diff options
Diffstat (limited to 'contrib/tools/python3/Python/compile.c')
-rw-r--r-- | contrib/tools/python3/Python/compile.c | 8144 |
1 files changed, 8144 insertions, 0 deletions
diff --git a/contrib/tools/python3/Python/compile.c b/contrib/tools/python3/Python/compile.c new file mode 100644 index 0000000000..ddd7b5c795 --- /dev/null +++ b/contrib/tools/python3/Python/compile.c @@ -0,0 +1,8144 @@ +/* + * This file compiles an abstract syntax tree (AST) into Python bytecode. + * + * The primary entry point is _PyAST_Compile(), which returns a + * PyCodeObject. The compiler makes several passes to build the code + * object: + * 1. Checks for future statements. See future.c + * 2. Builds a symbol table. See symtable.c. + * 3. Generate an instruction sequence. See compiler_mod() in this file. + * 4. Generate a control flow graph and run optimizations on it. See flowgraph.c. + * 5. Assemble the basic blocks into final code. See optimize_and_assemble() in + * this file, and assembler.c. + * + * Note that compiler_mod() suggests module, but the module ast type + * (mod_ty) has cases for expressions and interactive statements. + * + * CAUTION: The VISIT_* macros abort the current function when they + * encounter a problem. So don't invoke them when there is memory + * which needs to be released. Code blocks are OK, as the compiler + * structure takes care of releasing those. Use the arena to manage + * objects. + */ + +#include <stdbool.h> + +#include "Python.h" +#include "pycore_ast.h" // _PyAST_GetDocString() +#define NEED_OPCODE_TABLES +#include "pycore_opcode_utils.h" +#undef NEED_OPCODE_TABLES +#include "pycore_flowgraph.h" +#include "pycore_code.h" // _PyCode_New() +#include "pycore_compile.h" +#include "pycore_intrinsics.h" +#include "pycore_long.h" // _PyLong_GetZero() +#include "pycore_pymem.h" // _PyMem_IsPtrFreed() +#include "pycore_symtable.h" // PySTEntryObject, _PyFuture_FromAST() + +#include "opcode_metadata.h" // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed + +#define DEFAULT_CODE_SIZE 128 +#define DEFAULT_LNOTAB_SIZE 16 +#define DEFAULT_CNOTAB_SIZE 32 + +#define COMP_GENEXP 0 +#define COMP_LISTCOMP 1 +#define COMP_SETCOMP 2 +#define COMP_DICTCOMP 3 + +/* A soft limit for stack use, to avoid excessive + * memory use for large constants, etc. + * + * The value 30 is plucked out of thin air. + * Code that could use more stack than this is + * rare, so the exact value is unimportant. + */ +#define STACK_USE_GUIDELINE 30 + +#undef SUCCESS +#undef ERROR +#define SUCCESS 0 +#define ERROR -1 + +#define RETURN_IF_ERROR(X) \ + if ((X) == -1) { \ + return ERROR; \ + } + +/* If we exceed this limit, it should + * be considered a compiler bug. + * Currently it should be impossible + * to exceed STACK_USE_GUIDELINE * 100, + * as 100 is the maximum parse depth. + * For performance reasons we will + * want to reduce this to a + * few hundred in the future. + * + * NOTE: Whatever MAX_ALLOWED_STACK_USE is + * set to, it should never restrict what Python + * we can write, just how we compile it. + */ +#define MAX_ALLOWED_STACK_USE (STACK_USE_GUIDELINE * 100) + +#define IS_TOP_LEVEL_AWAIT(C) ( \ + ((C)->c_flags.cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \ + && ((C)->u->u_ste->ste_type == ModuleBlock)) + +typedef _PyCompilerSrcLocation location; +typedef _PyCfgInstruction cfg_instr; +typedef _PyCfgBasicblock basicblock; +typedef _PyCfgBuilder cfg_builder; + +#define