadState *, PyObject *, const char *); +#endif +static int call_trace(Py_tracefunc, PyObject *, + PyThreadState *, PyFrameObject *, + int, PyObject *); +static int call_trace_protected(Py_tracefunc, PyObject *, + PyThreadState *, PyFrameObject *, + int, PyObject *); +static void call_exc_trace(Py_tracefunc, PyObject *, + PyThreadState *, PyFrameObject *); +static int maybe_call_line_trace(Py_tracefunc, PyObject *, + PyThreadState *, PyFrameObject *, + int *, int *, int *); +static void maybe_dtrace_line(PyFrameObject *, int *, int *, int *); +static void dtrace_function_entry(PyFrameObject *); +static void dtrace_function_return(PyFrameObject *); + +static PyObject * import_name(PyThreadState *, PyFrameObject *, + PyObject *, PyObject *, PyObject *); +static PyObject * import_from(PyThreadState *, PyObject *, PyObject *); +static int import_all_from(PyThreadState *, PyObject *, PyObject *); +static void format_exc_check_arg(PyThreadState *, PyObject *, const char *, PyObject *); +static void format_exc_unbound(PyThreadState *tstate, PyCodeObject *co, int oparg); +static PyObject * unicode_concatenate(PyThreadState *, PyObject *, PyObject *, + PyFrameObject *, const _Py_CODEUNIT *); +static PyObject * special_lookup(PyThreadState *, PyObject *, _Py_Identifier *); +static int check_args_iterable(PyThreadState *, PyObject *func, PyObject *vararg); +static void format_kwargs_error(PyThreadState *, PyObject *func, PyObject *kwargs); +static void format_awaitable_error(PyThreadState *, PyTypeObject *, int, int); + +#define NAME_ERROR_MSG \ + "name '%.200s' is not defined" +#define UNBOUNDLOCAL_ERROR_MSG \ + "local variable '%.200s' referenced before assignment" +#define UNBOUNDFREE_ERROR_MSG \ + "free variable '%.200s' referenced before assignment" \ + " in enclosing scope" + +/* Dynamic execution profile */ +#ifdef DYNAMIC_EXECUTION_PROFILE +#ifdef DXPAIRS +static long dxpairs[257][256]; +#define dxp dxpairs[256] +#else +static long dxp[256]; +#endif +#endif + +/* per opcode cache */ +#ifdef Py_DEBUG +// --with-pydebug is used to find memory leak. opcache makes it harder. +// So we disable opcache when Py_DEBUG is defined. +// See bpo-37146 +#define OPCACHE_MIN_RUNS 0 /* disable opcache */ +#else +#define OPCACHE_MIN_RUNS 1024 /* create opcache when code executed this time */ +#endif +#define OPCACHE_STATS 0 /* Enable stats */ + +#if OPCACHE_STATS +static size_t opcache_code_objects = 0; +static size_t opcache_code_objects_extra_mem = 0; + +static size_t opcache_global_opts = 0; +static size_t opcache_global_hits = 0; +static size_t opcache_global_misses = 0; +#endif + + +#ifndef NDEBUG +/* Ensure that tstate is valid: sanity check for PyEval_AcquireThread() and + PyEval_RestoreThread(). Detect if tstate memory was freed. It can happen + when a thread continues to run after Python finalization, especially + daemon threads. */ +static int +is_tstate_valid(PyThreadState *tstate) +{ + assert(!_PyMem_IsPtrFreed(tstate)); + assert(!_PyMem_IsPtrFreed(tstate->interp)); + return 1; +} +#endif + + +/* This can set eval_breaker to 0 even though gil_drop_request became + 1. We believe this is all right because the eval loop will release + the GIL eventually anyway. */ +static inline void +COMPUTE_EVAL_BREAKER(PyInterpreterState *interp, + struct _ceval_runtime_state *ceval, + struct _ceval_state *ceval2) +{ + _Py_atomic_store_relaxed(&ceval2->eval_breaker, + _Py_atomic_load_relaxed(&ceval2->gil_drop_request) + | (_Py_atomic_load_relaxed(&ceval->signals_pending) + && _Py_ThreadCanHandleSignals(interp)) + | (_Py_atomic_load_relaxed(&ceval2->pending.calls_to_do) + && _Py_ThreadCanHandlePendingCalls()) + | ceval2->pending.async_exc); +} + + +static inline void +SET_GIL_DROP_REQUEST(PyInterpreterState *interp) +{ + struct _ceval_state *ceval2 = &interp->ceval; + _Py_atomic_store_relaxed(&ceval2->gil_drop_request, 1); + _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1); +} + + +static inline void +RESET_GIL_DROP_REQUEST(PyInterpreterState *interp) +{ + struct _ceval_runtime_state *ceval = &interp->runtime->ceval; + struct _ceval_state *ceval2 = &interp->ceval; + _Py_atomic_store_relaxed(&ceval2->gil_drop_request, 0); + COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); +} + + +static inline void +SIGNAL_PENDING_CALLS(PyInterpreterState *interp) +{ + struct _ceval_runtime_state *ceval = &interp->runtime->ceval; + struct _ceval_state *ceval2 = &interp->ceval; + _Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 1); + COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); +} + + +static inline void +UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp) +{ + struct _ceval_runtime_state *ceval = &interp->runtime->ceval; + struct _ceval_state *ceval2 = &interp->ceval; + _Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 0); + COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); +} + + +static inline void +SIGNAL_PENDING_SIGNALS(PyInterpreterState *interp, int force) +{ + struct _ceval_runtime_state *ceval = &interp->runtime->ceval; + struct _ceval_state *ceval2 = &interp->ceval; + _Py_atomic_store_relaxed(&ceval->signals_pending, 1); + if (force) { + _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1); + } + else { + /* eval_breaker is not set to 1 if thread_can_handle_signals() is false */ + COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); + } +} + + +static inline void +UNSIGNAL_PENDING_SIGNALS(PyInterpreterState *interp) +{ + struct _ceval_runtime_state *ceval = &interp->runtime->ceval; + struct _ceval_state *ceval2 = &interp->ceval; + _Py_atomic_store_relaxed(&ceval->signals_pending, 0); + COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); +} + + +static inline void +SIGNAL_ASYNC_EXC(PyInterpreterState *interp) +{ + struct _ceval_state *ceval2 = &interp->ceval; + ceval2->pending.async_exc = 1; + _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1); +} + + +static inline void +UNSIGNAL_ASYNC_EXC(PyInterpreterState *interp) +{ + struct _ceval_runtime_state *ceval = &interp->runtime->ceval; + struct _ceval_state *ceval2 = &interp->ceval; + ceval2->pending.async_exc = 0; + COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); +} + + +#ifdef HAVE_ERRNO_H +#include <errno.h> +#endif +#include "ceval_gil.h" + +void _Py_NO_RETURN +_Py_FatalError_TstateNULL(const char *func) +{ + _Py_FatalErrorFunc(func, + "the function must be called with the GIL held, " + "but the GIL is released " + "(the current Python thread state is NULL)"); +} + + +int +_PyEval_ThreadsInitialized(_PyRuntimeState *runtime) +{ + return gil_created(&runtime->ceval.gil); +} + +int +PyEval_ThreadsInitialized(void) +{ + _PyRuntimeState *runtime = &_PyRuntime; + return _PyEval_ThreadsInitialized(runtime); +} + +PyStatus +_PyEval_InitGIL(PyThreadState *tstate) +{ + if (!_Py_IsMainInterpreter(tstate)) { + /* Currently, the GIL is shared by all interpreters, + and only the main interpreter is responsible to create + and destroy it. */ + return _PyStatus_OK(); + } + + struct _gil_runtime_state *gil = &tstate->interp->runtime->ceval.gil; + assert(!gil_created(gil)); + + PyThread_init_thread(); + create_gil(gil); + + take_gil(tstate); + + assert(gil_created(gil)); + return _PyStatus_OK(); +} + +void +_PyEval_FiniGIL(PyThreadState *tstate) +{ + if (!_Py_IsMainInterpreter(tstate)) { + /* Currently, the GIL is shared by all interpreters, + and only the main interpreter is responsible to create + and destroy it. */ + return; + } + + struct _gil_runtime_state *gil = &tstate->interp->runtime->ceval.gil; + if (!gil_created(gil)) { + /* First Py_InitializeFromConfig() call: the GIL doesn't exist + yet: do nothing. */ + return; + } + + destroy_gil(gil); + assert(!gil_created(gil)); +} + +void +PyEval_InitThreads(void) +{ + /* Do nothing: kept for backward compatibility */ +} + +void +_PyEval_Fini(void) +{ +#if OPCACHE_STATS + fprintf(stderr, "-- Opcode cache number of objects = %zd\n", + opcache_code_objects); + + fprintf(stderr, "-- Opcode cache total extra mem = %zd\n", + opcache_code_objects_extra_mem); + + fprintf(stderr, "\n"); + + fprintf(stderr, "-- Opcode cache LOAD_GLOBAL hits = %zd (%d%%)\n", + opcache_global_hits, + (int) (100.0 * opcache_global_hits / + (opcache_global_hits + opcache_global_misses))); + + fprintf(stderr, "-- Opcode cache LOAD_GLOBAL misses = %zd (%d%%)\n", + opcache_global_misses, + (int) (100.0 * opcache_global_misses / + (opcache_global_hits + opcache_global_misses))); + + fprintf(stderr, "-- Opcode cache LOAD_GLOBAL opts = %zd\n", + opcache_global_opts); + + fprintf(stderr, "\n"); +#endif +} + +void +PyEval_AcquireLock(void) +{ + _PyRuntimeState *runtime = &_PyRuntime; + PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime); + _Py_EnsureTstateNotNULL(tstate); + + take_gil(tstate); +} + +void +PyEval_ReleaseLock(void) +{ + _PyRuntimeState *runtime = &_PyRuntime; + PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime); + /* This function must succeed when the current thread state is NULL. + We therefore avoid PyThreadState_Get() which dumps a fatal error + in debug mode. */ + struct _ceval_runtime_state *ceval = &runtime->ceval; + struct _ceval_state *ceval2 = &tstate->interp->ceval; + drop_gil(ceval, ceval2, tstate); +} + +void +_PyEval_ReleaseLock(PyThreadState *tstate) +{ + struct _ceval_runtime_state *ceval = &tstate->interp->runtime->ceval; + struct _ceval_state *ceval2 = &tstate->interp->ceval; + drop_gil(ceval, ceval2, tstate); +} + +void +PyEval_AcquireThread(PyThreadState *tstate) +{ + _Py_EnsureTstateNotNULL(tstate); + + take_gil(tstate); + + struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate; + if (_PyThreadState_Swap(gilstate, tstate) != NULL) { + Py_FatalError("non-NULL old thread state"); + } +} + +void +PyEval_ReleaseThread(PyThreadState *tstate) +{ + assert(is_tstate_valid(tstate)); + + _PyRuntimeState *runtime = tstate->interp->runtime; + PyThreadState *new_tstate = _PyThreadState_Swap(&runtime->gilstate, NULL); + if (new_tstate != tstate) { + Py_FatalError("wrong thread state"); + } + struct _ceval_runtime_state *ceval = &runtime->ceval; + struct _ceval_state *ceval2 = &tstate->interp->ceval; + drop_gil(ceval, ceval2, tstate); +} + +#ifdef HAVE_FORK +/* This function is called from PyOS_AfterFork_Child to destroy all threads + * which are not running in the child process, and clear internal locks + * which might be held by those threads. + */ + +void +_PyEval_ReInitThreads(_PyRuntimeState *runtime) +{ + PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime); + _Py_EnsureTstateNotNULL(tstate); + + struct _gil_runtime_state *gil = &runtime->ceval.gil; + if (!gil_created(gil)) { + return; + } + recreate_gil(gil); + + take_gil(tstate); + + struct _pending_calls *pending = &tstate->interp->ceval.pending; + if (_PyThread_at_fork_reinit(&pending->lock) < 0) { + Py_FatalError("Can't initialize threads for pending calls"); + } + + /* Destroy all threads except the current one */ + _PyThreadState_DeleteExcept(runtime, tstate); +} +#endif + +/* This function is used to signal that async exceptions are waiting to be + raised. */ + +void +_PyEval_SignalAsyncExc(PyThreadState *tstate) +{ + assert(is_tstate_valid(tstate)); + SIGNAL_ASYNC_EXC(tstate->interp); +} + +PyThreadState * +PyEval_SaveThread(void) +{ + _PyRuntimeState *runtime = &_PyRuntime; + PyThreadState *tstate = _PyThreadState_Swap(&runtime->gilstate, NULL); + _Py_EnsureTstateNotNULL(tstate); + + struct _ceval_runtime_state *ceval = &runtime->ceval; + struct _ceval_state *ceval2 = &tstate->interp->ceval; + assert(gil_created(&ceval->gil)); + drop_gil(ceval, ceval2, tstate); + return tstate; +} + +void +PyEval_RestoreThread(PyThreadState *tstate) +{ + _Py_EnsureTstateNotNULL(tstate); + + take_gil(tstate); + + struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate; + _PyThreadState_Swap(gilstate, tstate); +} + + +/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX + signal handlers or Mac I/O completion routines) can schedule calls + to a function to be called synchronously. + The synchronous function is called with one void* argument. + It should return 0 for success or -1 for failure -- failure should + be accompanied by an exception. + + If registry succeeds, the registry function returns 0; if it fails + (e.g. due to too many pending calls) it returns -1 (without setting + an exception condition). + + Note that because registry may occur from within signal handlers, + or other asynchronous events, calling malloc() is unsafe! + + Any thread can schedule pending calls, but only the main thread + will execute them. + There is no facility to schedule calls to a particular thread, but + that should be easy to change, should that ever be required. In + that case, the static variables here should go into the python + threadstate. +*/ + +void +_PyEval_SignalReceived(PyInterpreterState *interp) +{ +#ifdef MS_WINDOWS + // bpo-42296: On Windows, _PyEval_SignalReceived() is called from a signal + // handler which can run in a thread different than the Python thread, in + // which case _Py_ThreadCanHandleSignals() is wrong. Ignore + // _Py_ThreadCanHandleSignals() and always set eval_breaker to 1. + // + // The next eval_frame_handle_pending() call will call + // _Py_ThreadCanHandleSignals() to recompute eval_breaker. + int force = 1; +#else + int force = 0; +#endif + /* bpo-30703: Function called when the C signal handler of Python gets a + signal. We cannot queue a callback using _PyEval_AddPendingCall() since + that function is not async-signal-safe. */ + SIGNAL_PENDING_SIGNALS(interp, force); +} + +/* Push one item onto the queue while holding the lock. */ +static int +_push_pending_call(struct _pending_calls *pending, + int (*func)(void *), void *arg) +{ + int i = pending->last; + int j = (i + 1) % NPENDINGCALLS; + if (j == pending->first) { + return -1; /* Queue full */ + } + pending->calls[i].func = func; + pending->calls[i].arg = arg; + pending->last = j; + return 0; +} + +/* Pop one item off the queue while holding the lock. */ +static void +_pop_pending_call(struct _pending_calls *pending, + int (**func)(void *), void **arg) +{ + int i = pending->first; + if (i == pending->last) { + return; /* Queue empty */ + } + + *func = pending->calls[i].func; + *arg = pending->calls[i].arg; + pending->first = (i + 1) % NPENDINGCALLS; +} + +/* This implementation is thread-safe. It allows + scheduling to be made from any thread, and even from an executing + callback. + */ + +int +_PyEval_AddPendingCall(PyInterpreterState *interp, + int (*func)(void *), void *arg) +{ + struct _pending_calls *pending = &interp->ceval.pending; + + /* Ensure that _PyEval_InitPendingCalls() was called + and that _PyEval_FiniPendingCalls() is not called yet. */ + assert(pending->lock != NULL); + + PyThread_acquire_lock(pending->lock, WAIT_LOCK); + int result = _push_pending_call(pending, func, arg); + PyThread_release_lock(pending->lock); + + /* signal main loop */ + SIGNAL_PENDING_CALLS(interp); + return result; +} + +int +Py_AddPendingCall(int (*func)(void *), void *arg) +{ + /* Best-effort to support subinterpreters and calls with the GIL released. + + First attempt _PyThreadState_GET() since it supports subinterpreters. + + If the GIL is released, _PyThreadState_GET() returns NULL . In this + case, use PyGILState_GetThisThreadState() which works even if the GIL + is released. + + Sadly, PyGILState_GetThisThreadState() doesn't support subinterpreters: + see bpo-10915 and bpo-15751. + + Py_AddPendingCall() doesn't require the caller to hold the GIL. */ + PyThreadState *tstate = _PyThreadState_GET(); + if (tstate == NULL) { + tstate = PyGILState_GetThisThreadState(); + } + + PyInterpreterState *interp; + if (tstate != NULL) { + interp = tstate->interp; + } + else { + /* Last resort: use the main interpreter */ + interp = _PyRuntime.interpreters.main; + } + return _PyEval_AddPendingCall(interp, func, arg); +} + +static int +handle_signals(PyThreadState *tstate) +{ + assert(is_tstate_valid(tstate)); + if (!_Py_ThreadCanHandleSignals(tstate->interp)) { + return 0; + } + + UNSIGNAL_PENDING_SIGNALS(tstate->interp); + if (_PyErr_CheckSignalsTstate(tstate) < 0) { + /* On failure, re-schedule a call to handle_signals(). */ + SIGNAL_PENDING_SIGNALS(tstate->interp, 0); + return -1; + } + return 0; +} + +static int +make_pending_calls(PyThreadState *tstate) +{ + assert(is_tstate_valid(tstate)); + + /* only execute pending calls on main thread */ + if (!_Py_ThreadCanHandlePendingCalls()) { + return 0; + } + + /* don't perform recursive pending calls */ + static int busy = 0; + if (busy) { + return 0; + } + busy = 1; + + /* unsignal before starting to call callbacks, so that any callback + added in-between re-signals */ + UNSIGNAL_PENDING_CALLS(tstate->interp); + int res = 0; + + /* perform a bounded number of calls, in case of recursion */ + struct _pending_calls *pending = &tstate->interp->ceval.pending; + for (int i=0; i<NPENDINGCALLS; i++) { + int (*func)(void *) = NULL; + void *arg = NULL; + + /* pop one item off the queue while holding the lock */ + PyThread_acquire_lock(pending->lock, WAIT_LOCK); + _pop_pending_call(pending, &func, &arg); + PyThread_release_lock(pending->lock); + + /* having released the lock, perform the callback */ + if (func == NULL) { + break; + } + res = func(arg); + if (res) { + goto error; + } + } + + busy = 0; + return res; + +error: + busy = 0; + SIGNAL_PENDING_CALLS(tstate->interp); + return res; +} + +void +_Py_FinishPendingCalls(PyThreadState *tstate) +{ + assert(PyGILState_Check()); + + struct _pending_calls *pending = &tstate->interp->ceval.pending; + + if (!