LOCATION(LNO, END_LNO, COL, END_COL) \ + ((const _PyCompilerSrcLocation){(LNO), (END_LNO), (COL), (END_COL)}) + +/* Return true if loc1 starts after loc2 ends. */ +static inline bool +location_is_after(location loc1, location loc2) { + return (loc1.lineno > loc2.end_lineno) || + ((loc1.lineno == loc2.end_lineno) && + (loc1.col_offset > loc2.end_col_offset)); +} + +#define LOC(x) SRC_LOCATION_FROM_AST(x) + +typedef _PyCfgJumpTargetLabel jump_target_label; + +static jump_target_label NO_LABEL = {-1}; + +#define SAME_LABEL(L1, L2) ((L1).id == (L2).id) +#define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL))) + +#define NEW_JUMP_TARGET_LABEL(C, NAME) \ + jump_target_label NAME = instr_sequence_new_label(INSTR_SEQUENCE(C)); \ + if (!IS_LABEL(NAME)) { \ + return ERROR; \ + } + +#define USE_LABEL(C, LBL) \ + RETURN_IF_ERROR(instr_sequence_use_label(INSTR_SEQUENCE(C), (LBL).id)) + + +/* fblockinfo tracks the current frame block. + +A frame block is used to handle loops, try/except, and try/finally. +It's called a frame block to distinguish it from a basic block in the +compiler IR. +*/ + +enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END, + WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER, + EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR }; + +struct fblockinfo { + enum fblocktype fb_type; + jump_target_label fb_block; + /* (optional) type-specific exit or cleanup block */ + jump_target_label fb_exit; + /* (optional) additional information required for unwinding */ + void *fb_datum; +}; + +enum { + COMPILER_SCOPE_MODULE, + COMPILER_SCOPE_CLASS, + COMPILER_SCOPE_FUNCTION, + COMPILER_SCOPE_ASYNC_FUNCTION, + COMPILER_SCOPE_LAMBDA, + COMPILER_SCOPE_COMPREHENSION, + COMPILER_SCOPE_TYPEPARAMS, +}; + + +int +_PyCompile_InstrSize(int opcode, int oparg) +{ + assert(!IS_PSEUDO_OPCODE(opcode)); + assert(HAS_ARG(opcode) || oparg == 0); + int extended_args = (0xFFFFFF < oparg) + (0xFFFF < oparg) + (0xFF < oparg); + int caches = _PyOpcode_Caches[opcode]; + return extended_args + 1 + caches; +} + +typedef _PyCompile_Instruction instruction; +typedef _PyCompile_InstructionSequence instr_sequence; + +#define INITIAL_INSTR_SEQUENCE_SIZE 100 +#define INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE 10 + +/* + * Resize the array if index is out of range. + * + * idx: the index we want to access + * arr: pointer to the array + * alloc: pointer to the capacity of the array + * default_alloc: initial number of items + * item_size: size of each item + * + */ +int +_PyCompile_EnsureArrayLargeEnough(int idx, void **array, int *alloc, + int default_alloc, size_t item_size) +{ + void *arr = *array; + if (arr == NULL) { + int new_alloc = default_alloc; + if (idx >= new_alloc) { + new_alloc = idx + default_alloc; + } + arr = PyObject_Calloc(new_alloc, item_size); + if (arr == NULL) { + PyErr_NoMemory(); + return ERROR; + } + *alloc = new_alloc; + } + else if (idx >= *alloc) { + size_t oldsize = *alloc * item_size; + int new_alloc = *alloc << 1; + if (idx >= new_alloc) { + new_alloc = idx + default_alloc; + } + size_t newsize = new_alloc * item_size; + + if (oldsize > (SIZE_MAX >> 1)) { + PyErr_NoMemory(); + return ERROR; + } + + assert(newsize > 0); + void *tmp = PyObject_Realloc(arr, newsize); + if (tmp == NULL) { + PyErr_NoMemory(); + return ERROR; + } + *alloc = new_alloc; + arr = tmp; + memset((char *)arr + oldsize, 0, newsize - oldsize); + } + + *array = arr; + return SUCCESS; +} + +static