_Py_atomic_load_relaxed(&(pending->calls_to_do))) { + return; + } + + if (make_pending_calls(tstate) < 0) { + PyObject *exc, *val, *tb; + _PyErr_Fetch(tstate, &exc, &val, &tb); + PyErr_BadInternalCall(); + _PyErr_ChainExceptions(exc, val, tb); + _PyErr_Print(tstate); + } +} + +/* Py_MakePendingCalls() is a simple wrapper for the sake + of backward-compatibility. */ +int +Py_MakePendingCalls(void) +{ + assert(PyGILState_Check()); + + PyThreadState *tstate = _PyThreadState_GET(); + + /* Python signal handler doesn't really queue a callback: it only signals + that a signal was received, see _PyEval_SignalReceived(). */ + int res = handle_signals(tstate); + if (res != 0) { + return res; + } + + res = make_pending_calls(tstate); + if (res != 0) { + return res; + } + + return 0; +} + +/* The interpreter's recursion limit */ + +#ifndef Py_DEFAULT_RECURSION_LIMIT +#define Py_DEFAULT_RECURSION_LIMIT 1000 +#endif + +int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT; + +void +_PyEval_InitRuntimeState(struct _ceval_runtime_state *ceval) +{ + _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT; + _gil_initialize(&ceval->gil); +} + +int +_PyEval_InitState(struct _ceval_state *ceval) +{ + ceval->recursion_limit = Py_DEFAULT_RECURSION_LIMIT; + + struct _pending_calls *pending = &ceval->pending; + assert(pending->lock == NULL); + + pending->lock = PyThread_allocate_lock(); + if (pending->lock == NULL) { + return -1; + } + + return 0; +} + +void +_PyEval_FiniState(struct _ceval_state *ceval) +{ + struct _pending_calls *pending = &ceval->pending; + if (pending->lock != NULL) { + PyThread_free_lock(pending->lock); + pending->lock = NULL; + } +} + +int +Py_GetRecursionLimit(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return tstate->interp->ceval.recursion_limit; +} + +void +Py_SetRecursionLimit(int new_limit) +{ + PyThreadState *tstate = _PyThreadState_GET(); + tstate->interp->ceval.recursion_limit = new_limit; + if (_Py_IsMainInterpreter(tstate)) { + _Py_CheckRecursionLimit = new_limit; + } +} + +/* The function _Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall() + if the recursion_depth reaches _Py_CheckRecursionLimit. + If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit + to guarantee that _Py_CheckRecursiveCall() is regularly called. + Without USE_STACKCHECK, there is no need for this. */ +int +_Py_CheckRecursiveCall(PyThreadState *tstate, const char *where) +{ + int recursion_limit = tstate->interp->ceval.recursion_limit; + +#ifdef USE_STACKCHECK + tstate->stackcheck_counter = 0; + if (PyOS_CheckStack()) { + --tstate->recursion_depth; + _PyErr_SetString(tstate, PyExc_MemoryError, "Stack overflow"); + return -1; + } + if (_Py_IsMainInterpreter(tstate)) { + /* Needed for ABI backwards-compatibility (see bpo-31857) */ + _Py_CheckRecursionLimit = recursion_limit; + } +#endif + if (tstate->recursion_critical) + /* Somebody asked that we don't check for recursion. */ + return 0; + if (tstate->overflowed) { + if (tstate->recursion_depth > recursion_limit + 50 || tstate->overflowed > 50) { + /* Overflowing while handling an overflow. Give up. */ + Py_FatalError("Cannot recover from stack overflow."); + } + } + else { + if (tstate->recursion_depth > recursion_limit) { + tstate->overflowed++; + _PyErr_Format(tstate, PyExc_RecursionError, + "maximum recursion depth exceeded%s", + where); + tstate->overflowed--; + --tstate->recursion_depth; + return -1; + } + } + return 0; +} + +static int do_raise(PyThreadState *tstate, PyObject *exc, PyObject *cause); +static int unpack_iterable(PyThreadState *, PyObject *, int, int, PyObject **); + +#define _Py_TracingPossible(ceval) ((ceval)->tracing_possible) + + +PyObject * +PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals) +{ + return PyEval_EvalCodeEx(co, + globals, locals, + (PyObject **)NULL, 0, + (PyObject **)NULL, 0, + (PyObject **)NULL, 0, + NULL, NULL); +} + + +/* Interpreter main loop */ + +PyObject * +PyEval_EvalFrame(PyFrameObject *f) +{ + /* Function kept for backward compatibility */ + PyThreadState *tstate = _PyThreadState_GET(); + return _PyEval_EvalFrame(tstate, f, 0); +} + +PyObject * +PyEval_EvalFrameEx(PyFrameObject *f, int throwflag) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return _PyEval_EvalFrame(tstate, f, throwflag); +} + + +/* Handle signals, pending calls, GIL drop request + and asynchronous exception */ +static int +eval_frame_handle_pending(PyThreadState *tstate) +{ + _PyRuntimeState * const runtime = &_PyRuntime; + struct _ceval_runtime_state *ceval = &runtime->ceval; + + /* Pending signals */ + if (_Py_atomic_load_relaxed(&ceval->signals_pending)) { + if (handle_signals(tstate) != 0) { + return -1; + } + } + + /* Pending calls */ + struct _ceval_state *ceval2 = &tstate->interp->ceval; + if (_Py_atomic_load_relaxed(&ceval2->pending.calls_to_do)) { + if (make_pending_calls(tstate) != 0) { + return -1; + } + } + + /* GIL drop request */ + if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) { + /* Give another thread a chance */ + if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) { + Py_FatalError("tstate mix-up"); + } + drop_gil(ceval, ceval2, tstate); + + /* Other threads may run now */ + + take_gil(tstate); + + if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) { + Py_FatalError("orphan tstate"); + } + } + + /* Check for asynchronous exception. */ + if (tstate->async_exc != NULL) { + PyObject *exc = tstate->async_exc; + tstate->async_exc = NULL; + UNSIGNAL_ASYNC_EXC(tstate->interp); + _PyErr_SetNone(tstate, exc); + Py_DECREF(exc); + return -1; + } + +#ifdef MS_WINDOWS + // bpo-42296: On Windows, _PyEval_SignalReceived() can be called in a + // different thread than the Python thread, in which case + // _Py_ThreadCanHandleSignals() is wrong. Recompute eval_breaker in the + // current Python thread with the correct _Py_ThreadCanHandleSignals() + // value. It prevents to interrupt the eval loop at every instruction if + // the current Python thread cannot handle signals (if + // _Py_ThreadCanHandleSignals() is false). + COMPUTE_EVAL_BREAKER(tstate->interp, ceval, ceval2); +#endif + + return 0; +} + +PyObject* _Py_HOT_FUNCTION +_PyEval_EvalFrameDefault(PyThreadState *tstate, PyFrameObject *f, int throwflag) +{ + _Py_EnsureTstateNotNULL(tstate); + +#ifdef DXPAIRS + int lastopcode = 0; +#endif + PyObject **stack_pointer; /* Next free slot in value stack */ + const _Py_CODEUNIT *next_instr; + int opcode; /* Current opcode */ + int oparg; /* Current opcode argument, if any */ + PyObject **fastlocals, **freevars; + PyObject *retval = NULL; /* Return value */ + struct _ceval_state * const ceval2 = &tstate->interp->ceval; + _Py_atomic_int * const eval_breaker = &ceval2->eval_breaker; + PyCodeObject *co; + + /* when tracing we set things up so that + + not (instr_lb <= current_bytecode_offset < instr_ub) + + is true when the line being executed has changed. The + initial values are such as to make this false the first + time it is tested. */ + int instr_ub = -1, instr_lb = 0, instr_prev = -1; + + const _Py_CODEUNIT *first_instr; + PyObject *names; + PyObject *consts; + _PyOpcache *co_opcache; + +#ifdef LLTRACE + _Py_IDENTIFIER(__ltrace__); +#endif + +/* Computed GOTOs, or + the-optimization-commonly-but-improperly-known-as-"threaded code" + using gcc's labels-as-values extension + (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html). + + The traditional bytecode evaluation loop uses a "switch" statement, which + decent compilers will optimize as a single indirect branch instruction + combined with a lookup table of jump addresses. However, since the + indirect jump instruction is shared by all opcodes, the CPU will have a + hard time making the right prediction for where to jump next (actually, + it will be always wrong except in the uncommon case of a sequence of + several identical opcodes). + + "Threaded code" in contrast, uses an explicit jump table and an explicit + indirect jump instruction at the end of each opcode. Since the jump + instruction is at a different address for each opcode, the CPU will make a + separate prediction for each of these instructions, which is equivalent to + predicting the second opcode of each opcode pair. These predictions have + a much better chance to turn out valid, especially in small bytecode loops. + + A mispredicted branch on a modern CPU flushes the whole pipeline and + can cost several CPU cycles (depending on the pipeline depth), + and potentially many more instructions (depending on the pipeline width). + A correctly predicted branch, however, is nearly free. + + At the time of this writing, the "threaded code" version is up to 15-20% + faster than the normal "switch" version, depending on the compiler and the + CPU architecture. + + We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined, + because it would render the measurements invalid. + + + NOTE: care must be taken that the compiler doesn't try to "optimize" the + indirect jumps by sharing them between all opcodes. Such optimizations + can be disabled on gcc by using the -fno-gcse flag (or possibly + -fno-crossjumping). +*/ + +#ifdef DYNAMIC_EXECUTION_PROFILE +#undef USE_COMPUTED_GOTOS +#define USE_COMPUTED_GOTOS 0 +#endif + +#ifdef HAVE_COMPUTED_GOTOS + #ifndef USE_COMPUTED_GOTOS + #define USE_COMPUTED_GOTOS 1 + #endif +#else + #if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS + #error "Computed gotos are not supported on this compiler." + #endif + #undef USE_COMPUTED_GOTOS + #define USE_COMPUTED_GOTOS 0 +#endif + +#if USE_COMPUTED_GOTOS +/* Import the static jump table */ +#include "opcode_targets.h" + +#define TARGET(op) \ + op: \ + TARGET_##op + +#ifdef LLTRACE +#define FAST_DISPATCH() \ + { \ + if (!lltrace && !_Py_TracingPossible(ceval2) && !PyDTrace_LINE_ENABLED()) { \ + f->f_lasti = INSTR_OFFSET(); \ + NEXTOPARG(); \ + goto *opcode_targets[opcode]; \ + } \ + goto fast_next_opcode; \ + } +#else +#define FAST_DISPATCH() \ + { \ + if (!_Py_TracingPossible(ceval2) && !PyDTrace_LINE_ENABLED()) { \ + f->f_lasti = INSTR_OFFSET(); \ + NEXTOPARG(); \ + goto *opcode_targets[opcode]; \ + } \ + goto fast_next_opcode; \ + } +#endif + +#define DISPATCH() \ + { \ + if (!_Py_atomic_load_relaxed(eval_breaker)) { \ + FAST_DISPATCH(); \ + } \ + continue; \ + } + +#else +#define TARGET(op) op +#define FAST_DISPATCH() goto fast_next_opcode +#define DISPATCH() continue +#endif + + +/* Tuple access macros */ + +#ifndef Py_DEBUG +#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i)) +#else +#define GETITEM(v, i) PyTuple_GetItem((v), (i)) +#endif + +/* Code access macros */ + +/* The integer overflow is checked by an assertion below. */ +#define INSTR_OFFSET() \ + (sizeof(_Py_CODEUNIT) * (int)(next_instr - first_instr)) +#define NEXTOPARG() do { \ + _Py_CODEUNIT word = *next_instr; \ + opcode = _Py_OPCODE(word); \ + oparg = _Py_OPARG(word); \ + next_instr++; \ + } while (0) +#define JUMPTO(x) (next_instr = first_instr + (x) / sizeof(_Py_CODEUNIT)) +#define JUMPBY(x) (next_instr += (x) / sizeof(_Py_CODEUNIT)) + +/* OpCode prediction macros + Some opcodes tend to come in pairs thus making it possible to + predict the second code when the first is run. For example, + COMPARE_OP is often followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE. + + Verifying the prediction costs a single high-speed test of a register + variable against a constant. If the pairing was good, then the + processor's own internal branch predication has a high likelihood of + success, resulting in a nearly zero-overhead transition to the + next opcode. A successful prediction saves a trip through the eval-loop + including its unpredictable switch-case branch. Combined with the + processor's internal branch prediction, a successful PREDICT has the + effect of making the two opcodes run as if they were a single new opcode + with the bodies combined. + + If collecting opcode statistics, your choices are to either keep the + predictions turned-on and interpret the results as if some opcodes + had been combined or turn-off predictions so that the opcode frequency + counter updates for both opcodes. + + Opcode prediction is disabled with threaded code, since the latter allows + the CPU to record separate branch prediction information for each + opcode. + +*/ + +#define PREDICT_ID(op) PRED_##op + +#if defined(DYNAMIC_EXECUTION_PROFILE) || USE_COMPUTED_GOTOS +#define PREDICT(op) if (0) goto PREDICT_ID(op) +#else +#define PREDICT(op) \ + do { \ + _Py_CODEUNIT word = *next_instr; \ + opcode = _Py_OPCODE(word); \ + if (opcode == op) { \ + oparg = _Py_OPARG(word); \ + next_instr++; \ + goto PREDICT_ID(op); \ + } \ + } while(0) +#endif +#define PREDICTED(op) PREDICT_ID(op): + + +/* Stack manipulation macros */ + +/* The stack can grow at most MAXINT deep, as co_nlocals and + co_stacksize are ints. */ +#define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack)) +#define EMPTY() (STACK_LEVEL() == 0) +#define TOP() (stack_pointer[-1]) +#define SECOND() (stack_pointer[-2]) +#define THIRD() (stack_pointer[-3]) +#define FOURTH() (stack_pointer[-4]) +#define PEEK(n) (stack_pointer[-(n)]) +#define SET_TOP(v) (stack_pointer[-1] = (v)) +#define SET_SECOND(v) (stack_pointer[-2] = (v)) +#define SET_THIRD(v) (stack_pointer[-3] = (v)) +#define SET_FOURTH(v) (stack_pointer[-4] = (v)) +#define SET_VALUE(n, v) (stack_pointer[-(n)] = (v)) +#define BASIC_STACKADJ(n) (stack_pointer += n) +#define BASIC_PUSH(v) (*stack_pointer++ = (v)) +#define BASIC_POP() (*--stack_pointer) + +#ifdef LLTRACE +#define PUSH(v) { (void)(BASIC_PUSH(v), \ + lltrace && prtrace(tstate, TOP(), "push")); \ + assert(STACK_LEVEL() <= co->co_stacksize); } +#define POP() ((void)(lltrace && prtrace(tstate, TOP(), "pop")), \ + BASIC_POP()) +#define STACK_GROW(n) do { \ + assert(n >= 0); \ + (void)(BASIC_STACKADJ(n), \ + lltrace && prtrace(tstate, TOP(), "stackadj")); \ + assert(STACK_LEVEL() <= co->co_stacksize); \ + } while (0) +#define STACK_SHRINK(n) do { \ + assert(n >= 0); \ + (void)(lltrace && prtrace(tstate, TOP(), "stackadj")); \ + (void)(BASIC_STACKADJ(-n)); \ + assert(STACK_LEVEL() <= co->co_stacksize); \ + } while (0) +#define EXT_POP(STACK_POINTER) ((void)(lltrace && \ + prtrace(tstate, (STACK_POINTER)[-1], "ext_pop")), \ + *--(STACK_POINTER)) +#else +#define PUSH(v) BASIC_PUSH(v) +#define POP() BASIC_POP() +#define STACK_GROW(n) BASIC_STACKADJ(n) +#define STACK_SHRINK(n) BASIC_STACKADJ(-n) +#define EXT_POP(STACK_POINTER) (*--(STACK_POINTER)) +#endif + +/* Local variable macros */ + +#define GETLOCAL(i) (fastlocals[i]) + +/* The SETLOCAL() macro must not DECREF the local variable in-place and + then store the new value; it must copy the old value to a temporary + value, then store the new value, and then DECREF the temporary value. + This is because it is possible that during the DECREF the frame is + accessed by other code (e.g. a __del__ method or gc.collect()) and the + variable would be pointing to already-freed memory. */ +#define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \ + GETLOCAL(i) = value; \ + Py_XDECREF(tmp); } while (0) + + +#define UNWIND_BLOCK(b) \ + while (STACK_LEVEL() > (b)->b_level) { \ + PyObject *v = POP(); \ + Py_XDECREF(v); \ + } + +#define UNWIND_EXCEPT_HANDLER(b) \ + do { \ + PyObject *type, *value, *traceback; \ + _PyErr_StackItem *exc_info; \ + assert(STACK_LEVEL() >= (b)->b_level + 3); \ + while (STACK_LEVEL() > (b)->b_level + 3) { \ + value = POP(); \ + Py_XDECREF(value); \ + } \ + exc_info = tstate->exc_info; \ + type = exc_info->exc_type; \ + value = exc_info->exc_value; \ + traceback = exc_info->exc_traceback; \ + exc_info->exc_type = POP(); \ + exc_info->exc_value = POP(); \ + exc_info->exc_traceback = POP(); \ + Py_XDECREF(type); \ + Py_XDECREF(value); \ + Py_XDECREF(traceback); \ + } while(0) + + /* macros for opcode cache */ +#define OPCACHE_CHECK() \ + do { \ + co_opcache = NULL; \ + if (co->co_opcache != NULL) { \ + unsigned char co_opt_offset = \ + co->co_opcache_map[next_instr - first_instr]; \ + if (co_opt_offset > 0) { \ + assert(co_opt_offset <= co->co_opcache_size); \ + co_opcache = &co->co_opcache[co_opt_offset - 1]; \ + assert(co_opcache != NULL); \ + } \ + } \ + } while (0) + +#if OPCACHE_STATS + +#define OPCACHE_STAT_GLOBAL_HIT() \ + do { \ + if (co->co_opcache != NULL) opcache_global_hits++; \ + } while (0) + +#define OPCACHE_STAT_GLOBAL_MISS() \ + do { \ + if (co->co_opcache != NULL) opcache_global_misses++; \ + } while (0) + +#define OPCACHE_STAT_GLOBAL_OPT() \ + do { \ + if (co->co_opcache != NULL) opcache_global_opts++; \ + } while (0) + +#else /* OPCACHE_STATS */ + +#define OPCACHE_STAT_GLOBAL_HIT() +#define OPCACHE_STAT_GLOBAL_MISS() +#define OPCACHE_STAT_GLOBAL_OPT() + +#endif + +/* Start of code */ + + /* push frame */ + if (_Py_EnterRecursiveCall(tstate, "")) { + return NULL; + } + + tstate->frame = f; + + if (tstate->use_tracing) { + if (tstate->c_tracefunc != NULL) { + /* tstate->c_tracefunc, if defined, is a + function that will be called on *every* entry + to a code block. Its return value, if not + None, is a function that will be called at + the start of each executed line of code. + (Actually, the function must return itself + in order to continue tracing.) The trace + functions are called with three arguments: + a pointer to the current frame, a string + indicating why the function is called, and + an argument which depends on the situation. + The global trace function is also called + whenever an exception is detected. */ + if (call_trace_protected(tstate->c_tracefunc, + tstate->c_traceobj, + tstate, f, PyTrace_CALL, Py_None)) { + /* Trace function raised an error */ + goto exit_eval_frame; + } + } + if (tstate->c_profilefunc != NULL) { + /* Similar for c_profilefunc, except it needn't + return itself and isn't called for "line" events */ + if (call_trace_protected(tstate->c_profilefunc, + tstate->c_profileobj, + tstate, f, PyTrace_CALL, Py_None)) { + /* Profile function raised an error */ + goto exit_eval_frame; + } + } + } + + if (PyDTrace_FUNCTION_ENTRY_ENABLED()) + dtrace_function_entry(f); + + co = f->f_code; + names = co->co_names; + consts = co->co_consts; + fastlocals = f->f_localsplus; + freevars = f->f_localsplus + co->co_nlocals; + assert(PyBytes_Check(co->co_code)); + assert(PyBytes_GET_SIZE(co->co_code) <= INT_MAX); + assert(PyBytes_GET_SIZE(co->co_code) % sizeof(_Py_CODEUNIT) == 0); + assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(co->co_code), sizeof(_Py_CODEUNIT))); + first_instr = (_Py_CODEUNIT *) PyBytes_AS_STRING(co->co_code); + /* + f->f_lasti refers to the index of the last instruction, + unless it's -1 in which case next_instr should be first_instr. + + YIELD_FROM sets f_lasti to itself, in order to repeatedly yield + multiple values. + + When the PREDICT() macros are enabled, some opcode pairs follow in + direct succession without updating f->f_lasti. A successful + prediction effectively links the two codes together as if they + were a single new opcode; accordingly,f->f_lasti will point to + the first code in the pair (for instance, GET_ITER followed by + FOR_ITER is effectively a single opcode and f->f_lasti will point + to the beginning of the combined pair.) + */ + assert(f->f_lasti >= -1); + next_instr = first_instr; + if (f->f_lasti >= 0) { + assert(f->f_lasti % sizeof(_Py_CODEUNIT) == 0); + next_instr += f->f_lasti / sizeof(_Py_CODEUNIT) + 1; + } + stack_pointer = f->f_stacktop; + assert(stack_pointer != NULL); + f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */ + f->f_executing = 1; + + if (co->co_opcache_flag < OPCACHE_MIN_RUNS) { + co->co_opcache_flag++; + if (co->co_opcache_flag == OPCACHE_MIN_RUNS) { + if (_PyCode_InitOpcache(co) < 0) { + goto exit_eval_frame; + } +#if OPCACHE_STATS + opcache_code_objects_extra_mem += + PyBytes_Size(co->co_code) / sizeof(_Py_CODEUNIT) + + sizeof(_PyOpcache) * co->co_opcache_size; + opcache_code_objects++; +#endif + } + } + +#ifdef LLTRACE + lltrace = _PyDict_GetItemId(f->f_globals, &PyId___ltrace__) != NULL; +#endif + + if (throwflag) /* support for generator.throw() */ + goto error; + +#ifdef Py_DEBUG + /* _PyEval_EvalFrameDefault() must not be called with an exception set, + because it can clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!_PyErr_Occurred(tstate)); +#endif + +main_loop: + for (;;) { + assert(stack_pointer >= f->f_valuestack); /* else underflow */ + assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */ + assert(!_PyErr_Occurred(tstate)); + + /* Do periodic things. Doing this every time through + the loop would add too much overhead, so we do it + only every Nth instruction. We also do it if + ``pending.calls_to_do'' is set, i.e. when an asynchronous + event needs attention (e.g. a signal handler or + async I/O handler); see Py_AddPendingCall() and + Py_MakePendingCalls() above. */ + + if (_Py_atomic_load_relaxed(eval_breaker)) { + opcode = _Py_OPCODE(*next_instr); + if (opcode == SETUP_FINALLY || + opcode == SETUP_WITH || + opcode == BEFORE_ASYNC_WITH || + opcode == YIELD_FROM) { + /* Few cases where we skip running signal handlers and other + pending calls: + - If we're about to enter the 'with:'. It will prevent + emitting a resource warning in the common idiom + 'with open(path) as file:'. + - If we're about to enter the 'async with:'. + - If we're about to enter the 'try:' of a try/finally (not + *very* useful, but might help in some cases and it's + traditional) + - If we're resuming a chain of nested 'yield from' or + 'await' calls, then each frame is parked with YIELD_FROM + as its next opcode. If the user hit control-C we want to + wait until we've reached the innermost frame before + running the signal handler and raising KeyboardInterrupt + (see bpo-30039). + */ + goto fast_next_opcode; + } + + if (eval_frame_handle_pending(tstate) != 0) { + goto error; + } + } + + fast_next_opcode: + f->f_lasti = INSTR_OFFSET(); + + if (PyDTrace_LINE_ENABLED()) + maybe_dtrace_line(f, &instr_lb, &instr_ub, &instr_prev); + + /* line-by-line tracing support */ + + if (_Py_TracingPossible(ceval2) && + tstate->c_tracefunc != NULL && !tstate->tracing) { + int err; + /* see maybe_call_line_trace + for expository comments */ + f->f_stacktop = stack_pointer; + + err = maybe_call_line_trace(tstate->c_tracefunc, + tstate->c_traceobj, + tstate, f, + &instr_lb, &instr_ub, &instr_prev); + /* Reload possibly changed frame fields */ + JUMPTO(f->f_lasti); + if (f->f_stacktop != NULL) { + stack_pointer = f->f_stacktop; + f->f_stacktop = NULL; + } + if (err) + /* trace function raised an exception */ + goto error; + } + + /* Extract opcode and argument */ + + NEXTOPARG(); + dispatch_opcode: +#ifdef DYNAMIC_EXECUTION_PROFILE +#ifdef DXPAIRS + dxpairs[lastopcode][opcode]++; + lastopcode = opcode; +#endif + dxp[opcode]++; +#endif + +#ifdef LLTRACE + /* Instruction tracing */ + + if (lltrace) { + if (HAS_ARG(opcode)) { + printf("%d: %d, %d\n", + f->f_lasti, opcode, oparg); + } + else { + printf("%d: %d\n", + f->f_lasti, opcode); + } + } +#endif + + switch (opcode) { + + /* BEWARE! + It is essential that any operation that fails must goto error + and that all operation that succeed call [FAST_]DISPATCH() ! */ + + case TARGET(NOP): { + FAST_DISPATCH(); + } + + case TARGET(LOAD_FAST): { + PyObject *value = GETLOCAL(oparg); + if (value == NULL) { + format_exc_check_arg(tstate, PyExc_UnboundLocalError, + UNBOUNDLOCAL_ERROR_MSG, + PyTuple_GetItem(co->co_varnames, oparg)); + goto error; + } + Py_INCREF(value); + PUSH(value); + FAST_DISPATCH(); + } + + case TARGET(LOAD_CONST): { + PREDICTED(LOAD_CONST); + PyObject *value = GETITEM(consts, oparg); + Py_INCREF(value); + PUSH(value); + FAST_DISPATCH(); + } + + case TARGET(STORE_FAST): { + PREDICTED(STORE_FAST); + PyObject *value = POP(); + SETLOCAL(oparg, value); + FAST_DISPATCH(); + } + + case TARGET(POP_TOP): { + PyObject *value = POP(); + Py_DECREF(value); + FAST_DISPATCH(); + } + + case TARGET(ROT_TWO): { + PyObject *top = TOP(); + PyObject *second = SECOND(); + SET_TOP(second); + SET_SECOND(top); + FAST_DISPATCH(); + } + + case TARGET(ROT_THREE): { + PyObject *top = TOP(); + PyObject *second = SECOND(); + PyObject *third = THIRD(); + SET_TOP(second); + SET_SECOND(third); + SET_THIRD(top); + FAST_DISPATCH(); + } + + case TARGET(ROT_FOUR): { + PyObject *top = TOP(); + PyObject *second = SECOND(); + PyObject *third = THIRD(); + PyObject *fourth = FOURTH(); + SET_TOP(second); + SET_SECOND(third); + SET_THIRD(fourth); + SET_FOURTH(top); + FAST_DISPATCH(); + } + + case TARGET(DUP_TOP): { + PyObject *top = TOP(); + Py_INCREF(top); + PUSH(top); + FAST_DISPATCH(); + } + + case TARGET(DUP_TOP_TWO): { + PyObject *top = TOP(); + PyObject *second = SECOND(); + Py_INCREF(top); + Py_INCREF(second); + STACK_GROW(2); + SET_TOP(top); + SET_SECOND(second); + FAST_DISPATCH(); + } + + case TARGET(UNARY_POSITIVE): { + PyObject *value = TOP(); + PyObject *res = PyNumber_Positive(value); + Py_DECREF(value); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(UNARY_NEGATIVE): { + PyObject *value = TOP(); + PyObject *res = PyNumber_Negative(value); + Py_DECREF(value); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(UNARY_NOT): { + PyObject *value = TOP(); + int err = PyObject_IsTrue(value); + Py_DECREF(value); + if (err == 0) { + Py_INCREF(Py_True); + SET_TOP(Py_True); + DISPATCH(); + } + else if (err > 0) { + Py_INCREF(Py_False); + SET_TOP(Py_False); + DISPATCH(); + } + STACK_SHRINK(1); + goto error; + } + + case TARGET(UNARY_INVERT): { + PyObject *value = TOP(); + PyObject *res = PyNumber_Invert(value); + Py_DECREF(value); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_POWER): { + PyObject *exp = POP(); + PyObject *base = TOP(); + PyObject *res = PyNumber_Power(base, exp, Py_None); + Py_DECREF(base); + Py_DECREF(exp); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_MULTIPLY): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_Multiply(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_MATRIX_MULTIPLY): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_MatrixMultiply(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_TRUE_DIVIDE): { + PyObject *divisor = POP(); + PyObject *dividend = TOP(); + PyObject *quotient = PyNumber_TrueDivide(dividend, divisor); + Py_DECREF(dividend); + Py_DECREF(divisor); + SET_TOP(quotient); + if (quotient == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_FLOOR_DIVIDE): { + PyObject *divisor = POP(); + PyObject *dividend = TOP(); + PyObject *quotient = PyNumber_FloorDivide(dividend, divisor); + Py_DECREF(dividend); + Py_DECREF(divisor); + SET_TOP(quotient); + if (quotient == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_MODULO): { + PyObject *divisor = POP(); + PyObject *dividend = TOP(); + PyObject *res; + if (PyUnicode_CheckExact(dividend) && ( + !PyUnicode_Check(divisor) || PyUnicode_CheckExact(divisor))) { + // fast path; string formatting, but not if the RHS is a str subclass + // (see issue28598) + res = PyUnicode_Format(dividend, divisor); + } else { + res = PyNumber_Remainder(dividend, divisor); + } + Py_DECREF(divisor); + Py_DECREF(dividend); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_ADD): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *sum; + /* NOTE(haypo): Please don't try to micro-optimize int+int on + CPython using bytecode, it is simply worthless. + See http://bugs.python.org/issue21955 and + http://bugs.python.org/issue10044 for the discussion. In short, + no patch shown any impact on a realistic benchmark, only a minor + speedup on microbenchmarks. */ + if (PyUnicode_CheckExact(left) && + PyUnicode_CheckExact(right)) { + sum = unicode_concatenate(tstate, left, right, f, next_instr); + /* unicode_concatenate consumed the ref to left */ + } + else { + sum = PyNumber_Add(left, right); + Py_DECREF(left); + } + Py_DECREF(right); + SET_TOP(sum); + if (sum == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_SUBTRACT): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *diff = PyNumber_Subtract(left, right); + Py_DECREF(right); + Py_DECREF(left); + SET_TOP(diff); + if (diff == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_SUBSCR): { + PyObject *sub = POP(); + PyObject *container = TOP(); + PyObject *res = PyObject_GetItem(container, sub); + Py_DECREF(container); + Py_DECREF(sub); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_LSHIFT): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_Lshift(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_RSHIFT): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_Rshift(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_AND): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_And(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_XOR): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_Xor(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(BINARY_OR): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_Or(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(LIST_APPEND): { + PyObject *v = POP(); + PyObject *list = PEEK(oparg); + int err; + err = PyList_Append(list, v); + Py_DECREF(v); + if (err != 0) + goto error; + PREDICT(JUMP_ABSOLUTE); + DISPATCH(); + } + + case TARGET(SET_ADD): { + PyObject *v = POP(); + PyObject *set = PEEK(oparg); + int err; + err = PySet_Add(set, v); + Py_DECREF(v); + if (err != 0) + goto error; + PREDICT(JUMP_ABSOLUTE); + DISPATCH(); + } + + case TARGET(INPLACE_POWER): { + PyObject *exp = POP(); + PyObject *base = TOP(); + PyObject *res = PyNumber_InPlacePower(base, exp, Py_None); + Py_DECREF(base); + Py_DECREF(exp); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_MULTIPLY): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceMultiply(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_MATRIX_MULTIPLY): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceMatrixMultiply(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_TRUE_DIVIDE): { + PyObject *divisor = POP(); + PyObject *dividend = TOP(); + PyObject *quotient = PyNumber_InPlaceTrueDivide(dividend, divisor); + Py_DECREF(dividend); + Py_DECREF(divisor); + SET_TOP(quotient); + if (quotient == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_FLOOR_DIVIDE): { + PyObject *divisor = POP(); + PyObject *dividend = TOP(); + PyObject *quotient = PyNumber_InPlaceFloorDivide(dividend, divisor); + Py_DECREF(dividend); + Py_DECREF(divisor); + SET_TOP(quotient); + if (quotient == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_MODULO): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *mod = PyNumber_InPlaceRemainder(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(mod); + if (mod == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_ADD): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *sum; + if (PyUnicode_CheckExact(left) && PyUnicode_CheckExact(right)) { + sum = unicode_concatenate(tstate, left, right, f, next_instr); + /* unicode_concatenate consumed the ref to left */ + } + else { + sum = PyNumber_InPlaceAdd(left, right); + Py_DECREF(left); + } + Py_DECREF(right); + SET_TOP(sum); + if (sum == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_SUBTRACT): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *diff = PyNumber_InPlaceSubtract(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(diff); + if (diff == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_LSHIFT): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceLshift(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_RSHIFT): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceRshift(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_AND): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceAnd(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_XOR): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceXor(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(INPLACE_OR): { + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyNumber_InPlaceOr(left, right); + Py_DECREF(left); + Py_DECREF(right); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(STORE_SUBSCR): { + PyObject *sub = TOP(); + PyObject *container = SECOND(); + PyObject *v = THIRD(); + int err; + STACK_SHRINK(3); + /* container[sub] = v */ + err = PyObject_SetItem(container, sub, v); + Py_DECREF(v); + Py_DECREF(container); + Py_DECREF(sub); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(DELETE_SUBSCR): { + PyObject *sub = TOP(); + PyObject *container = SECOND(); + int err; + STACK_SHRINK(2); + /* del container[sub] */ + err = PyObject_DelItem(container, sub); + Py_DECREF(container); + Py_DECREF(sub); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(PRINT_EXPR): { + _Py_IDENTIFIER(displayhook); + PyObject *value = POP(); + PyObject *hook = _PySys_GetObjectId(&PyId_displayhook); + PyObject *res; + if (hook == NULL) { + _PyErr_SetString(tstate, PyExc_RuntimeError, + "lost sys.displayhook"); + Py_DECREF(value); + goto error; + } + res = PyObject_CallOneArg(hook, value); + Py_DECREF(value); + if (res == NULL) + goto error; + Py_DECREF(res); + DISPATCH(); + } + + case TARGET(RAISE_VARARGS): { + PyObject *cause = NULL, *exc = NULL; + switch (oparg) { + case 2: + cause = POP(); /* cause */ + /* fall through */ + case 1: + exc = POP(); /* exc */ + /* fall through */ + case 0: + if (do_raise(tstate, exc, cause)) { + goto exception_unwind; + } + break; + default: + _PyErr_SetString(tstate, PyExc_SystemError, + "bad RAISE_VARARGS oparg"); + break; + } + goto error; + } + + case TARGET(RETURN_VALUE): { + retval = POP(); + assert(f->f_iblock == 0); + assert(EMPTY()); + goto exiting; + } + + case TARGET(GET_AITER): { + unaryfunc getter = NULL; + PyObject *iter = NULL; + PyObject *obj = TOP(); + PyTypeObject *type = Py_TYPE(obj); + + if (type->tp_as_async != NULL) { + getter = type->tp_as_async->am_aiter; + } + + if (getter != NULL) { + iter = (*getter)(obj); + Py_DECREF(obj); + if (iter == NULL) { + SET_TOP(NULL); + goto error; + } + } + else { + SET_TOP(NULL); + _PyErr_Format(tstate, PyExc_TypeError, + "'async for' requires an object with " + "__aiter__ method, got %.100s", + type->tp_name); + Py_DECREF(obj); + goto error; + } + + if (Py_TYPE(iter)->tp_as_async == NULL || + Py_TYPE(iter)->tp_as_async->am_anext == NULL) { + + SET_TOP(NULL); + _PyErr_Format(tstate, PyExc_TypeError, + "'async for' received an object from __aiter__ " + "that does not implement __anext__: %.100s", + Py_TYPE(iter)->tp_name); + Py_DECREF(iter); + goto error; + } + + SET_TOP(iter); + DISPATCH(); + } + + case TARGET(GET_ANEXT): { + unaryfunc getter = NULL; + PyObject *next_iter = NULL; + PyObject *awaitable = NULL; + PyObject *aiter = TOP(); + PyTypeObject *type = Py_TYPE(aiter); + + if (PyAsyncGen_CheckExact(aiter)) { + awaitable = type->tp_as_async->am_anext(aiter); + if (awaitable == NULL) { + goto error; + } + } else { + if (type->tp_as_async != NULL){ + getter = type->tp_as_async->am_anext; + } + + if (getter != NULL) { + next_iter = (*getter)(aiter); + if (next_iter == NULL) { + goto error; + } + } + else { + _PyErr_Format(tstate, PyExc_TypeError, + "'async for' requires an iterator with " + "__anext__ method, got %.100s", + type->tp_name); + goto error; + } + + awaitable = _PyCoro_GetAwaitableIter(next_iter); + if (awaitable == NULL) { + _PyErr_FormatFromCause( + PyExc_TypeError, + "'async for' received an invalid object " + "from __anext__: %.100s", + Py_TYPE(next_iter)->tp_name); + + Py_DECREF(next_iter); + goto error; + } else { + Py_DECREF(next_iter); + } + } + + PUSH(awaitable); + PREDICT(LOAD_CONST); + DISPATCH(); + } + + case TARGET(GET_AWAITABLE): { + PREDICTED(GET_AWAITABLE); + PyObject *iterable = TOP(); + PyObject *iter = _PyCoro_GetAwaitableIter(iterable); + + if (iter == NULL) { + int opcode_at_minus_3 = 0; + if ((next_instr - first_instr) > 2) { + opcode_at_minus_3 = _Py_OPCODE(next_instr[-3]); + } + format_awaitable_error(tstate, Py_TYPE(iterable), + opcode_at_minus_3, + _Py_OPCODE(next_instr[-2])); + } + + Py_DECREF(iterable); + + if (iter != NULL && PyCoro_CheckExact(iter)) { + PyObject *yf = _PyGen_yf((PyGenObject*)iter); + if (yf != NULL) { + /* `iter` is a coroutine object that is being + awaited, `yf` is a pointer to the current awaitable + being awaited on. */ + Py_DECREF(yf); + Py_CLEAR(iter); + _PyErr_SetString(tstate, PyExc_RuntimeError, + "coroutine is being awaited already"); + /* The code below jumps to `error` if `iter` is NULL. */ + } + } + + SET_TOP(iter); /* Even if it's NULL */ + + if (iter == NULL) { + goto error; + } + + PREDICT(LOAD_CONST); + DISPATCH(); + } + + case TARGET(YIELD_FROM): { + PyObject *v = POP(); + PyObject *receiver = TOP(); + int err; + if (PyGen_CheckExact(receiver) || PyCoro_CheckExact(receiver)) { + retval = _PyGen_Send((PyGenObject *)receiver, v); + } else { + _Py_IDENTIFIER(send); + if (v == Py_None) + retval = Py_TYPE(receiver)->tp_iternext(receiver); + else + retval = _PyObject_CallMethodIdOneArg(receiver, &PyId_send, v); + } + Py_DECREF(v); + if (retval == NULL) { + PyObject *val; + if (tstate->c_tracefunc != NULL + && _PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) + call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, f); + err = _PyGen_FetchStopIterationValue(&val); + if (err < 0) + goto error; + Py_DECREF(receiver); + SET_TOP(val); + DISPATCH(); + } + /* receiver remains on stack, retval is value to be yielded */ + f->f_stacktop = stack_pointer; + /* and repeat... */ + assert(f->f_lasti >= (int)sizeof(_Py_CODEUNIT)); + f->f_lasti -= sizeof(_Py_CODEUNIT); + goto exiting; + } + + case TARGET(YIELD_VALUE): { + retval = POP(); + + if (co->co_flags & CO_ASYNC_GENERATOR) { + PyObject *w = _PyAsyncGenValueWrapperNew(retval); + Py_DECREF(retval); + if (w == NULL) { + retval = NULL; + goto error; + } + retval = w; + } + + f->f_stacktop = stack_pointer; + goto exiting; + } + + case TARGET(POP_EXCEPT): { + PyObject *type, *value, *traceback; + _PyErr_StackItem *exc_info; + PyTryBlock *b = PyFrame_BlockPop(f); + if (b->b_type != EXCEPT_HANDLER) { + _PyErr_SetString(tstate, PyExc_SystemError, + "popped block is not an except handler"); + goto error; + } + assert(STACK_LEVEL() >= (b)->b_level + 3 && + STACK_LEVEL() <= (b)->b_level + 4); + exc_info = tstate->exc_info; + type = exc_info->exc_type; + value = exc_info->exc_value; + traceback = exc_info->exc_traceback; + exc_info->exc_type = POP(); + exc_info->exc_value = POP(); + exc_info->exc_traceback = POP(); + Py_XDECREF(type); + Py_XDECREF(value); + Py_XDECREF(traceback); + DISPATCH(); + } + + case TARGET(POP_BLOCK): { + PREDICTED(POP_BLOCK); + PyFrame_BlockPop(f); + DISPATCH(); + } + + case TARGET(RERAISE): { + PyObject *exc = POP(); + PyObject *val = POP(); + PyObject *tb = POP(); + assert(PyExceptionClass_Check(exc)); + _PyErr_Restore(tstate, exc, val, tb); + goto exception_unwind; + } + + case TARGET(END_ASYNC_FOR): { + PyObject *exc = POP(); + assert(PyExceptionClass_Check(exc)); + if (PyErr_GivenExceptionMatches(exc, PyExc_StopAsyncIteration)) { + PyTryBlock *b = PyFrame_BlockPop(f); + assert(b->b_type == EXCEPT_HANDLER); + Py_DECREF(exc); + UNWIND_EXCEPT_HANDLER(b); + Py_DECREF(POP()); + JUMPBY(oparg); + FAST_DISPATCH(); + } + else { + PyObject *val = POP(); + PyObject *tb = POP(); + _PyErr_Restore(tstate, exc, val, tb); + goto exception_unwind; + } + } + + case TARGET(LOAD_ASSERTION_ERROR): { + PyObject *value = PyExc_AssertionError; + Py_INCREF(value); + PUSH(value); + FAST_DISPATCH(); + } + + case TARGET(LOAD_BUILD_CLASS): { + _Py_IDENTIFIER(__build_class__); + + PyObject *bc; + if (PyDict_CheckExact(f->f_builtins)) { + bc = _PyDict_GetItemIdWithError(f->f_builtins, &PyId___build_class__); + if (bc == NULL) { + if (!_PyErr_Occurred(tstate)) { + _PyErr_SetString(tstate, PyExc_NameError, + "__build_class__ not found"); + } + goto error; + } + Py_INCREF(bc); + } + else { + PyObject *build_class_str = _PyUnicode_FromId(&PyId___build_class__); + if (build_class_str == NULL) + goto error; + bc = PyObject_GetItem(f->f_builtins, build_class_str); + if (bc == NULL) { + if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) + _PyErr_SetString(tstate, PyExc_NameError, + "__build_class__ not found"); + goto error; + } + } + PUSH(bc); + DISPATCH(); + } + + case TARGET(STORE_NAME): { + PyObject *name = GETITEM(names, oparg); + PyObject *v = POP(); + PyObject *ns = f->f_locals; + int err; + if (ns == NULL) { + _PyErr_Format(tstate, PyExc_SystemError, + "no locals found when storing %R", name); + Py_DECREF(v); + goto error; + } + if (PyDict_CheckExact(ns)) + err = PyDict_SetItem(ns, name, v); + else + err = PyObject_SetItem(ns, name, v); + Py_DECREF(v); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(DELETE_NAME): { + PyObject *name = GETITEM(names, oparg); + PyObject *ns = f->f_locals; + int err; + if (ns == NULL) { + _PyErr_Format(tstate, PyExc_SystemError, + "no locals when deleting %R", name); + goto error; + } + err = PyObject_DelItem(ns, name); + if (err != 0) { + format_exc_check_arg(tstate, PyExc_NameError, + NAME_ERROR_MSG, + name); + goto error; + } + DISPATCH(); + } + + case TARGET(UNPACK_SEQUENCE): { + PREDICTED(UNPACK_SEQUENCE); + PyObject *seq = POP(), *item, **items; + if (PyTuple_CheckExact(seq) && + PyTuple_GET_SIZE(seq) == oparg) { + items = ((PyTupleObject *)seq)->ob_item; + while (oparg--) { + item = items[oparg]; + Py_INCREF(item); + PUSH(item); + } + } else if (PyList_CheckExact(seq) && + PyList_GET_SIZE(seq) == oparg) { + items = ((PyListObject *)seq)->ob_item; + while (oparg--) { + item = items[oparg]; + Py_INCREF(item); + PUSH(item); + } + } else if (unpack_iterable(tstate, seq, oparg, -1, + stack_pointer + oparg)) { + STACK_GROW(oparg); + } else { + /* unpack_iterable() raised an exception */ + Py_DECREF(seq); + goto error; + } + Py_DECREF(seq); + DISPATCH(); + } + + case TARGET(UNPACK_EX): { + int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8); + PyObject *seq = POP(); + + if (unpack_iterable(tstate, seq, oparg & 0xFF, oparg >> 8, + stack_pointer + totalargs)) { + stack_pointer += totalargs; + } else { + Py_DECREF(seq); + goto error; + } + Py_DECREF(seq); + DISPATCH(); + } + + case TARGET(STORE_ATTR): { + PyObject *name = GETITEM(names, oparg); + PyObject *owner = TOP(); + PyObject *v = SECOND(); + int err; + STACK_SHRINK(2); + err = PyObject_SetAttr(owner, name, v); + Py_DECREF(v); + Py_DECREF(owner); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(DELETE_ATTR): { + PyObject *name = GETITEM(names, oparg); + PyObject *owner = POP(); + int err; + err = PyObject_SetAttr(owner, name, (PyObject *)NULL); + Py_DECREF(owner); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(STORE_GLOBAL): { + PyObject *name = GETITEM(names, oparg); + PyObject *v = POP(); + int err; + err = PyDict_SetItem(f->f_globals, name, v); + Py_DECREF(v); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(DELETE_GLOBAL): { + PyObject *name = GETITEM(names, oparg); + int err; + err = PyDict_DelItem(f->f_globals, name); + if (err != 0) { + if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + format_exc_check_arg(tstate, PyExc_NameError, + NAME_ERROR_MSG, name); + } + goto error; + } + DISPATCH(); + } + + case TARGET(LOAD_NAME): { + PyObject *name = GETITEM(names, oparg); + PyObject *locals = f->f_locals; + PyObject *v; + if (locals == NULL) { + _PyErr_Format(tstate, PyExc_SystemError, + "no locals when loading %R", name); + goto error; + } + if (PyDict_CheckExact(locals)) { + v = PyDict_GetItemWithError(locals, name); + if (v != NULL) { + Py_INCREF(v); + } + else if (_PyErr_Occurred(tstate)) { + goto error; + } + } + else { + v = PyObject_GetItem(locals, name); + if (v == NULL) { + if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) + goto error; + _PyErr_Clear(tstate); + } + } + if (v == NULL) { + v = PyDict_GetItemWithError(f->f_globals, name); + if (v != NULL) { + Py_INCREF(v); + } + else if (_PyErr_Occurred(tstate)) { + goto error; + } + else { + if (PyDict_CheckExact(f->f_builtins)) { + v = PyDict_GetItemWithError(f->f_builtins, name); + if (v == NULL) { + if (!_PyErr_Occurred(tstate)) { + format_exc_check_arg( + tstate, PyExc_NameError, + NAME_ERROR_MSG, name); + } + goto error; + } + Py_INCREF(v); + } + else { + v = PyObject_GetItem(f->f_builtins, name); + if (v == NULL) { + if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + format_exc_check_arg( + tstate, PyExc_NameError, + NAME_ERROR_MSG, name); + } + goto error; + } + } + } + } + PUSH(v); + DISPATCH(); + } + + case TARGET(LOAD_GLOBAL): { + PyObject *name; + PyObject *v; + if (PyDict_CheckExact(f->f_globals) + && PyDict_CheckExact(f->f_builtins)) + { + OPCACHE_CHECK(); + if (co_opcache != NULL && co_opcache->optimized > 0) { + _PyOpcache_LoadGlobal *lg = &co_opcache->u.lg; + + if (lg->globals_ver == + ((PyDictObject *)f->f_globals)->ma_version_tag + && lg->builtins_ver == + ((PyDictObject *)f->f_builtins)->ma_version_tag) + { + PyObject *ptr = lg->ptr; + OPCACHE_STAT_GLOBAL_HIT(); + assert(ptr != NULL); + Py_INCREF(ptr); + PUSH(ptr); + DISPATCH(); + } + } + + name = GETITEM(names, oparg); + v = _PyDict_LoadGlobal((PyDictObject *)f->f_globals, + (PyDictObject *)f->f_builtins, + name); + if (v == NULL) { + if (!_PyErr_OCCURRED()) { + /* _PyDict_LoadGlobal() returns NULL without raising + * an exception if the key doesn't exist */ + format_exc_check_arg(tstate, PyExc_NameError, + NAME_ERROR_MSG, name); + } + goto error; + } + + if (co_opcache != NULL) { + _PyOpcache_LoadGlobal *lg = &co_opcache->u.lg; + + if (co_opcache->optimized == 0) { + /* Wasn't optimized before. */ + OPCACHE_STAT_GLOBAL_OPT(); + } else { + OPCACHE_STAT_GLOBAL_MISS(); + } + + co_opcache->optimized = 1; + lg->globals_ver = + ((PyDictObject *)f->f_globals)->ma_version_tag; + lg->builtins_ver = + ((PyDictObject *)f->f_builtins)->ma_version_tag; + lg->ptr = v; /* borrowed */ + } + + Py_INCREF(v); + } + else { + /* Slow-path if globals or builtins is not a dict */ + + /* namespace 1: globals */ + name = GETITEM(names, oparg); + v = PyObject_GetItem(f->f_globals, name); + if (v == NULL) { + if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + goto error; + } + _PyErr_Clear(tstate); + + /* namespace 2: builtins */ + v = PyObject_GetItem(f->f_builtins, name); + if (v == NULL) { + if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + format_exc_check_arg( + tstate, PyExc_NameError, + NAME_ERROR_MSG, name); + } + goto error; + } + } + } + PUSH(v); + DISPATCH(); + } + + case TARGET(DELETE_FAST): { + PyObject *v = GETLOCAL(oparg); + if (v != NULL) { + SETLOCAL(oparg, NULL); + DISPATCH(); + } + format_exc_check_arg( + tstate, PyExc_UnboundLocalError, + UNBOUNDLOCAL_ERROR_MSG, + PyTuple_GetItem(co->co_varnames, oparg) + ); + goto error; + } + + case TARGET(DELETE_DEREF): { + PyObject *cell = freevars[oparg]; + PyObject *oldobj = PyCell_GET(cell); + if (oldobj != NULL) { + PyCell_SET(cell, NULL); + Py_DECREF(oldobj); + DISPATCH(); + } + format_exc_unbound(tstate, co, oparg); + goto error; + } + + case TARGET(LOAD_CLOSURE): { + PyObject *cell = freevars[oparg]; + Py_INCREF(cell); + PUSH(cell); + DISPATCH(); + } + + case TARGET(LOAD_CLASSDEREF): { + PyObject *name, *value, *locals = f->f_locals; + Py_ssize_t idx; + assert(locals); + assert(oparg >= PyTuple_GET_SIZE(co->co_cellvars)); + idx = oparg - PyTuple_GET_SIZE(co->co_cellvars); + assert(idx >= 0 && idx < PyTuple_GET_SIZE(co->co_freevars)); + name = PyTuple_GET_ITEM(co->co_freevars, idx); + if (PyDict_CheckExact(locals)) { + value = PyDict_GetItemWithError(locals, name); + if (value != NULL) { + Py_INCREF(value); + } + else if (_PyErr_Occurred(tstate)) { + goto error; + } + } + else { + value = PyObject_GetItem(locals, name); + if (value == NULL) { + if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + goto error; + } + _PyErr_Clear(tstate); + } + } + if (!value) { + PyObject *cell = freevars[oparg]; + value = PyCell_GET(cell); + if (value == NULL) { + format_exc_unbound(tstate, co, oparg); + goto error; + } + Py_INCREF(value); + } + PUSH(value); + DISPATCH(); + } + + case TARGET(LOAD_DEREF): { + PyObject *cell = freevars[oparg]; + PyObject *value = PyCell_GET(cell); + if (value == NULL) { + format_exc_unbound(tstate, co, oparg); + goto error; + } + Py_INCREF(value); + PUSH(value); + DISPATCH(); + } + + case TARGET(STORE_DEREF): { + PyObject *v = POP(); + PyObject *cell = freevars[oparg]; + PyObject *oldobj = PyCell_GET(cell); + PyCell_SET(cell, v); + Py_XDECREF(oldobj); + DISPATCH(); + } + + case TARGET(BUILD_STRING): { + PyObject *str; + PyObject *empty = PyUnicode_New(0, 0); + if (empty == NULL) { + goto error; + } + str = _PyUnicode_JoinArray(empty, stack_pointer - oparg, oparg); + Py_DECREF(empty); + if (str == NULL) + goto error; + while (--oparg >= 0) { + PyObject *item = POP(); + Py_DECREF(item); + } + PUSH(str); + DISPATCH(); + } + + case TARGET(BUILD_TUPLE): { + PyObject *tup = PyTuple_New(oparg); + if (tup == NULL) + goto error; + while (--oparg >= 0) { + PyObject *item = POP(); + PyTuple_SET_ITEM(tup, oparg, item); + } + PUSH(tup); + DISPATCH(); + } + + case TARGET(BUILD_LIST): { + PyObject *list = PyList_New(oparg); + if (list == NULL) + goto error; + while (--oparg >= 0) { + PyObject *item = POP(); + PyList_SET_ITEM(list, oparg, item); + } + PUSH(list); + DISPATCH(); + } + + case TARGET(LIST_TO_TUPLE): { + PyObject *list = POP(); + PyObject *tuple = PyList_AsTuple(list); + Py_DECREF(list); + if (tuple == NULL) { + goto error; + } + PUSH(tuple); + DISPATCH(); + } + + case TARGET(LIST_EXTEND): { + PyObject *iterable = POP(); + PyObject *list = PEEK(oparg); + PyObject *none_val = _PyList_Extend((PyListObject *)list, iterable); + if (none_val == NULL) { + if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) && + (Py_TYPE(iterable)->tp_iter == NULL && !PySequence_Check(iterable))) + { + _PyErr_Clear(tstate); + _PyErr_Format(tstate, PyExc_TypeError, + "Value after * must be an iterable, not %.200s", + Py_TYPE(iterable)->tp_name); + } + Py_DECREF(iterable); + goto error; + } + Py_DECREF(none_val); + Py_DECREF(iterable); + DISPATCH(); + } + + case TARGET(SET_UPDATE): { + PyObject *iterable = POP(); + PyObject *set = PEEK(oparg); + int err = _PySet_Update(set, iterable); + Py_DECREF(iterable); + if (err < 0) { + goto error; + } + DISPATCH(); + } + + case TARGET(BUILD_SET): { + PyObject *set = PySet_New(NULL); + int err = 0; + int i; + if (set == NULL) + goto error; + for (i = oparg; i > 0; i--) { + PyObject *item = PEEK(i); + if (err == 0) + err = PySet_Add(set, item); + Py_DECREF(item); + } + STACK_SHRINK(oparg); + if (err != 0) { + Py_DECREF(set); + goto error; + } + PUSH(set); + DISPATCH(); + } + + case TARGET(BUILD_MAP): { + Py_ssize_t i; + PyObject *map = _PyDict_NewPresized((Py_ssize_t)oparg); + if (map == NULL) + goto error; + for (i = oparg; i > 0; i--) { + int err; + PyObject *key = PEEK(2*i); + PyObject *value = PEEK(2*i - 1); + err = PyDict_SetItem(map, key, value); + if (err != 0) { + Py_DECREF(map); + goto error; + } + } + + while (oparg--) { + Py_DECREF(POP()); + Py_DECREF(POP()); + } + PUSH(map); + DISPATCH(); + } + + case TARGET(SETUP_ANNOTATIONS): { + _Py_IDENTIFIER(__annotations__); + int err; + PyObject *ann_dict; + if (f->f_locals == NULL) { + _PyErr_Format(tstate, PyExc_SystemError, + "no locals found when setting up annotations"); + goto error; + } + /* check if __annotations__ in locals()... */ + if (PyDict_CheckExact(f->f_locals)) { + ann_dict = _PyDict_GetItemIdWithError(f->f_locals, + &PyId___annotations__); + if (ann_dict == NULL) { + if (_PyErr_Occurred(tstate)) { + goto error; + } + /* ...if not, create a new one */ + ann_dict = PyDict_New(); + if (ann_dict == NULL) { + goto error; + } + err = _PyDict_SetItemId(f->f_locals, + &PyId___annotations__, ann_dict); + Py_DECREF(ann_dict); + if (err != 0) { + goto error; + } + } + } + else { + /* do the same if locals() is not a dict */ + PyObject *ann_str = _PyUnicode_FromId(&PyId___annotations__); + if (ann_str == NULL) { + goto error; + } + ann_dict = PyObject_GetItem(f->f_locals, ann_str); + if (ann_dict == NULL) { + if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + goto error; + } + _PyErr_Clear(tstate); + ann_dict = PyDict_New(); + if (ann_dict == NULL) { + goto error; + } + err = PyObject_SetItem(f->f_locals, ann_str, ann_dict); + Py_DECREF(ann_dict); + if (err != 0) { + goto error; + } + } + else { + Py_DECREF(ann_dict); + } + } + DISPATCH(); + } + + case TARGET(BUILD_CONST_KEY_MAP): { + Py_ssize_t i; + PyObject *map; + PyObject *keys = TOP(); + if (!PyTuple_CheckExact(keys) || + PyTuple_GET_SIZE(keys) != (Py_ssize_t)oparg) { + _PyErr_SetString(tstate, PyExc_SystemError, + "bad BUILD_CONST_KEY_MAP keys argument"); + goto error; + } + map = _PyDict_NewPresized((Py_ssize_t)oparg); + if (map == NULL) { + goto error; + } + for (i = oparg; i > 0; i--) { + int err; + PyObject *key = PyTuple_GET_ITEM(keys, oparg - i); + PyObject *value = PEEK(i + 1); + err = PyDict_SetItem(map, key, value); + if (err != 0) { + Py_DECREF(map); + goto error; + } + } + + Py_DECREF(POP()); + while (oparg--) { + Py_DECREF(POP()); + } + PUSH(map); + DISPATCH(); + } + + case TARGET(DICT_UPDATE): { + PyObject *update = POP(); + PyObject *dict = PEEK(oparg); + if (PyDict_Update(dict, update) < 0) { + if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) { + _PyErr_Format(tstate, PyExc_TypeError, + "'%.200s' object is not a mapping", + Py_TYPE(update)->tp_name); + } + Py_DECREF(update); + goto error; + } + Py_DECREF(update); + DISPATCH(); + } + + case TARGET(DICT_MERGE): { + PyObject *update = POP(); + PyObject *dict = PEEK(oparg); + + if (_PyDict_MergeEx(dict, update, 2) < 0) { + format_kwargs_error(tstate, PEEK(2 + oparg), update); + Py_DECREF(update); + goto error; + } + Py_DECREF(update); + PREDICT(CALL_FUNCTION_EX); + DISPATCH(); + } + + case TARGET(MAP_ADD): { + PyObject *value = TOP(); + PyObject *key = SECOND(); + PyObject *map; + int err; + STACK_SHRINK(2); + map = PEEK(oparg); /* dict */ + assert(PyDict_CheckExact(map)); + err = PyDict_SetItem(map, key, value); /* map[key] = value */ + Py_DECREF(value); + Py_DECREF(key); + if (err != 0) + goto error; + PREDICT(JUMP_ABSOLUTE); + DISPATCH(); + } + + case TARGET(LOAD_ATTR): { + PyObject *name = GETITEM(names, oparg); + PyObject *owner = TOP(); + PyObject *res = PyObject_GetAttr(owner, name); + Py_DECREF(owner); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(COMPARE_OP): { + assert(oparg <= Py_GE); + PyObject *right = POP(); + PyObject *left = TOP(); + PyObject *res = PyObject_RichCompare(left, right, oparg); + SET_TOP(res); + Py_DECREF(left); + Py_DECREF(right); + if (res == NULL) + goto error; + PREDICT(POP_JUMP_IF_FALSE); + PREDICT(POP_JUMP_IF_TRUE); + DISPATCH(); + } + + case TARGET(IS_OP): { + PyObject *right = POP(); + PyObject *left = TOP(); + int res = (left == right)^oparg; + PyObject *b = res ? Py_True : Py_False; + Py_INCREF(b); + SET_TOP(b); + Py_DECREF(left); + Py_DECREF(right); + PREDICT(POP_JUMP_IF_FALSE); + PREDICT(POP_JUMP_IF_TRUE); + FAST_DISPATCH(); + } + + case TARGET(CONTAINS_OP): { + PyObject *right = POP(); + PyObject *left = POP(); + int res = PySequence_Contains(right, left); + Py_DECREF(left); + Py_DECREF(right); + if (res < 0) { + goto error; + } + PyObject *b = (res^oparg) ? Py_True : Py_False; + Py_INCREF(b); + PUSH(b); + PREDICT(POP_JUMP_IF_FALSE); + PREDICT(POP_JUMP_IF_TRUE); + FAST_DISPATCH(); + } + +#define CANNOT_CATCH_MSG "catching classes that do not inherit from "\ + "BaseException is not allowed" + + case TARGET(JUMP_IF_NOT_EXC_MATCH): { + PyObject *right = POP(); + PyObject *left = POP(); + if (PyTuple_Check(right)) { + Py_ssize_t i, length; + length = PyTuple_GET_SIZE(right); + for (i = 0; i < length; i++) { + PyObject *exc = PyTuple_GET_ITEM(right, i); + if (!PyExceptionClass_Check(exc)) { + _PyErr_SetString(tstate, PyExc_TypeError, + CANNOT_CATCH_MSG); + Py_DECREF(left); + Py_DECREF(right); + goto error; + } + } + } + else { + if (!PyExceptionClass_Check(right)) { + _PyErr_SetString(tstate, PyExc_TypeError, + CANNOT_CATCH_MSG); + Py_DECREF(left); + Py_DECREF(right); + goto error; + } + } + int res = PyErr_GivenExceptionMatches(left, right); + Py_DECREF(left); + Py_DECREF(right); + if (res > 0) { + /* Exception matches -- Do nothing */; + } + else if (res == 0) { + JUMPTO(oparg); + } + else { + goto error; + } + DISPATCH(); + } + + case TARGET(IMPORT_NAME): { + PyObject *name = GETITEM(names, oparg); + PyObject *fromlist = POP(); + PyObject *level = TOP(); + PyObject *res; + res = import_name(tstate, f, name, fromlist, level); + Py_DECREF(level); + Py_DECREF(fromlist); + SET_TOP(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(IMPORT_STAR): { + PyObject *from = POP(), *locals; + int err; + if (PyFrame_FastToLocalsWithError(f) < 0) { + Py_DECREF(from); + goto error; + } + + locals = f->f_locals; + if (locals == NULL) { + _PyErr_SetString(tstate, PyExc_SystemError, + "no locals found during 'import *'"); + Py_DECREF(from); + goto error; + } + err = import_all_from(tstate, locals, from); + PyFrame_LocalsToFast(f, 0); + Py_DECREF(from); + if (err != 0) + goto error; + DISPATCH(); + } + + case TARGET(IMPORT_FROM): { + PyObject *name = GETITEM(names, oparg); + PyObject *from = TOP(); + PyObject *res; + res = import_from(tstate, from, name); + PUSH(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(JUMP_FORWARD): { + JUMPBY(oparg); + FAST_DISPATCH(); + } + + case TARGET(POP_JUMP_IF_FALSE): { + PREDICTED(POP_JUMP_IF_FALSE); + PyObject *cond = POP(); + int err; + if (cond == Py_True) { + Py_DECREF(cond); + FAST_DISPATCH(); + } + if (cond == Py_False) { + Py_DECREF(cond); + JUMPTO(oparg); + FAST_DISPATCH(); + } + err = PyObject_IsTrue(cond); + Py_DECREF(cond); + if (err > 0) + ; + else if (err == 0) + JUMPTO(oparg); + else + goto error; + DISPATCH(); + } + + case TARGET(POP_JUMP_IF_TRUE): { + PREDICTED(POP_JUMP_IF_TRUE); + PyObject *cond = POP(); + int err; + if (cond == Py_False) { + Py_DECREF(cond); + FAST_DISPATCH(); + } + if (cond == Py_True) { + Py_DECREF(cond); + JUMPTO(oparg); + FAST_DISPATCH(); + } + err = PyObject_IsTrue(cond); + Py_DECREF(cond); + if (err > 0) { + JUMPTO(oparg); + } + else if (err == 0) + ; + else + goto error; + DISPATCH(); + } + + case TARGET(JUMP_IF_FALSE_OR_POP): { + PyObject *cond = TOP(); + int err; + if (cond == Py_True) { + STACK_SHRINK(1); + Py_DECREF(cond); + FAST_DISPATCH(); + } + if (cond == Py_False) { + JUMPTO(oparg); + FAST_DISPATCH(); + } + err = PyObject_IsTrue(cond); + if (err > 0) { + STACK_SHRINK(1); + Py_DECREF(cond); + } + else if (err == 0) + JUMPTO(oparg); + else + goto error; + DISPATCH(); + } + + case TARGET(JUMP_IF_TRUE_OR_POP): { + PyObject *cond = TOP(); + int err; + if (cond == Py_False) { + STACK_SHRINK(1); + Py_DECREF(cond); + FAST_DISPATCH(); + } + if (cond == Py_True) { + JUMPTO(oparg); + FAST_DISPATCH(); + } + err = PyObject_IsTrue(cond); + if (err > 0) { + JUMPTO(oparg); + } + else if (err == 0) { + STACK_SHRINK(1); + Py_DECREF(cond); + } + else + goto error; + DISPATCH(); + } + + case TARGET(JUMP_ABSOLUTE): { + PREDICTED(JUMP_ABSOLUTE); + JUMPTO(oparg); +#if FAST_LOOPS + /* Enabling this path speeds-up all while and for-loops by bypassing + the per-loop checks for signals. By default, this should be turned-off + because it prevents detection of a control-break in tight loops like + "while 1: pass". Compile with this option turned-on when you need + the speed-up and do not need break checking inside tight loops (ones + that contain only instructions ending with FAST_DISPATCH). + */ + FAST_DISPATCH(); +#else + DISPATCH(); +#endif + } + + case TARGET(GET_ITER): { + /* before: [obj]; after [getiter(obj)] */ + PyObject *iterable = TOP(); + PyObject *iter = PyObject_GetIter(iterable); + Py_DECREF(iterable); + SET_TOP(iter); + if (iter == NULL) + goto error; + PREDICT(FOR_ITER); + PREDICT(CALL_FUNCTION); + DISPATCH(); + } + + case TARGET(GET_YIELD_FROM_ITER): { + /* before: [obj]; after [getiter(obj)] */ + PyObject *iterable = TOP(); + PyObject *iter; + if (PyCoro_CheckExact(iterable)) { + /* `iterable` is a coroutine */ + if (!(co->co_flags & (CO_COROUTINE | CO_ITERABLE_COROUTINE))) { + /* and it is used in a 'yield from' expression of a + regular generator. */ + Py_DECREF(iterable); + SET_TOP(NULL); + _PyErr_SetString(tstate, PyExc_TypeError, + "cannot 'yield from' a coroutine object " + "in a non-coroutine generator"); + goto error; + } + } + else if (!PyGen_CheckExact(iterable)) { + /* `iterable` is not a generator. */ + iter = PyObject_GetIter(iterable); + Py_DECREF(iterable); + SET_TOP(iter); + if (iter == NULL) + goto error; + } + PREDICT(LOAD_CONST); + DISPATCH(); + } + + case TARGET(FOR_ITER): { + PREDICTED(FOR_ITER); + /* before: [iter]; after: [iter, iter()] *or* [] */ + PyObject *iter = TOP(); + PyObject *next = (*Py_TYPE(iter)->tp_iternext)(iter); + if (next != NULL) { + PUSH(next); + PREDICT(STORE_FAST); + PREDICT(UNPACK_SEQUENCE); + DISPATCH(); + } + if (_PyErr_Occurred(tstate)) { + if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { + goto error; + } + else if (tstate->c_tracefunc != NULL) { + call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, f); + } + _PyErr_Clear(tstate); + } + /* iterator ended normally */ + STACK_SHRINK(1); + Py_DECREF(iter); + JUMPBY(oparg); + PREDICT(POP_BLOCK); + DISPATCH(); + } + + case TARGET(SETUP_FINALLY): { + PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg, + STACK_LEVEL()); + DISPATCH(); + } + + case TARGET(BEFORE_ASYNC_WITH): { + _Py_IDENTIFIER(__aenter__); + _Py_IDENTIFIER(__aexit__); + PyObject *mgr = TOP(); + PyObject *enter = special_lookup(tstate, mgr, &PyId___aenter__); + PyObject *res; + if (enter == NULL) { + goto error; + } + PyObject *exit = special_lookup(tstate, mgr, &PyId___aexit__); + if (exit == NULL) { + Py_DECREF(enter); + goto error; + } + SET_TOP(exit); + Py_DECREF(mgr); + res = _PyObject_CallNoArg(enter); + Py_DECREF(enter); + if (res == NULL) + goto error; + PUSH(res); + PREDICT(GET_AWAITABLE); + DISPATCH(); + } + + case TARGET(SETUP_ASYNC_WITH): { + PyObject *res = POP(); + /* Setup the finally block before pushing the result + of __aenter__ on the stack. */ + PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg, + STACK_LEVEL()); + PUSH(res); + DISPATCH(); + } + + case TARGET(SETUP_WITH): { + _Py_IDENTIFIER(__enter__); + _Py_IDENTIFIER(__exit__); + PyObject *mgr = TOP(); + PyObject *enter = special_lookup(tstate, mgr, &PyId___enter__); + PyObject *res; + if (enter == NULL) { + goto error; + } + PyObject *exit = special_lookup(tstate, mgr, &PyId___exit__); + if (exit == NULL) { + Py_DECREF(enter); + goto error; + } + SET_TOP(exit); + Py_DECREF(mgr); + res = _PyObject_CallNoArg(enter); + Py_DECREF(enter); + if (res == NULL) + goto error; + /* Setup the finally block before pushing the result + of __enter__ on the stack. */ + PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg, + STACK_LEVEL()); + + PUSH(res); + DISPATCH(); + } + + case TARGET(WITH_EXCEPT_START): { + /* At the top of the stack are 7 values: + - (TOP, SECOND, THIRD) = exc_info() + - (FOURTH, FIFTH, SIXTH) = previous exception for EXCEPT_HANDLER + - SEVENTH: the context.__exit__ bound method + We call SEVENTH(TOP, SECOND, THIRD). + Then we push again the TOP exception and the __exit__ + return value. + */ + PyObject *exit_func; + PyObject *exc, *val, *tb, *res; + + exc = TOP(); + val = SECOND(); + tb = THIRD(); + assert(exc != Py_None); + assert(!PyLong_Check(exc)); + exit_func = PEEK(7); + PyObject *stack[4] = {NULL, exc, val, tb}; + res = PyObject_Vectorcall(exit_func, stack + 1, + 3 | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL); + if (res == NULL) + goto error; + + PUSH(res); + DISPATCH(); + } + + case TARGET(LOAD_METHOD): { + /* Designed to work in tandem with CALL_METHOD. */ + PyObject *name = GETITEM(names, oparg); + PyObject *obj = TOP(); + PyObject *meth = NULL; + + int meth_found = _PyObject_GetMethod(obj, name, &meth); + + if (meth == NULL) { + /* Most likely attribute wasn't found. */ + goto error; + } + + if (meth_found) { + /* We can bypass temporary bound method object. + meth is unbound method and obj is self. + + meth | self | arg1 | ... | argN + */ + SET_TOP(meth); + PUSH(obj); // self + } + else { + /* meth is not an unbound method (but a regular attr, or + something was returned by a descriptor protocol). Set + the second element of the stack to NULL, to signal + CALL_METHOD that it's not a method call. + + NULL | meth | arg1 | ... | argN + */ + SET_TOP(NULL); + Py_DECREF(obj); + PUSH(meth); + } + DISPATCH(); + } + + case TARGET(CALL_METHOD): { + /* Designed to work in tamdem with LOAD_METHOD. */ + PyObject **sp, *res, *meth; + + sp = stack_pointer; + + meth = PEEK(oparg + 2); + if (meth == NULL) { + /* `meth` is NULL when LOAD_METHOD thinks that it's not + a method call. + + Stack layout: + + ... | NULL | callable | arg1 | ... | argN + ^- TOP() + ^- (-oparg) + ^- (-oparg-1) + ^- (-oparg-2) + + `callable` will be POPed by call_function. + NULL will will be POPed manually later. + */ + res = call_function(tstate, &sp, oparg, NULL); + stack_pointer = sp; + (void)POP(); /* POP the NULL. */ + } + else { + /* This is a method call. Stack layout: + + ... | method | self | arg1 | ... | argN + ^- TOP() + ^- (-oparg) + ^- (-oparg-1) + ^- (-oparg-2) + + `self` and `method` will be POPed by call_function. + We'll be passing `oparg + 1` to call_function, to + make it accept the `self` as a first argument. + */ + res = call_function(tstate, &sp, oparg + 1, NULL); + stack_pointer = sp; + } + + PUSH(res); + if (res == NULL) + goto error; + DISPATCH(); + } + + case TARGET(CALL_FUNCTION): { + PREDICTED(CALL_FUNCTION); + PyObject **sp, *res; + sp = stack_pointer; + res = call_function(tstate, &sp, oparg, NULL); + stack_pointer = sp; + PUSH(res); + if (res == NULL) { + goto error; + } + DISPATCH(); + } + + case TARGET(CALL_FUNCTION_KW): { + PyObject **sp, *res, *names; + + names = POP(); + assert(PyTuple_Check(names)); + assert(PyTuple_GET_SIZE(names) <= oparg); + /* We assume without checking that names contains only strings */ + sp = stack_pointer; + res = call_function(tstate, &sp, oparg, names); + stack_pointer = sp; + PUSH(res); + Py_DECREF(names); + + if (res == NULL) { + goto error; + } + DISPATCH(); + } + + case TARGET(CALL_FUNCTION_EX): { + PREDICTED(CALL_FUNCTION_EX); + PyObject *func, *callargs, *kwargs = NULL, *result; + if (oparg & 0x01) { + kwargs = POP(); + if (!PyDict_CheckExact(kwargs)) { + PyObject *d = PyDict_New(); + if (d == NULL) + goto error; + if (_PyDict_MergeEx(d, kwargs, 2) < 0) { + Py_DECREF(d); + format_kwargs_error(tstate, SECOND(), kwargs); + Py_DECREF(kwargs); + goto error; + } + Py_DECREF(kwargs); + kwargs = d; + } + assert(PyDict_CheckExact(kwargs)); + } + callargs = POP(); + func = TOP(); + if (!PyTuple_CheckExact(callargs)) { + if (check_args_iterable(tstate, func, callargs) < 0) { + Py_DECREF(callargs); + goto error; + } + Py_SETREF(callargs, PySequence_Tuple(callargs)); + if (callargs == NULL) { + goto error; + } + } + assert(PyTuple_CheckExact(callargs)); + + result = do_call_core(tstate, func, callargs, kwargs); + Py_DECREF(func); + Py_DECREF(callargs); + Py_XDECREF(kwargs); + + SET_TOP(result); + if (result == NULL) { + goto error; + } + DISPATCH(); + } + + case TARGET(MAKE_FUNCTION): { + PyObject *qualname = POP(); + PyObject *codeobj = POP(); + PyFunctionObject *func = (PyFunctionObject *) + PyFunction_NewWithQualName(codeobj, f->f_globals, qualname); + + Py_DECREF(codeobj); + Py_DECREF(qualname); + if (func == NULL) { + goto error; + } + + if (oparg & 0x08) { + assert(PyTuple_CheckExact(TOP())); + func ->func_closure = POP(); + } + if (oparg & 0x04) { + assert(PyDict_CheckExact(TOP())); + func->func_annotations = POP(); + } + if (oparg & 0x02) { + assert(PyDict_CheckExact(TOP())); + func->func_kwdefaults = POP(); + } + if (oparg & 0x01) { + assert(PyTuple_CheckExact(TOP())); + func->func_defaults = POP(); + } + + PUSH((PyObject *)func); + DISPATCH(); + } + + case TARGET(BUILD_SLICE): { + PyObject *start, *stop, *step, *slice; + if (oparg == 3) + step = POP(); + else + step = NULL; + stop = POP(); + start = TOP(); + slice = PySlice_New(start, stop, step); + Py_DECREF(start); + Py_DECREF(stop); + Py_XDECREF(step); + SET_TOP(slice); + if (slice == NULL) + goto error; + DISPATCH(); + } + + case TARGET(FORMAT_VALUE): { + /* Handles f-string value formatting. */ + PyObject *result; + PyObject *fmt_spec; + PyObject *value; + PyObject *(*conv_fn)(PyObject *); + int which_conversion = oparg & FVC_MASK; + int have_fmt_spec = (oparg & FVS_MASK) == FVS_HAVE_SPEC; + + fmt_spec = have_fmt_spec ? POP() : NULL; + value = POP(); + + /* See if any conversion is specified. */ + switch (which_conversion) { + case FVC_NONE: conv_fn = NULL; break; + case FVC_STR: conv_fn = PyObject_Str; break; + case FVC_REPR: conv_fn = PyObject_Repr; break; + case FVC_ASCII: conv_fn = PyObject_ASCII; break; + default: + _PyErr_Format(tstate, PyExc_SystemError, + "unexpected conversion flag %d", + which_conversion); + goto error; + } + + /* If there's a conversion function, call it and replace + value with that result. Otherwise, just use value, + without conversion. */ + if (conv_fn != NULL) { + result = conv_fn(value); + Py_DECREF(value); + if (result == NULL) { + Py_XDECREF(fmt_spec); + goto error; + } + value = result; + } + + /* If value is a unicode object, and there's no fmt_spec, + then we know the result of format(value) is value + itself. In that case, skip calling format(). I plan to + move this optimization in to PyObject_Format() + itself. */ + if (PyUnicode_CheckExact(value) && fmt_spec == NULL) { + /* Do nothing, just transfer ownership to result. */ + result = value; + } else { + /* Actually call format(). */ + result = PyObject_Format(value, fmt_spec); + Py_DECREF(value); + Py_XDECREF(fmt_spec); + if (result == NULL) { + goto error; + } + } + + PUSH(result); + DISPATCH(); + } + + case TARGET(EXTENDED_ARG): { + int oldoparg = oparg; + NEXTOPARG(); + oparg |= oldoparg << 8; + goto dispatch_opcode; + } + + +#if USE_COMPUTED_GOTOS + _unknown_opcode: +#endif + default: + fprintf(stderr, + "XXX lineno: %d, opcode: %d\n", + PyFrame_GetLineNumber(f), + opcode); + _PyErr_SetString(tstate, PyExc_SystemError, "unknown opcode"); + goto error; + + } /* switch */ + + /* This should never be reached. Every opcode should end with DISPATCH() + or goto error. */ + Py_UNREACHABLE(); + +error: + /* Double-check exception status. */ +#ifdef NDEBUG + if (!_PyErr_Occurred(tstate)) { + _PyErr_SetString(tstate, PyExc_SystemError, + "error return without exception set"); + } +#else + assert(_PyErr_Occurred(tstate)); +#endif + + /* Log traceback info. */ + PyTraceBack_Here(f); + + if (tstate->c_tracefunc != NULL) + call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, + tstate, f); + +exception_unwind: + /* Unwind stacks if an exception occurred */ + while (f->f_iblock > 0) { + /* Pop the current block. */ + PyTryBlock *b = &f->f_blockstack[--f->f_iblock]; + + if (b->b_type == EXCEPT_HANDLER) { + UNWIND_EXCEPT_HANDLER(b); + continue; + } + UNWIND_BLOCK(b); + if (b->b_type == SETUP_FINALLY) { + PyObject *exc, *val, *tb; + int handler = b->b_handler; + _PyErr_StackItem *exc_info = tstate->exc_info; + /* Beware, this invalidates all b->b_* fields */ + PyFrame_BlockSetup(f, EXCEPT_HANDLER, -1, STACK_LEVEL()); + PUSH(exc_info->exc_traceback); + PUSH(exc_info->exc_value); + if (exc_info->exc_type != NULL) { + PUSH(exc_info->exc_type); + } + else { + Py_INCREF(Py_None); + PUSH(Py_None); + } + _PyErr_Fetch(tstate, &exc, &val, &tb); + /* Make the raw exception data + available to the handler, + so a program can emulate the + Python main loop. */ + _PyErr_NormalizeException(tstate, &exc, &val, &tb); + if (tb != NULL) + PyException_SetTraceback(val, tb); + else + PyException_SetTraceback(val, Py_None); + Py_INCREF(exc); + exc_info->exc_type = exc; + Py_INCREF(val); + exc_info->exc_value = val; + exc_info->exc_traceback = tb; + if (tb == NULL) + tb = Py_None; + Py_INCREF(tb); + PUSH(tb); + PUSH(val); + PUSH(exc); + JUMPTO(handler); + if (_Py_TracingPossible(ceval2)) { + int needs_new_execution_window = (f->f_lasti < instr_lb || f->f_lasti >= instr_ub); + int needs_line_update = (f->f_lasti == instr_lb || f->f_lasti < instr_prev); + /* Make sure that we trace line after exception if we are in a new execution + * window or we don't need a line update and we are not in the first instruction + * of the line. */ + if (needs_new_execution_window || (!needs_line_update && instr_lb > 0)) { + instr_prev = INT_MAX; + } + } + /* Resume normal execution */ + goto main_loop; + } + } /* unwind stack */ + + /* End the loop as we still have an error */ + break; + } /* main loop */ + + assert(retval == NULL); + assert(_PyErr_Occurred(tstate)); + + /* Pop remaining stack entries. */ + while (!EMPTY()) { + PyObject *o = POP(); + Py_XDECREF(o); + } + +exiting: + if (tstate->use_tracing) { + if (tstate->c_tracefunc) { + if (call_trace_protected(tstate->c_tracefunc, tstate->c_traceobj, + tstate, f, PyTrace_RETURN, retval)) { + Py_CLEAR(retval); + } + } + if (tstate->c_profilefunc) { + if (call_trace_protected(tstate->c_profilefunc, tstate->c_profileobj, + tstate, f, PyTrace_RETURN, retval)) { + Py_CLEAR(retval); + } + } + } + + /* pop frame */ +exit_eval_frame: + if (PyDTrace_FUNCTION_RETURN_ENABLED()) + dtrace_function_return(f); + _Py_LeaveRecursiveCall(tstate); + f->f_executing = 0; + tstate->frame = f->f_back; + + return _Py_CheckFunctionResult(tstate, NULL, retval, __func__); +} + +static void +format_missing(PyThreadState *tstate, const char *kind, + PyCodeObject *co, PyObject *names) +{ + int err; + Py_ssize_t len = PyList_GET_SIZE(names); + PyObject *name_str, *comma, *tail, *tmp; + + assert(PyList_CheckExact(names)); + assert(len >= 1); + /* Deal with the joys of natural language. */ + switch (len) { + case 1: + name_str = PyList_GET_ITEM(names, 0); + Py_INCREF(name_str); + break; + case 2: + name_str = PyUnicode_FromFormat("%U and %U", + PyList_GET_ITEM(names, len - 2), + PyList_GET_ITEM(names, len - 1)); + break; + default: + tail = PyUnicode_FromFormat(", %U, and %U", + PyList_GET_ITEM(names, len - 2), + PyList_GET_ITEM(names, len - 1)); + if (tail == NULL) + return; + /* Chop off the last two objects in the list. This shouldn't actually + fail, but we can't be too careful. */ + err = PyList_SetSlice(names, len - 2, len, NULL); + if (err == -1) { + Py_DECREF(tail); + return; + } + /* Stitch everything up into a nice comma-separated list. */ + comma = PyUnicode_FromString(", "); + if (comma == NULL) { + Py_DECREF(tail); + return; + } + tmp = PyUnicode_Join(comma, names); + Py_DECREF(comma); + if (tmp == NULL) { + Py_DECREF(tail); + return; + } + name_str = PyUnicode_Concat(tmp, tail); + Py_DECREF(tmp); + Py_DECREF(tail); + break; + } + if (name_str == NULL) + return; + _PyErr_Format(tstate, PyExc_TypeError, + "%U() missing %i required %s argument%s: %U", + co->co_name, + len, + kind, + len == 1 ? "" : "s", + name_str); + Py_DECREF(name_str); +} + +static void +missing_arguments(PyThreadState *tstate, PyCodeObject *co, + Py_ssize_t missing, Py_ssize_t defcount, + PyObject **fastlocals) +{ + Py_ssize_t i, j = 0; + Py_ssize_t start, end; + int positional = (defcount != -1); + const char *kind = positional ? "positional" : "keyword-only"; + PyObject *missing_names; + + /* Compute the names of the arguments that are missing. */ + missing_names = PyList_New(missing); + if (missing_names == NULL) + return; + if (positional) { + start = 0; + end = co->co_argcount - defcount; + } + else { + start = co->co_argcount; + end = start + co->co_kwonlyargcount; + } + for (i = start; i < end; i++) { + if (GETLOCAL(i) == NULL) { + PyObject *raw = PyTuple_GET_ITEM(co->co_varnames, i); + PyObject *name = PyObject_Repr(raw); + if (name == NULL) { + Py_DECREF(missing_names); + return; + } + PyList_SET_ITEM(missing_names, j++, name); + } + } + assert(j == missing); + format_missing(tstate, kind, co, missing_names); + Py_DECREF(missing_names); +} + +static void +too_many_positional(PyThreadState *tstate, PyCodeObject *co, + Py_ssize_t given, Py_ssize_t defcount, + PyObject **fastlocals) +{ + int plural; + Py_ssize_t kwonly_given = 0; + Py_ssize_t i; + PyObject *sig, *kwonly_sig; + Py_ssize_t co_argcount = co->co_argcount; + + assert((co->co_flags & CO_VARARGS) == 0); + /* Count missing keyword-only args. */ + for (i = co_argcount; i < co_argcount + co->co_kwonlyargcount; i++) { + if (GETLOCAL(i) != NULL) { + kwonly_given++; + } + } + if (defcount) { + Py_ssize_t atleast = co_argcount - defcount; + plural = 1; + sig = PyUnicode_FromFormat("from %zd to %zd", atleast, co_argcount); + } + else { + plural = (co_argcount != 1); + sig = PyUnicode_FromFormat("%zd", co_argcount); + } + if (sig == NULL) + return; + if (kwonly_given) { + const char *format = " positional argument%s (and %zd keyword-only argument%s)"; + kwonly_sig = PyUnicode_FromFormat(format, + given != 1 ? "s" : "", + kwonly_given, + kwonly_given != 1 ? "s" : ""); + if (kwonly_sig == NULL) { + Py_DECREF(sig); + return; + } + } + else { + /* This will not fail. */ + kwonly_sig = PyUnicode_FromString(""); + assert(kwonly_sig != NULL); + } + _PyErr_Format(tstate, PyExc_TypeError, + "%U() takes %U positional argument%s but %zd%U %s given", + co->co_name, + sig, + plural ? "s" : "", + given, + kwonly_sig, + given == 1 && !kwonly_given ? "was" : "were"); + Py_DECREF(sig); + Py_DECREF(kwonly_sig); +} + +static int +positional_only_passed_as_keyword(PyThreadState *tstate, PyCodeObject *co, + Py_ssize_t kwcount, PyObject* const* kwnames) +{ + int posonly_conflicts = 0; + PyObject* posonly_names = PyList_New(0); + + for(int k=0; k < co->co_posonlyargcount; k++){ + PyObject* posonly_name = PyTuple_GET_ITEM(co->co_varnames, k); + + for (int k2=0; k2<kwcount; k2++){ + /* Compare the pointers first and fallback to PyObject_RichCompareBool*/ + PyObject* kwname = kwnames[k2]; + if (kwname == posonly_name){ + if(PyList_Append(posonly_names, kwname) != 0) { + goto fail; + } + posonly_conflicts++; + continue; + } + + int cmp = PyObject_RichCompareBool(posonly_name, kwname, Py_EQ); + + if ( cmp > 0) { + if(PyList_Append(posonly_names, kwname) != 0) { + goto fail; + } + posonly_conflicts++; + } else if (cmp < 0) { + goto fail; + } + + } + } + if (posonly_conflicts) { + PyObject* comma = PyUnicode_FromString(", "); + if (comma == NULL) { + goto fail; + } + PyObject* error_names = PyUnicode_Join(comma, posonly_names); + Py_DECREF(comma); + if (error_names == NULL) { + goto fail; + } + _PyErr_Format(tstate, PyExc_TypeError, + "%U() got some positional-only arguments passed" + " as keyword arguments: '%U'", + co->co_name, error_names); + Py_DECREF(error_names); + goto fail; + } + + Py_DECREF(posonly_names); + return 0; + +fail: + Py_XDECREF(posonly_names); + return 1; + +} + +/* This is gonna seem *real weird*, but if you put some other code between + PyEval_EvalFrame() and _PyEval_EvalFrameDefault() you will need to adjust + the test in the if statements in Misc/gdbinit (pystack and pystackv). */ + +PyObject * +_PyEval_EvalCode(PyThreadState *tstate, + PyObject *_co, PyObject *globals, PyObject *locals, + PyObject *const *args, Py_ssize_t argcount, + PyObject *const *kwnames, PyObject *const *kwargs, + Py_ssize_t kwcount, int kwstep, + PyObject *const *defs, Py_ssize_t defcount, + PyObject *kwdefs, PyObject *closure, + PyObject *name, PyObject *qualname) +{ + assert(is_tstate_valid(tstate)); + + PyCodeObject* co = (PyCodeObject*)_co; + PyFrameObject *f; + PyObject *retval = NULL; + PyObject **fastlocals, **freevars; + PyObject *x, *u; + const Py_ssize_t total_args = co->co_argcount + co->co_kwonlyargcount; + Py_ssize_t i, j, n; + PyObject *kwdict; + + if (globals == NULL) { + _PyErr_SetString(tstate, PyExc_SystemError, + "PyEval_EvalCodeEx: NULL globals"); + return NULL; + } + + /* Create the frame */ + f = _PyFrame_New_NoTrack(tstate, co, globals, locals); + if (f == NULL) { + return NULL; + } + fastlocals = f->f_localsplus; + freevars = f->f_localsplus + co->co_nlocals; + + /* Create a dictionary for keyword parameters (**kwags) */ + if (co->co_flags & CO_VARKEYWORDS) { + kwdict = PyDict_New(); + if (kwdict == NULL) + goto fail; + i = total_args; + if (co->co_flags & CO_VARARGS) { + i++; + } + SETLOCAL(i, kwdict); + } + else { + kwdict = NULL; + } + + /* Copy all positional arguments into local variables */ + if (argcount > co->co_argcount) { + n = co->co_argcount; + } + else { + n = argcount; + } + for (j = 0; j < n; j++) { + x = args[j]; + Py_INCREF(x); + SETLOCAL(j, x); + } + + /* Pack other positional arguments into the *args argument */ + if (co->co_flags & CO_VARARGS) { + u = _PyTuple_FromArray(args + n, argcount - n); + if (u == NULL) { + goto fail; + } + SETLOCAL(total_args, u); + } + + /* Handle keyword arguments passed as two strided arrays */ + kwcount *= kwstep; + for (i = 0; i < kwcount; i += kwstep) { + PyObject **co_varnames; + PyObject *keyword = kwnames[i]; + PyObject *value = kwargs[i]; + Py_ssize_t j; + + if (keyword == NULL || !PyUnicode_Check(keyword)) { + _PyErr_Format(tstate, PyExc_TypeError, + "%U() keywords must be strings", + co->co_name); + goto fail; + } + + /* Speed hack: do raw pointer compares. As names are + normally interned this should almost always hit. */ + co_varnames = ((PyTupleObject *)(co->co_varnames))->ob_item; + for (j = co->co_posonlyargcount; j < total_args; j++) { + PyObject *name = co_varnames[j]; + if (name == keyword) { + goto kw_found; + } + } + + /* Slow fallback, just in case */ + for (j = co->co_posonlyargcount; j < total_args; j++) { + PyObject *name = co_varnames[j]; + int cmp = PyObject_RichCompareBool( keyword, name, Py_EQ); + if (cmp > 0) { + goto kw_found; + } + else if (cmp < 0) { + goto fail; + } + } + + assert(j >= total_args); + if (kwdict == NULL) { + + if (co->co_posonlyargcount + && positional_only_passed_as_keyword(tstate, co, + kwcount, kwnames)) + { + goto fail; + } + + _PyErr_Format(tstate, PyExc_TypeError, + "%U() got an unexpected keyword argument '%S'", + co->co_name, keyword); + goto fail; + } + + if (PyDict_SetItem(kwdict, keyword, value) == -1) { + goto fail; + } + continue; + + kw_found: + if (GETLOCAL(j) != NULL) { + _PyErr_Format(tstate, PyExc_TypeError, + "%U() got multiple values for argument '%S'", + co->co_name, keyword); + goto fail; + } + Py_INCREF(value); + SETLOCAL(j, value); + } + + /* Check the number of positional arguments */ + if ((argcount > co->co_argcount) && !(co->co_flags & CO_VARARGS)) { + too_many_positional(tstate, co, argcount, defcount, fastlocals); + goto fail; + } + + /* Add missing positional arguments (copy default values from defs) */ + if (argcount < co->co_argcount) { + Py_ssize_t m = co->co_argcount - defcount; + Py_ssize_t missing = 0; + for (i = argcount; i < m; i++) { + if (GETLOCAL(i) == NULL) { + missing++; + } + } + if (missing) { + missing_arguments(tstate, co, missing, defcount, fastlocals); + goto fail; + } + if (n > m) + i = n - m; + else + i = 0; + for (; i < defcount; i++) { + if (GETLOCAL(m+i) == NULL) { + PyObject *def = defs[i]; + Py_INCREF(def); + SETLOCAL(m+i, def); + } + } + } + + /* Add missing keyword arguments (copy default values from kwdefs) */ + if (co->co_kwonlyargcount > 0) { + Py_ssize_t missing = 0; + for (i = co->co_argcount; i < total_args; i++) { + PyObject *name; + if (GETLOCAL(i) != NULL) + continue; + name = PyTuple_GET_ITEM(co->co_varnames, i); + if (kwdefs != NULL) { + PyObject *def = PyDict_GetItemWithError(kwdefs, name); + if (def) { + Py_INCREF(def); + SETLOCAL(i, def); + continue; + } + else if (_PyErr_Occurred(tstate)) { + goto fail; + } + } + missing++; + } + if (missing) { + missing_arguments(tstate, co, missing, -1, fastlocals); + goto fail; + } + } + + /* Allocate and initialize storage for cell vars, and copy free + vars into frame. */ + for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) { + PyObject *c; + Py_ssize_t arg; + /* Possibly account for the cell variable being an argument. */ + if (co->co_cell2arg != NULL && + (arg = co->co_cell2arg[i]) != CO_CELL_NOT_AN_ARG) { + c = PyCell_New(GETLOCAL(arg)); + /* Clear the local copy. */ + SETLOCAL(arg, NULL); + } + else { + c = PyCell_New(NULL); + } + if (c == NULL) + goto fail; + SETLOCAL(co->co_nlocals + i, c); + } + + /* Copy closure variables to free variables */ + for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) { + PyObject *o = PyTuple_GET_ITEM(closure, i); + Py_INCREF(o); + freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o; + } + + /* Handle generator/coroutine/asynchronous generator */ + if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) { + PyObject *gen; + int is_coro = co->co_flags & CO_COROUTINE; + + /* Don't need to keep the reference to f_back, it will be set + * when the generator is resumed. */ + Py_CLEAR(f->f_back); + + /* Create a new generator that owns the ready to run frame + * and return that as the value. */ + if (is_coro) { + gen = PyCoro_New(f, name, qualname); + } else if (co->co_flags & CO_ASYNC_GENERATOR) { + gen = PyAsyncGen_New(f, name, qualname); + } else { + gen = PyGen_NewWithQualName(f, name, qualname); + } + if (gen == NULL) { + return NULL; + } + + _PyObject_GC_TRACK(f); + + return gen; + } + + retval = _PyEval_EvalFrame(tstate, f, 0); + +fail: /* Jump here from prelude on failure */ + + /* decref'ing the frame can cause __del__ methods to get invoked, + which can call back into Python. While we're done with the + current Python frame (f), the associated C stack is still in use, + so recursion_depth must be boosted for the duration. + */ + if (Py_REFCNT(f) > 1) { + Py_DECREF(f); + _PyObject_GC_TRACK(f); + } + else { + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + } + return retval; +} + + +PyObject * +_PyEval_EvalCodeWithName(PyObject *_co, PyObject *globals, PyObject *locals, + PyObject *const *args, Py_ssize_t argcount, + PyObject *const *kwnames, PyObject *const *kwargs, + Py_ssize_t kwcount, int kwstep, + PyObject *const *defs, Py_ssize_t defcount, + PyObject *kwdefs, PyObject *closure, + PyObject *name, PyObject *qualname) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return _PyEval_EvalCode(tstate, _co, globals, locals, + args, argcount, + kwnames, kwargs, + kwcount, kwstep, + defs, defcount, + kwdefs, closure, + name, qualname); +} + +PyObject * +PyEval_EvalCodeEx(PyObject *_co, PyObject *globals, PyObject *locals, + PyObject *const *args, int argcount, + PyObject *const *kws, int kwcount, + PyObject *const *defs, int defcount, + PyObject *kwdefs, PyObject *closure) +{ + return _PyEval_EvalCodeWithName(_co, globals, locals, + args, argcount, + kws, kws != NULL ? kws + 1 : NULL, + kwcount, 2, + defs, defcount, + kwdefs, closure, + NULL, NULL); +} + +static PyObject * +special_lookup(PyThreadState *tstate, PyObject *o, _Py_Identifier *id) +{ + PyObject *res; + res = _PyObject_LookupSpecial(o, id); + if (res == NULL && !_PyErr_Occurred(tstate)) { + _PyErr_SetObject(tstate, PyExc_AttributeError, _PyUnicode_FromId(id)); + return NULL; + } + return res; +} + + +/* Logic for the raise statement (too complicated for inlining). + This *consumes* a reference count to each of its arguments. */ +static int +do_raise(PyThreadState *tstate, PyObject *exc, PyObject *cause) +{ + PyObject *type = NULL, *value = NULL; + + if (exc == NULL) { + /* Reraise */ + _PyErr_StackItem *exc_info = _PyErr_GetTopmostException(tstate); + PyObject *tb; + type = exc_info->exc_type; + value = exc_info->exc_value; + tb = exc_info->exc_traceback; + if (type == Py_None || type == NULL) { + _PyErr_SetString(tstate, PyExc_RuntimeError, + "No active exception to reraise"); + return 0; + } + Py_XINCREF(type); + Py_XINCREF(value); + Py_XINCREF(tb); + _PyErr_Restore(tstate, type, value, tb); + return 1; + } + + /* We support the following forms of raise: + raise + raise <instance> + raise <type> */ + + if (PyExceptionClass_Check(exc)) { + type = exc; + value = _PyObject_CallNoArg(exc); + if (value == NULL) + goto raise_error; + if (!PyExceptionInstance_Check(value)) { + _PyErr_Format(tstate, PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto raise_error; + } + } + else if (PyExceptionInstance_Check(exc)) { + value = exc; + type = PyExceptionInstance_Class(exc); + Py_INCREF(type); + } + else { + /* Not something you can raise. You get an exception + anyway, just not what you specified :-) */ + Py_DECREF(exc); + _PyErr_SetString(tstate, PyExc_TypeError, + "exceptions must derive from BaseException"); + goto raise_error; + } + + assert(type != NULL); + assert(value != NULL); + + if (cause) { + PyObject *fixed_cause; + if (PyExceptionClass_Check(cause)) { + fixed_cause = _PyObject_CallNoArg(cause); + if (fixed_cause == NULL) + goto raise_error; + Py_DECREF(cause); + } + else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + } + else if (cause == Py_None) { + Py_DECREF(cause); + fixed_cause = NULL; + } + else { + _PyErr_SetString(tstate, PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto raise_error; + } + PyException_SetCause(value, fixed_cause); + } + + _PyErr_SetObject(tstate, type, value); + /* _PyErr_SetObject incref's its arguments */ + Py_DECREF(value); + Py_DECREF(type); + return 0; + +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(cause); + return 0; +} + +/* Iterate v argcnt times and store the results on the stack (via decreasing + sp). Return 1 for success, 0 if error. + + If argcntafter == -1, do a simple unpack. If it is >= 0, do an unpack + with a variable target. +*/ + +static int +unpack_iterable(PyThreadState *tstate, PyObject *v, + int argcnt, int argcntafter, PyObject **sp) +{ + int i = 0, j = 0; + Py_ssize_t ll = 0; + PyObject *it; /* iter(v) */ + PyObject *w; + PyObject *l = NULL; /* variable list */ + + assert(v != NULL); + + it = PyObject_GetIter(v); + if (it == NULL) { + if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) && + Py_TYPE(v)->tp_iter == NULL && !PySequence_Check(v)) + { + _PyErr_Format(tstate, PyExc_TypeError, + "cannot unpack non-iterable %.200s object", + Py_TYPE(v)->tp_name); + } + return 0; + } + + for (; i < argcnt; i++) { + w = PyIter_Next(it); + if (w == NULL) { + /* Iterator done, via error or exhaustion. */ + if (!_PyErr_Occurred(tstate)) { + if (argcntafter == -1) { + _PyErr_Format(tstate, PyExc_ValueError, + "not enough values to unpack " + "(expected %d, got %d)", + argcnt, i); + } + else { + _PyErr_Format(tstate, PyExc_ValueError, + "not enough values to unpack " + "(expected at least %d, got %d)", + argcnt + argcntafter, i); + } + } + goto Error; + } + *--sp = w; + } + + if (argcntafter == -1) { + /* We better have exhausted the iterator now. */ + w = PyIter_Next(it); + if (w == NULL) { + if (_PyErr_Occurred(tstate)) + goto Error; + Py_DECREF(it); + return 1; + } + Py_DECREF(w); + _PyErr_Format(tstate, PyExc_ValueError, + "too many values to unpack (expected %d)", + argcnt); + goto Error; + } + + l = PySequence_List(it); + if (l == NULL) + goto Error; + *--sp = l; + i++; + + ll = PyList_GET_SIZE(l); + if (ll < argcntafter) { + _PyErr_Format(tstate, PyExc_ValueError, + "not enough values to unpack (expected at least %d, got %zd)", + argcnt + argcntafter, argcnt + ll); + goto Error; + } + + /* Pop the "after-variable" args off the list. */ + for (j = argcntafter; j > 0; j--, i++) { + *--sp = PyList_GET_ITEM(l, ll - j); + } + /* Resize the list. */ + Py_SET_SIZE(l, ll - argcntafter); + Py_DECREF(it); + return 1; + +Error: + for (; i > 0; i--, sp++) + Py_DECREF(*sp); + Py_XDECREF(it); + return 0; +} + + +#ifdef LLTRACE +static int +prtrace(PyThreadState *tstate, PyObject *v, const char *str) +{ + printf("%s ", str); + PyObject *type, *value, *traceback; + PyErr_Fetch(&type, &value, &traceback); + if (PyObject_Print(v, stdout, 0) != 0) { + /* Don't know what else to do */ + _PyErr_Clear(tstate); + } + printf("\n"); + PyErr_Restore(type, value, traceback); + return 1; +} +#endif + +static void +call_exc_trace(Py_tracefunc func, PyObject *self, + PyThreadState *tstate, PyFrameObject *f) +{ + PyObject *type, *value, *traceback, *orig_traceback, *arg; + int err; + _PyErr_Fetch(tstate, &type, &value, &orig_traceback); + if (value == NULL) { + value = Py_None; + Py_INCREF(value); + } + _PyErr_NormalizeException(tstate, &type, &value, &orig_traceback); + traceback = (orig_traceback != NULL) ? orig_traceback : Py_None; + arg = PyTuple_Pack(3, type, value, traceback); + if (arg == NULL) { + _PyErr_Restore(tstate, type, value, orig_traceback); + return; + } + err = call_trace(func, self, tstate, f, PyTrace_EXCEPTION, arg); + Py_DECREF(arg); + if (err == 0) { + _PyErr_Restore(tstate, type, value, orig_traceback); + } + else { + Py_XDECREF(type); + Py_XDECREF(value); + Py_XDECREF(orig_traceback); + } +} + +static int +call_trace_protected(Py_tracefunc func, PyObject *obj, + PyThreadState *tstate, PyFrameObject *frame, + int what, PyObject *arg) +{ + PyObject *type, *value, *traceback; + int err; + _PyErr_Fetch(tstate, &type, &value, &traceback); + err = call_trace(func, obj, tstate, frame, what, arg); + if (err == 0) + { + _PyErr_Restore(tstate, type, value, traceback); + return 0; + } + else { + Py_XDECREF(type); + Py_XDECREF(value); + Py_XDECREF(traceback); + return -1; + } +} + +static int +call_trace(Py_tracefunc func, PyObject *obj, + PyThreadState *tstate, PyFrameObject *frame, + int what, PyObject *arg) +{ + int result; + if (tstate->tracing) + return 0; + tstate->tracing++; + tstate->use_tracing = 0; + result = func(obj, frame, what, arg); + tstate->use_tracing = ((tstate->c_tracefunc != NULL) + || (tstate->c_profilefunc != NULL)); + tstate->tracing--; + return result; +} + +PyObject * +_PyEval_CallTracing(PyObject *func, PyObject *args) +{ + PyThreadState *tstate = _PyThreadState_GET(); + int save_tracing = tstate->tracing; + int save_use_tracing = tstate->use_tracing; + PyObject *result; + + tstate->tracing = 0; + tstate->use_tracing = ((tstate->c_tracefunc != NULL) + || (tstate->c_profilefunc != NULL)); + result = PyObject_Call(func, args, NULL); + tstate->tracing = save_tracing; + tstate->use_tracing = save_use_tracing; + return result; +} + +/* See Objects/lnotab_notes.txt for a description of how tracing works. */ +static int +maybe_call_line_trace(Py_tracefunc func, PyObject *obj, + PyThreadState *tstate, PyFrameObject *frame, + int *instr_lb, int *instr_ub, int *instr_prev) +{ + int result = 0; + int line = frame->f_lineno; + + /* If the last instruction executed isn't in the current + instruction window, reset the window. + */ + if (frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub) { + PyAddrPair bounds; + line = _PyCode_CheckLineNumber(frame->f_code, frame->f_lasti, + &bounds); + *instr_lb = bounds.ap_lower; + *instr_ub = bounds.ap_upper; + } + /* If the last instruction falls at the start of a line or if it + represents a jump backwards, update the frame's line number and + then call the trace function if we're tracing source lines. + */ + if ((frame->f_lasti == *instr_lb || frame->f_lasti < *instr_prev)) { + frame->f_lineno = line; + if (frame->f_trace_lines) { + result = call_trace(func, obj, tstate, frame, PyTrace_LINE, Py_None); + } + } + /* Always emit an opcode event if we're tracing all opcodes. */ + if (frame->f_trace_opcodes) { + result = call_trace(func, obj, tstate, frame, PyTrace_OPCODE, Py_None); + } + *instr_prev = frame->f_lasti; + return result; +} + +int +_PyEval_SetProfile(PyThreadState *tstate, Py_tracefunc func, PyObject *arg) +{ + assert(is_tstate_valid(tstate)); + /* The caller must hold the GIL */ + assert(PyGILState_Check()); + + /* Call _PySys_Audit() in the context of the current thread state, + even if tstate is not the current thread state. */ + PyThreadState *current_tstate = _PyThreadState_GET(); + if (_PySys_Audit(current_tstate, "sys.setprofile", NULL) < 0) { + return -1; + } + + PyObject *profileobj = tstate->c_profileobj; + + tstate->c_profilefunc = NULL; + tstate->c_profileobj = NULL; + /* Must make sure that tracing is not ignored if 'profileobj' is freed */ + tstate->use_tracing = tstate->c_tracefunc != NULL; + Py_XDECREF(profileobj); + + Py_XINCREF(arg); + tstate->c_profileobj = arg; + tstate->c_profilefunc = func; + + /* Flag that tracing or profiling is turned on */ + tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL); + return 0; +} + +void +PyEval_SetProfile(Py_tracefunc func, PyObject *arg) +{ + PyThreadState *tstate = _PyThreadState_GET(); + if (_PyEval_SetProfile(tstate, func, arg) < 0) { + /* Log _PySys_Audit() error */ + _PyErr_WriteUnraisableMsg("in PyEval_SetProfile", NULL); + } +} + +int +_PyEval_SetTrace(PyThreadState *tstate, Py_tracefunc func, PyObject *arg) +{ + assert(is_tstate_valid(tstate)); + /* The caller must hold the GIL */ + assert(PyGILState_Check()); + + /* Call _PySys_Audit() in the context of the current thread state, + even if tstate is not the current thread state. */ + PyThreadState *current_tstate = _PyThreadState_GET(); + if (_PySys_Audit(current_tstate, "sys.settrace", NULL) < 0) { + return -1; + } + + struct _ceval_state *ceval2 = &tstate->interp->ceval; + PyObject *traceobj = tstate->c_traceobj; + ceval2->tracing_possible += (func != NULL) - (tstate->c_tracefunc != NULL); + + tstate->c_tracefunc = NULL; + tstate->c_traceobj = NULL; + /* Must make sure that profiling is not ignored if 'traceobj' is freed */ + tstate->use_tracing = (tstate->c_profilefunc != NULL); + Py_XDECREF(traceobj); + + Py_XINCREF(arg); + tstate->c_traceobj = arg; + tstate->c_tracefunc = func; + + /* Flag that tracing or profiling is turned on */ + tstate->use_tracing = ((func != NULL) + || (tstate->c_profilefunc != NULL)); + + return 0; +} + +void +PyEval_SetTrace(Py_tracefunc func, PyObject *arg) +{ + PyThreadState *tstate = _PyThreadState_GET(); + if (_PyEval_SetTrace(tstate, func, arg) < 0) { + /* Log _PySys_Audit() error */ + _PyErr_WriteUnraisableMsg("in PyEval_SetTrace", NULL); + } +} + + +void +_PyEval_SetCoroutineOriginTrackingDepth(PyThreadState *tstate, int new_depth) +{ + assert(new_depth >= 0); + tstate->coroutine_origin_tracking_depth = new_depth; +} + +int +_PyEval_GetCoroutineOriginTrackingDepth(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return tstate->coroutine_origin_tracking_depth; +} + +int +_PyEval_SetAsyncGenFirstiter(PyObject *firstiter) +{ + PyThreadState *tstate = _PyThreadState_GET(); + + if (_PySys_Audit(tstate, "sys.set_asyncgen_hook_firstiter", NULL) < 0) { + return -1; + } + + Py_XINCREF(firstiter); + Py_XSETREF(tstate->async_gen_firstiter, firstiter); + return 0; +} + +PyObject * +_PyEval_GetAsyncGenFirstiter(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return tstate->async_gen_firstiter; +} + +int +_PyEval_SetAsyncGenFinalizer(PyObject *finalizer) +{ + PyThreadState *tstate = _PyThreadState_GET(); + + if (_PySys_Audit(tstate, "sys.set_asyncgen_hook_finalizer", NULL) < 0) { + return -1; + } + + Py_XINCREF(finalizer); + Py_XSETREF(tstate->async_gen_finalizer, finalizer); + return 0; +} + +PyObject * +_PyEval_GetAsyncGenFinalizer(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return tstate->async_gen_finalizer; +} + +PyFrameObject * +PyEval_GetFrame(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + return tstate->frame; +} + +PyObject * +PyEval_GetBuiltins(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + PyFrameObject *current_frame = tstate->frame; + if (current_frame == NULL) + return tstate->interp->builtins; + else + return current_frame->f_builtins; +} + +/* Convenience function to get a builtin from its name */ +PyObject * +_PyEval_GetBuiltinId(_Py_Identifier *name) +{ + PyThreadState *tstate = _PyThreadState_GET(); + PyObject *attr = _PyDict_GetItemIdWithError(PyEval_GetBuiltins(), name); + if (attr) { + Py_INCREF(attr); + } + else if (!_PyErr_Occurred(tstate)) { + _PyErr_SetObject(tstate, PyExc_AttributeError, _PyUnicode_FromId(name)); + } + return attr; +} + +PyObject * +PyEval_GetLocals(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + PyFrameObject *current_frame = tstate->frame; + if (current_frame == NULL) { + _PyErr_SetString(tstate, PyExc_SystemError, "frame does not exist"); + return NULL; + } + + if (PyFrame_FastToLocalsWithError(current_frame) < 0) { + return NULL; + } + + assert(current_frame->f_locals != NULL); + return current_frame->f_locals; +} + +PyObject * +PyEval_GetGlobals(void) +{ + PyThreadState *tstate = _PyThreadState_GET(); + PyFrameObject *current_frame = tstate->frame; + if (current_frame == NULL) { + return NULL; + } + + assert(current_frame->f_globals != NULL); + return current_frame->f_globals; +} + +int +PyEval_MergeCompilerFlags(PyCompilerFlags *cf) +{ + PyThreadState *tstate = _PyThreadState_GET(); + PyFrameObject *current_frame = tstate->frame; + int result = cf->cf_flags != 0; + + if (current_frame != NULL) { + const int codeflags = current_frame->f_code->co_flags; + const int compilerflags = codeflags & PyCF_MASK; + if (compilerflags) { + result = 1; + cf->cf_flags |= compilerflags; + } +#if 0 /* future keyword */ + if (codeflags & CO_GENERATOR_ALLOWED) { + result = 1; + cf->cf_flags |= CO_GENERATOR_ALLOWED; + } +#endif + } + return result; +} + + +const char * +PyEval_GetFuncName(PyObject *func) +{ + if (PyMethod_Check(func)) + return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func)); + else if (PyFunction_Check(func)) + return PyUnicode_AsUTF8(((PyFunctionObject*)func)->func_name); + else if (PyCFunction_Check(func)) + return ((PyCFunctionObject*)func)->m_ml->ml_name; + else + return Py_TYPE(func)->tp_name; +} + +const char * +PyEval_GetFuncDesc(PyObject *func) +{ + if (PyMethod_Check(func)) + return "()"; + else if (PyFunction_Check(func)) + return "()"; + else if (PyCFunction_Check(func)) + return "()"; + else + return " object"; +} + +#define C_TRACE(x, call) \ +if (tstate->use_tracing && tstate->c_profilefunc) { \ + if (call_trace(tstate->c_profilefunc, tstate->c_profileobj, \ + tstate, tstate->frame, \ + PyTrace_C_CALL, func)) { \ + x = NULL; \ + } \ + else { \ + x = call; \ + if (tstate->c_profilefunc != NULL) { \ + if (x == NULL) { \ + call_trace_protected(tstate->c_profilefunc, \ + tstate->c_profileobj, \ + tstate, tstate->frame, \ + PyTrace_C_EXCEPTION, func); \ + /* XXX should pass (type, value, tb) */ \ + } else { \ + if (call_trace(tstate->c_profilefunc, \ + tstate->c_profileobj, \ + tstate, tstate->frame, \ + PyTrace_C_RETURN, func)) { \ + Py_DECREF(x); \ + x = NULL; \ + } \ + } \ + } \ + } \ +} else { \ + x = call; \ + } + + +static PyObject * +trace_call_function(PyThreadState *tstate, + PyObject *func, + PyObject **args, Py_ssize_t nargs, + PyObject *kwnames) +{ + PyObject *x; + if (PyCFunction_CheckExact(func) || PyCMethod_CheckExact(func)) { + C_TRACE(x, PyObject_Vectorcall(func, args, nargs, kwnames)); + return x; + } + else if (Py_IS_TYPE(func, &PyMethodDescr_Type) && nargs > 0) { + /* We need to create a temporary bound method as argument + for profiling. + + If nargs == 0, then this cannot work because we have no + "self". In any case, the call itself would raise + TypeError (foo needs an argument), so we just skip + profiling. */ + PyObject *self = args[0]; + func = Py_TYPE(func)->tp_descr_get(func, self, (PyObject*)Py_TYPE(self)); + if (func == NULL) { + return NULL; + } + C_TRACE(x, PyObject_Vectorcall(func, + args+1, nargs-1, + kwnames)); + Py_DECREF(func); + return x; + } + return PyObject_Vectorcall(func, args, nargs | PY_VECTORCALL_ARGUMENTS_OFFSET, kwnames); +} + +/* Issue #29227: Inline call_function() into _PyEval_EvalFrameDefault() + to reduce the stack consumption. */ +Py_LOCAL_INLINE(PyObject *) _Py_HOT_FUNCTION +call_function(PyThreadState *tstate, PyObject ***pp_stack, Py_ssize_t oparg, PyObject *kwnames) +{ + PyObject **pfunc = (*pp_stack) - oparg - 1; + PyObject *func = *pfunc; + PyObject *x, *w; + Py_ssize_t nkwargs = (kwnames == NULL) ? 0 : PyTuple_GET_SIZE(kwnames); + Py_ssize_t nargs = oparg - nkwargs; + PyObject **stack = (*pp_stack) - nargs - nkwargs; + + if (tstate->use_tracing) { + x = trace_call_function(tstate, func, stack, nargs, kwnames); + } + else { + x = PyObject_Vectorcall(func, stack, nargs | PY_VECTORCALL_ARGUMENTS_OFFSET, kwnames); + } + + assert((x != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); + + /* Clear the stack of the function object. */ + while ((*pp_stack) > pfunc) { + w = EXT_POP(*pp_stack); + Py_DECREF(w); + } + + return x; +} + +static PyObject * +do_call_core(PyThreadState *tstate, PyObject *func, PyObject *callargs, PyObject *kwdict) +{ + PyObject *result; + + if (PyCFunction_CheckExact(func) || PyCMethod_CheckExact(func)) { + C_TRACE(result, PyObject_Call(func, callargs, kwdict)); + return result; + } + else if (Py_IS_TYPE(func, &PyMethodDescr_Type)) { + Py_ssize_t nargs = PyTuple_GET_SIZE(callargs); + if (nargs > 0 && tstate->use_tracing) { + /* We need to create a temporary bound method as argument + for profiling. + + If nargs == 0, then this cannot work because we have no + "self". In any case, the call itself would raise + TypeError (foo needs an argument), so we just skip + profiling. */ + PyObject *self = PyTuple_GET_ITEM(callargs, 0); + func = Py_TYPE(func)->tp_descr_get(func, self, (PyObject*)Py_TYPE(self)); + if (func == NULL) { + return NULL; + } + + C_TRACE(result, _PyObject_FastCallDictTstate( + tstate, func, + &_PyTuple_ITEMS(callargs)[1], + nargs - 1, + kwdict)); + Py_DECREF(func); + return result; + } + } + return PyObject_Call(func, callargs, kwdict); +} + +/* Extract a slice index from a PyLong or an object with the + nb_index slot defined, and store in *pi. + Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, + and silently boost values less than PY_SSIZE_T_MIN to PY_SSIZE_T_MIN. + Return 0 on error, 1 on success. +*/ +int +_PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi) +{ + PyThreadState *tstate = _PyThreadState_GET(); + if (v != Py_None) { + Py_ssize_t x; + if (_PyIndex_Check(v)) { + x = PyNumber_AsSsize_t(v, NULL); + if (x == -1 && _PyErr_Occurred(tstate)) + return 0; + } + else { + _PyErr_SetString(tstate, PyExc_TypeError, + "slice indices must be integers or " + "None or have an __index__ method"); + return 0; + } + *pi = x; + } + return 1; +} + +int +_PyEval_SliceIndexNotNone(PyObject *v, Py_ssize_t *pi) +{ + PyThreadState *tstate = _PyThreadState_GET(); + Py_ssize_t x; + if (_PyIndex_Check(v)) { + x = PyNumber_AsSsize_t(v, NULL); + if (x == -1 && _PyErr_Occurred(tstate)) + return 0; + } + else { + _PyErr_SetString(tstate, PyExc_TypeError, + "slice indices must be integers or " + "have an __index__ method"); + return 0; + } + *pi = x; + return 1; +} + +static PyObject * +import_name(PyThreadState *tstate, PyFrameObject *f, + PyObject *name, PyObject *fromlist, PyObject *level) +{ + _Py_IDENTIFIER(__import__); + PyObject *import_func, *res; + PyObject* stack[5]; + + import_func = _PyDict_GetItemIdWithError(f->f_builtins, &PyId___import__); + if (import_func == NULL) { + if (!_PyErr_Occurred(tstate)) { + _PyErr_SetString(tstate, PyExc_ImportError, "__import__ not found"); + } + return NULL; + } + + /* Fast path for not overloaded __import__. */ + if (import_func == tstate->interp->import_func) { + int ilevel = _PyLong_AsInt(level); + if (ilevel == -1 && _PyErr_Occurred(tstate)) { + return NULL; + } + res = PyImport_ImportModuleLevelObject( + name, + f->f_globals, + f->f_locals == NULL ? Py_None : f->f_locals, + fromlist, + ilevel); + return res; + } + + Py_INCREF(import_func); + + stack[0] = name; + stack[1] = f->f_globals; + stack[2] = f->f_locals == NULL ? Py_None : f->f_locals; + stack[3] = fromlist; + stack[4] = level; + res = _PyObject_FastCall(import_func, stack, 5); + Py_DECREF(import_func); + return res; +} + +static PyObject * +import_from(PyThreadState *tstate, PyObject *v, PyObject *name) +{ + PyObject *x; + PyObject *fullmodname, *pkgname, *pkgpath, *pkgname_or_unknown, *errmsg; + + if (_PyObject_LookupAttr(v, name, &x) != 0) { + return x; + } + /* Issue #17636: in case this failed because of a circular relative + import, try to fallback on reading the module directly from + sys.modules. */ + pkgname = _PyObject_GetAttrId(v, &PyId___name__); + if (pkgname == NULL) { + goto error; + } + if (!PyUnicode_Check(pkgname)) { + Py_CLEAR(pkgname); + goto error; + } + fullmodname = PyUnicode_FromFormat("%U.%U", pkgname, name); + if (fullmodname == NULL) { + Py_DECREF(pkgname); + return NULL; + } + x = PyImport_GetModule(fullmodname); + Py_DECREF(fullmodname); + if (x == NULL && !_PyErr_Occurred(tstate)) { + goto error; + } + Py_DECREF(pkgname); + return x; + error: + pkgpath = PyModule_GetFilenameObject(v); + if (pkgname == NULL) { + pkgname_or_unknown = PyUnicode_FromString("<unknown module name>"); + if (pkgname_or_unknown == NULL) { + Py_XDECREF(pkgpath); + return NULL; + } + } else { + pkgname_or_unknown = pkgname; + } + + if (pkgpath == NULL || !PyUnicode_Check(pkgpath)) { + _PyErr_Clear(tstate); + errmsg = PyUnicode_FromFormat( + "cannot import name %R from %R (unknown location)", + name, pkgname_or_unknown + ); + /* NULL checks for errmsg and pkgname done by PyErr_SetImportError. */ + PyErr_SetImportError(errmsg, pkgname, NULL); + } + else { + _Py_IDENTIFIER(__spec__); + PyObject *spec = _PyObject_GetAttrId(v, &PyId___spec__); + const char *fmt = + _PyModuleSpec_IsInitializing(spec) ? + "cannot import name %R from partially initialized module %R " + "(most likely due to a circular import) (%S)" : + "cannot import name %R from %R (%S)"; + Py_XDECREF(spec); + + errmsg = PyUnicode_FromFormat(fmt, name, pkgname_or_unknown, pkgpath); + /* NULL checks for errmsg and pkgname done by PyErr_SetImportError. */ + PyErr_SetImportError(errmsg, pkgname, pkgpath); + } + + Py_XDECREF(errmsg); + Py_XDECREF(pkgname_or_unknown); + Py_XDECREF(pkgpath); + return NULL; +} + +static int +import_all_from(PyThreadState *tstate, PyObject *locals, PyObject *v) +{ + _Py_IDENTIFIER(__all__); + _Py_IDENTIFIER(__dict__); + PyObject *all, *dict, *name, *value; + int skip_leading_underscores = 0; + int pos, err; + + if (_PyObject_LookupAttrId(v, &PyId___all__, &all) < 0) { + return -1; /* Unexpected error */ + } + if (all == NULL) { + if (_PyObject_LookupAttrId(v, &PyId___dict__, &dict) < 0) { + return -1; + } + if (dict == NULL) { + _PyErr_SetString(tstate, PyExc_ImportError, + "from-import-* object has no __dict__ and no __all__"); + return -1; + } + all = PyMapping_Keys(dict); + Py_DECREF(dict); + if (all == NULL) + return -1; + skip_leading_underscores = 1; + } + + for (pos = 0, err = 0; ; pos++) { + name = PySequence_GetItem(all, pos); + if (name == NULL) { + if (!_PyErr_ExceptionMatches(tstate, PyExc_IndexError)) { + err = -1; + } + else { + _PyErr_Clear(tstate); + } + break; + } + if (!PyUnicode_Check(name)) { + PyObject *modname = _PyObject_GetAttrId(v, &PyId___name__); + if (modname == NULL) { + Py_DECREF(name); + err = -1; + break; + } + if (!PyUnicode_Check(modname)) { + _PyErr_Format(tstate, PyExc_TypeError, + "module __name__ must be a string, not %.100s", + Py_TYPE(modname)->tp_name); + } + else { + _PyErr_Format(tstate, PyExc_TypeError, + "%s in %U.%s must be str, not %.100s", + skip_leading_underscores ? "Key" : "Item", + modname, + skip_leading_underscores ? "__dict__" : "__all__", + Py_TYPE(name)->tp_name); + } + Py_DECREF(modname); + Py_DECREF(name); + err = -1; + break; + } + if (skip_leading_underscores) { + if (PyUnicode_READY(name) == -1) { + Py_DECREF(name); + err = -1; + break; + } + if (PyUnicode_READ_CHAR(name, 0) == '_') { + Py_DECREF(name); + continue; + } + } + value = PyObject_GetAttr(v, name); + if (value == NULL) + err = -1; + else if (PyDict_CheckExact(locals)) + err = PyDict_SetItem(locals, name, value); + else + err = PyObject_SetItem(locals, name, value); + Py_DECREF(name); + Py_XDECREF(value); + if (err != 0) + break; + } + Py_DECREF(all); + return err; +} + +static int +check_args_iterable(PyThreadState *tstate, PyObject *func, PyObject *args) +{ + if (Py_TYPE(args)->tp_iter == NULL && !PySequence_Check(args)) { + /* check_args_iterable() may be called with a live exception: + * clear it to prevent calling _PyObject_FunctionStr() with an + * exception set. */ + _PyErr_Clear(tstate); + PyObject *funcstr = _PyObject_FunctionStr(func); + if (funcstr != NULL) { + _PyErr_Format(tstate, PyExc_TypeError, + "%U argument after * must be an iterable, not %.200s", + funcstr, Py_TYPE(args)->tp_name); + Py_DECREF(funcstr); + } + return -1; + } + return 0; +} + +static void +format_kwargs_error(PyThreadState *tstate, PyObject *func, PyObject *kwargs) +{ + /* _PyDict_MergeEx raises attribute + * error (percolated from an attempt + * to get 'keys' attribute) instead of + * a type error if its second argument + * is not a mapping. + */ + if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) { + _PyErr_Clear(tstate); + PyObject *funcstr = _PyObject_FunctionStr(func); + if (funcstr != NULL) { + _PyErr_Format( + tstate, PyExc_TypeError, + "%U argument after ** must be a mapping, not %.200s", + funcstr, Py_TYPE(kwargs)->tp_name); + Py_DECREF(funcstr); + } + } + else if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) { + PyObject *exc, *val, *tb; + _PyErr_Fetch(tstate, &exc, &val, &tb); + if (val && PyTuple_Check(val) && PyTuple_GET_SIZE(val) == 1) { + _PyErr_Clear(tstate); + PyObject *funcstr = _PyObject_FunctionStr(func); + if (funcstr != NULL) { + PyObject *key = PyTuple_GET_ITEM(val, 0); + _PyErr_Format( + tstate, PyExc_TypeError, + "%U got multiple values for keyword argument '%S'", + funcstr, key); + Py_DECREF(funcstr); + } + Py_XDECREF(exc); + Py_XDECREF(val); + Py_XDECREF(tb); + } + else { + _PyErr_Restore(tstate, exc, val, tb); + } + } +} + +static void +format_exc_check_arg(PyThreadState *tstate, PyObject *exc, + const char *format_str, PyObject *obj) +{ + const char *obj_str; + + if (!obj) + return; + + obj_str = PyUnicode_AsUTF8(obj); + if (!obj_str) + return; + + _PyErr_Format(tstate, exc, format_str, obj_str); +} + +static void +format_exc_unbound(PyThreadState *tstate, PyCodeObject *co, int oparg) +{ + PyObject *name; + /* Don't stomp existing exception */ + if (_PyErr_Occurred(tstate)) + return; + if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) { + name = PyTuple_GET_ITEM(co->co_cellvars, + oparg); + format_exc_check_arg(tstate, + PyExc_UnboundLocalError, + UNBOUNDLOCAL_ERROR_MSG, + name); + } else { + name = PyTuple_GET_ITEM(co->co_freevars, oparg - + PyTuple_GET_SIZE(co->co_cellvars)); + format_exc_check_arg(tstate, PyExc_NameError, + UNBOUNDFREE_ERROR_MSG, name); + } +} + +static void +format_awaitable_error(PyThreadState *tstate, PyTypeObject *type, int prevprevopcode, int prevopcode) +{ + if (type->tp_as_async == NULL || type->tp_as_async->am_await == NULL) { + if (prevopcode == BEFORE_ASYNC_WITH) { + _PyErr_Format(tstate, PyExc_TypeError, + "'async with' received an object from __aenter__ " + "that does not implement __await__: %.100s", + type->tp_name); + } + else if (prevopcode == WITH_EXCEPT_START || (prevopcode == CALL_FUNCTION && prevprevopcode == DUP_TOP)) { + _PyErr_Format(tstate, PyExc_TypeError, + "'async with' received an object from __aexit__ " + "that does not implement __await__: %.100s", + type->tp_name); + } + } +} + +static PyObject * +unicode_concatenate(PyThreadState *tstate, PyObject *v, PyObject *w, + PyFrameObject *f, const _Py_CODEUNIT *next_instr) +{ + PyObject *res; + if (Py_REFCNT(v) == 2) { + /* In the common case, there are 2 references to the value + * stored in 'variable' when the += is performed: one on the + * value stack (in 'v') and one still stored in the + * 'variable'. We try to delete the variable now to reduce + * the refcnt to 1. + */ + int opcode, oparg; + NEXTOPARG(); + switch (opcode) { + case STORE_FAST: + { + PyObject **fastlocals = f->f_localsplus; + if (GETLOCAL(oparg) == v) + SETLOCAL(oparg, NULL); + break; + } + case STORE_DEREF: + { + PyObject **freevars = (f->f_localsplus + + f->f_code->co_nlocals); + PyObject *c = freevars[oparg]; + if (PyCell_GET(c) == v) { + PyCell_SET(c, NULL); + Py_DECREF(v); + } + break; + } + case STORE_NAME: + { + PyObject *names = f->f_code->co_names; + PyObject *name = GETITEM(names, oparg); + PyObject *locals = f->f_locals; + if (locals && PyDict_CheckExact(locals)) { + PyObject *w = PyDict_GetItemWithError(locals, name); + if ((w == v && PyDict_DelItem(locals, name) != 0) || + (w == NULL && _PyErr_Occurred(tstate))) + { + Py_DECREF(v); + return NULL; + } + } + break; + } + } + } + res = v; + PyUnicode_Append(&res, w); + return res; +} + +#ifdef DYNAMIC_EXECUTION_PROFILE + +static PyObject * +getarray(long a[256]) +{ + int i; + PyObject *l = PyList_New(256); + if (l == NULL) return NULL; + for (i = 0; i < 256; i++) { + PyObject *x = PyLong_FromLong(a[i]); + if (x == NULL) { + Py_DECREF(l); + return NULL; + } + PyList_SET_ITEM(l, i, x); + } + for (i = 0; i < 256; i++) + a[i] = 0; + return l; +} + +PyObject * +_Py_GetDXProfile(PyObject *self, PyObject *args) +{ +#ifndef DXPAIRS + return getarray(dxp); +#else + int i; + PyObject *l = PyList_New(257); + if (l == NULL) return NULL; + for (i = 0; i < 257; i++) { + PyObject *x = getarray(dxpairs[i]); + if (x == NULL) { + Py_DECREF(l); + return NULL; + } + PyList_SET_ITEM(l, i, x); + } + return l; +#endif +} + +#endif + +Py_ssize_t +_PyEval_RequestCodeExtraIndex(freefunc free) +{ + PyInterpreterState *interp = _PyInterpreterState_GET(); + Py_ssize_t new_index; + + if (interp->co_extra_user_count == MAX_CO_EXTRA_USERS - 1) { + return -1; + } + new_index = interp->co_extra_user_count++; + interp->co_extra_freefuncs[new_index] = free; + return new_index; +} + +static void +dtrace_function_entry(PyFrameObject *f) +{ + const char *filename; + const char *funcname; + int lineno; + + PyCodeObject *code = f->f_code; + filename = PyUnicode_AsUTF8(code->co_filename); + funcname = PyUnicode_AsUTF8(code->co_name); + lineno = PyCode_Addr2Line(code, f->f_lasti); + + PyDTrace_FUNCTION_ENTRY(filename, funcname, lineno); +} + +static void +dtrace_function_return(PyFrameObject *f) +{ + const char *filename; + const char *funcname; + int lineno; + + PyCodeObject *code = f->f_code; + filename = PyUnicode_AsUTF8(code->co_filename); + funcname = PyUnicode_AsUTF8(code->co_name); + lineno = PyCode_Addr2Line(code, f->f_lasti); + + PyDTrace_FUNCTION_RETURN(filename, funcname, lineno); +} + +/* DTrace equivalent of maybe_call_line_trace. */ +static void +maybe_dtrace_line(PyFrameObject *frame, + int *instr_lb, int *instr_ub, int *instr_prev) +{ + int line = frame->f_lineno; + const char *co_filename, *co_name; + + /* If the last instruction executed isn't in the current + instruction window, reset the window. + */ + if (frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub) { + PyAddrPair bounds; + line = _PyCode_CheckLineNumber(frame->f_code, frame->f_lasti, + &bounds); + *instr_lb = bounds.ap_lower; + *instr_ub = bounds.ap_upper; + } + /* If the last instruction falls at the start of a line or if + it represents a jump backwards, update the frame's line + number and call the trace function. */ + if (frame->f_lasti == *instr_lb || frame->f_lasti < *instr_prev) { + frame->f_lineno = line; + co_filename = PyUnicode_AsUTF8(frame->f_code->co_filename); + if (!co_filename) + co_filename = "?"; + co_name = PyUnicode_AsUTF8(frame->f_code->co_name); + if (!co_name) + co_name = "?"; + PyDTrace_LINE(co_filename, co_name, line); + } + *instr_prev = frame->f_lasti; +} + + +/* Implement Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() as functions + for the limited API. */ + +#undef Py_EnterRecursiveCall + +int Py_EnterRecursiveCall(const char *where) +{ + return _Py_EnterRecursiveCall_inline(where); +} + +#undef Py_LeaveRecursiveCall + +void Py_LeaveRecursiveCall(void) +{ + _Py_LeaveRecursiveCall_inline(); +} |