int +instr_sequence_next_inst(instr_sequence *seq) { + assert(seq->s_instrs != NULL || seq->s_used == 0); + + RETURN_IF_ERROR( + _PyCompile_EnsureArrayLargeEnough(seq->s_used + 1, + (void**)&seq->s_instrs, + &seq->s_allocated, + INITIAL_INSTR_SEQUENCE_SIZE, + sizeof(instruction))); + assert(seq->s_allocated >= 0); + assert(seq->s_used < seq->s_allocated); + return seq->s_used++; +} + +static jump_target_label +instr_sequence_new_label(instr_sequence *seq) +{ + jump_target_label lbl = {++seq->s_next_free_label}; + return lbl; +} + +static int +instr_sequence_use_label(instr_sequence *seq, int lbl) { + int old_size = seq->s_labelmap_size; + RETURN_IF_ERROR( + _PyCompile_EnsureArrayLargeEnough(lbl, + (void**)&seq->s_labelmap, + &seq->s_labelmap_size, + INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE, + sizeof(int))); + + for(int i = old_size; i < seq->s_labelmap_size; i++) { + seq->s_labelmap[i] = -111; /* something weird, for debugging */ + } + seq->s_labelmap[lbl] = seq->s_used; /* label refers to the next instruction */ + return SUCCESS; +} + +static int +instr_sequence_addop(instr_sequence *seq, int opcode, int oparg, location loc) +{ + assert(IS_WITHIN_OPCODE_RANGE(opcode)); + assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0); + assert(0 <= oparg && oparg < (1 << 30)); + + int idx = instr_sequence_next_inst(seq); + RETURN_IF_ERROR(idx); + instruction *ci = &seq->s_instrs[idx]; + ci->i_opcode = opcode; + ci->i_oparg = oparg; + ci->i_loc = loc; + return SUCCESS; +} + +static int +instr_sequence_insert_instruction(instr_sequence *seq, int pos, + int opcode, int oparg, location loc) +{ + assert(pos >= 0 && pos <= seq->s_used); + int last_idx = instr_sequence_next_inst(seq); + RETURN_IF_ERROR(last_idx); + for (int i=last_idx-1; i >= pos; i--) { + seq->s_instrs[i+1] = seq->s_instrs[i]; + } + instruction *ci = &seq->s_instrs[pos]; + ci->i_opcode = opcode; + ci->i_oparg = oparg; + ci->i_loc = loc; + + /* fix the labels map */ + for(int lbl=0; lbl < seq->s_labelmap_size; lbl++) { + if (seq->s_labelmap[lbl] >= pos) { + seq->s_labelmap[lbl]++; + } + } + return SUCCESS; +} + +static void +instr_sequence_fini(instr_sequence *seq) { + PyObject_Free(seq->s_labelmap); + seq->s_labelmap = NULL; + + PyObject_Free(seq->s_instrs); + seq->s_instrs = NULL; +} + +static int +instr_sequence_to_cfg(instr_sequence *seq, cfg_builder *g) { + memset(g, 0, sizeof(cfg_builder)); + RETURN_IF_ERROR(_PyCfgBuilder_Init(g)); + + /* There can be more than one label for the same offset. The + * offset2lbl maping selects one of them which we use consistently. + */ + + int *offset2lbl = PyMem_Malloc(seq->s_used * sizeof(int)); + if (offset2lbl == NULL) { + PyErr_NoMemory(); + return ERROR; + } + for (int i = 0; i < seq->s_used; i++) { + offset2lbl[i] = -1; + } + for (int lbl=0; lbl < seq->s_labelmap_size; lbl++) { + int offset = seq->s_labelmap[lbl]; + if (offset >= 0) { + assert(offset < seq->s_used); + offset2lbl[offset] = lbl; + } + } + + for (int i = 0; i < seq->s_used; i++) { + int lbl = offset2lbl[i]; + if (lbl >= 0) { + assert (lbl < seq->s_labelmap_size); + jump_target_label lbl_ = {lbl}; + if (_PyCfgBuilder_UseLabel(g, lbl_) < 0) { + goto error; + } + } + instruction *instr = &seq->s_instrs[i]; + int opcode = instr->i_opcode; + int oparg = instr->i_oparg; + if (HAS_TARGET(opcode)) { + int offset = seq->s_labelmap[oparg]; + assert(offset >= 0 && offset < seq->s_used); + int lbl = offset2lbl[offset]; + assert(lbl >= 0 && lbl < seq->s_labelmap_size); + oparg = lbl; + } + if (_PyCfgBuilder_Addop(g, opcode, oparg, instr->i_loc) < 0) { + goto error; + } + } + PyMem_Free(offset2lbl); + + int nblocks = 0; + for (basicblock *b = g->g_block_list; b != NULL; b = b->b_list) { + nblocks++; + } + if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) { + PyErr_NoMemory(); + return ERROR; + } + return SUCCESS; +error: + PyMem_Free(offset2lbl); + return ERROR; +} + + +/* The following items change on entry and exit of code blocks. + They must be saved and restored when returning to a block. +*/ +struct compiler_unit { + PySTEntryObject *u_ste; + + int u_scope_type; + + PyObject *u_private; /* for private name mangling */ + + instr_sequence u_instr_sequence; /* codegen output */ + + int u_nfblocks; + int u_in_inlined_comp; + + struct fblockinfo u_fblock[CO_MAXBLOCKS]; + + _PyCompile_CodeUnitMetadata u_metadata; +}; + +/* This struct captures the global state of a compilation. + +The u pointer points to the current compilation unit, while units +for enclosing blocks are stored in c_stack. The u and c_stack are +managed by compiler_enter_scope() and compiler_exit_scope(). + +Note that we don't track recursion levels during compilation - the +task of detecting and rejecting excessive levels of nesting is +handled by the symbol analysis pass. + +*/ + +struct compiler { + PyObject *c_filename; + struct symtable *c_st; + PyFutureFeatures c_future; /* module's __future__ */ + PyCompilerFlags c_flags; + + int c_optimize; /* optimization level */ + int c_interactive; /* true if in interactive mode */ + int c_nestlevel; + PyObject *c_const_cache; /* Python dict holding all constants, + including names tuple */ + struct compiler_unit *u; /* compiler state for current block */ + PyObject *c_stack; /* Python list holding compiler_unit ptrs */ + PyArena *c_arena; /* pointer to memory allocation arena */ +}; + +#define INSTR_SEQUENCE(C) (&((C)->u->u_instr_sequence)) + + +typedef struct { + // A list of strings corresponding to name captures. It is used to track: + // - Repeated name assignments in the same pattern. + // - Different name assignments in alternatives. + // - The order of name assignments in alternatives. + PyObject *stores; + // If 0, any name captures against our subject will raise. + int allow_irrefutable; + // An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop + // i items off of the stack. The end result looks like this (with each block + // falling through to the next): + // fail_pop[4]: POP_TOP + // fail_pop[3]: POP_TOP + // fail_pop[2]: POP_TOP + // fail_pop[1]: POP_TOP + // fail_pop[0]: NOP + jump_target_label *fail_pop; + // The current length of fail_pop. + Py_ssize_t fail_pop_size; + // The number of items on top of the stack that need to *stay* on top of the + // stack. Variable captures go beneath these. All of them will be popped on + // failure. + Py_ssize_t on_top; +} pattern_context; + +static int codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc); + +static void compiler_free(struct compiler *); +static int compiler_error(struct compiler *, location loc, const char *, ...); +static int compiler_warn(struct compiler *, location loc, const char *, ...); +static int compiler_nameop(struct compiler *, location, identifier, expr_context_ty); + +static PyCodeObject *compiler_mod(struct compiler *, mod_ty); +static int compiler_visit_stmt(struct compiler *, stmt_ty); +static int compiler_visit_keyword(struct compiler *, keyword_ty); +static int compiler_visit_expr(struct compiler *, expr_ty); +static int compiler_augassign(struct compiler *, stmt_ty); +static int compiler_annassign(struct compiler *, stmt_ty); +static int compiler_subscript(struct compiler *, expr_ty); +static int compiler_slice(struct compiler *, expr_ty); + +static bool are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t); + + +static int compiler_with(struct compiler *, stmt_ty, int); +static int compiler_async_with(struct compiler *, stmt_ty, int); +static int compiler_async_for(struct compiler *, stmt_ty); +static int compiler_call_simple_kw_helper(struct compiler *c, + location loc, + asdl_keyword_seq *keywords, + Py_ssize_t nkwelts); +static int compiler_call_helper(struct compiler *c, location loc, + int n, asdl_expr_seq *args, + asdl_keyword_seq *keywords); +static int compiler_try_except(struct compiler *, stmt_ty); +static int compiler_try_star_except(struct compiler *, stmt_ty); +static int compiler_set_qualname(struct compiler *); + +static int compiler_sync_comprehension_generator( + struct compiler *c, location loc, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type, + int iter_on_stack); + +static int compiler_async_comprehension_generator( + struct compiler *c, location loc, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type, + int iter_on_stack); + +static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *); +static int compiler_match(struct compiler *, stmt_ty); +static int compiler_pattern_subpattern(struct compiler *, + pattern_ty, pattern_context *); + +static PyCodeObject *optimize_and_assemble(struct compiler *, int addNone); + +#define CAPSULE_NAME "compile.c compiler unit" + + +static int +compiler_setup(struct compiler *c, mod_ty mod, PyObject *filename, + PyCompilerFlags *flags, int optimize, PyArena *arena) +{ + PyCompilerFlags local_flags = _PyCompilerFlags_INIT; + + c->c_const_cache = PyDict_New(); + if (!c->c_const_cache) { + return ERROR; + } + + c->c_stack = PyList_New(0); + if (!c->c_stack) { + return ERROR; + } + + c->c_filename = Py_NewRef(filename); + c->c_arena = arena; + if (!_PyFuture_FromAST(mod, filename, &c->c_future)) { + return ERROR; + } + if (!flags) { + flags = &local_flags; + } + int merged = c->c_future.ff_features | flags->cf_flags; + c->c_future.ff_features = merged; + flags->cf_flags = merged; + c->c_flags = *flags; + c->c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize; + c->c_nestlevel = 0; + + _PyASTOptimizeState state; + state.optimize = c->c_optimize; + state.ff_features = merged; + + if (!_PyAST_Optimize(mod, arena, &state)) { + return ERROR; + } + c->c_st = _PySymtable_Build(mod, filename, &c->c_future); + if (c->c_st == NULL) { + if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_SystemError, "no symtable"); + } + return ERROR; + } + return SUCCESS; +} + +static struct compiler* +new_compiler(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags, + int optimize, PyArena *arena) +{ + struct compiler *c = PyMem_Calloc(1, sizeof(struct compiler)); + if (c == NULL) { + return NULL; + } + if (compiler_setup(c, mod, filename, pflags, optimize, arena) < 0) { + compiler_free(c); + return NULL; + } + return c; +} + +PyCodeObject * +_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags, + int optimize, PyArena *arena) +{ + assert(!PyErr_Occurred()); + struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena); + if (c == NULL) { + return NULL; + } + + PyCodeObject *co = compiler_mod(c, mod); + compiler_free(c); + assert(co || PyErr_Occurred()); + return co; +} + +static void +compiler_free(struct compiler *c) +{ + if (c->c_st) + _PySymtable_Free(c->c_st); + Py_XDECREF(c->c_filename); + Py_XDECREF(c->c_const_cache); + Py_XDECREF(c->c_stack); + PyMem_Free(c); +} + +static PyObject * +list2dict(PyObject *list) +{ + Py_ssize_t i, n; + PyObject *v, *k; + PyObject *dict = PyDict_New(); + if (!dict) return NULL; + + n = PyList_Size(list); + for (i = 0; i < n; i++) { + v = PyLong_FromSsize_t(i); + if (!v) { + Py_DECREF(dict); + return NULL; + } + k = PyList_GET_ITEM(list, i); + if (PyDict_SetItem(dict, k, v) < 0) { + Py_DECREF(v); + Py_DECREF(dict); + return NULL; + } + Py_DECREF(v); + } + return dict; +} + +/* Return new dict containing names from src that match scope(s). + +src is a symbol table dictionary. If the scope of a name matches +either scope_type or flag is set, insert it into the new dict. The +values are integers, starting at offset and increasing by one for +each key. +*/ + +static PyObject * +dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset) +{ + Py_ssize_t i = offset, scope, num_keys, key_i; + PyObject *k, *v, *dest = PyDict_New(); + PyObject *sorted_keys; + + assert(offset >= 0); + if (dest == NULL) + return NULL; + + /* Sort the keys so that we have a deterministic order on the indexes + saved in the returned dictionary. These indexes are used as indexes + into the free and cell var storage. Therefore if they aren't + deterministic, then the generated bytecode is not deterministic. + */ + sorted_keys = PyDict_Keys(src); + if (sorted_keys == NULL) + return NULL; + if (PyList_Sort(sorted_keys) != 0) { + Py_DECREF(sorted_keys); + return NULL; + } + num_keys = PyList_GET_SIZE(sorted_keys); + + for (key_i = 0; key_i < num_keys; key_i++) { + /* XXX this should probably be a macro in symtable.h */ + long vi; + k = PyList_GET_ITEM(sorted_keys, key_i); + v = PyDict_GetItemWithError(src, k); + assert(v && PyLong_Check(v)); + vi = PyLong_AS_LONG(v); + scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK; + + if (scope == scope_type || vi & flag) { + PyObject *item = PyLong_FromSsize_t(i); + if (item == NULL) { + Py_DECREF(sorted_keys); + Py_DECREF(dest); + return NULL; + } + i++; + if (PyDict_SetItem(dest, k, item) < 0) { + Py_DECREF(sorted_keys); + Py_DECREF(item); + Py_DECREF(dest); + return NULL; + } + Py_DECREF(item); + } + } + Py_DECREF(sorted_keys); + return dest; +} + +static void +compiler_unit_free(struct compiler_unit *u) +{ + instr_sequence_fini(&u->u_instr_sequence); + Py_CLEAR(u->u_ste); + Py_CLEAR(u->u_metadata.u_name); + Py_CLEAR(u->u_metadata.u_qualname); + Py_CLEAR(u->u_metadata.u_consts); + Py_CLEAR(u->u_metadata.u_names); + Py_CLEAR(u->u_metadata.u_varnames); + Py_CLEAR(u->u_metadata.u_freevars); + Py_CLEAR(u->u_metadata.u_cellvars); + Py_CLEAR(u->u_metadata.u_fasthidden); + Py_CLEAR(u->u_private); + PyObject_Free(u); +} + +static int +compiler_set_qualname(struct compiler *c) +{ + Py_ssize_t stack_size; + struct compiler_unit *u = c->u; + PyObject *name, *base; + + base = NULL; + stack_size = PyList_GET_SIZE(c->c_stack); + assert(stack_size >= 1); + if (stack_size > 1) { + int scope, force_global = 0; + struct compiler_unit *parent; + PyObject *mangled, *capsule; + + capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1); + parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(parent); + if (parent->u_scope_type == COMPILER_SCOPE_TYPEPARAMS) { + /* The parent is a type parameter scope, so we need to + look at the grandparent. */ + if (stack_size == 2) { + // If we're immediately within the module, we can skip + // the rest and just set the qualname to be the same as name. + u->u_metadata.u_qualname = Py_NewRef(u->u_metadata.u_name); + return SUCCESS; + } + capsule = PyList_GET_ITEM(c->c_stack, stack_size - 2); + parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(parent); + } + + if (u->u_scope_type == COMPILER_SCOPE_FUNCTION + || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION + || u->u_scope_type == COMPILER_SCOPE_CLASS) { + assert(u->u_metadata.u_name); + mangled = _Py_Mangle(parent->u_private, u->u_metadata.u_name); + if (!mangled) { + return ERROR; + } + + scope = _PyST_GetScope(parent->u_ste, mangled); + Py_DECREF(mangled); + assert(scope != GLOBAL_IMPLICIT); + if (scope == GLOBAL_EXPLICIT) + force_global = 1; + } + + if (!force_global) { + if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION + || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION + || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) + { + _Py_DECLARE_STR(dot_locals, ".<locals>"); + base = PyUnicode_Concat(parent->u_metadata.u_qualname, + &_Py_STR(dot_locals)); + if (base == NULL) { + return ERROR; + } + } + else { + base = Py_NewRef(parent->u_metadata.u_qualname); + } + } + } + + if (base != NULL) { + _Py_DECLARE_STR(dot, "."); + name = PyUnicode_Concat(base, &_Py_STR(dot)); + Py_DECREF(base); + if (name == NULL) { + return ERROR; + } + PyUnicode_Append(&name, u->u_metadata.u_name); + if (name == NULL) { + return ERROR; + } + } + else { + name = Py_NewRef(u->u_metadata.u_name); + } + u->u_metadata.u_qualname = name; + + return SUCCESS; +} + +/* Return the stack effect of opcode with argument oparg. + + Some opcodes have different stack effect when jump to the target and + when not jump. The 'jump' parameter specifies the case: + + * 0 -- when not jump + * 1 -- when jump + * -1 -- maximal + */ +static int +stack_effect(int opcode, int oparg, int jump) +{ + if (0 <= opcode && opcode <= MAX_REAL_OPCODE) { + if (_PyOpcode_Deopt[opcode] != opcode) { + // Specialized instructions are not supported. + return PY_INVALID_STACK_EFFECT; + } + int popped, pushed; + if (jump > 0) { + popped = _PyOpcode_num_popped(opcode, oparg, true); + pushed = _PyOpcode_num_pushed(opcode, oparg, true); + } + else { + popped = _PyOpcode_num_popped(opcode, oparg, false); + pushed = _PyOpcode_num_pushed(opcode, oparg, false); + } + if (popped < 0 || pushed < 0) { + return PY_INVALID_STACK_EFFECT; + } + if (jump >= 0) { + return pushed - popped; + } + if (jump < 0) { + // Compute max(pushed - popped, alt_pushed - alt_popped) + int alt_popped = _PyOpcode_num_popped(opcode, oparg, true); + int alt_pushed = _PyOpcode_num_pushed(opcode, oparg, true); + if (alt_popped < 0 || alt_pushed < 0) { + return PY_INVALID_STACK_EFFECT; + } + int diff = pushed - popped; + int alt_diff = alt_pushed - alt_popped; + if (alt_diff > diff) { + return alt_diff; + } + return diff; + } + } + + // Pseudo ops + switch (opcode) { + case POP_BLOCK: + case JUMP: + case JUMP_NO_INTERRUPT: + return 0; + + /* Exception handling pseudo-instructions */ + case SETUP_FINALLY: + /* 0 in the normal flow. + * Restore the stack position and push 1 value before jumping to + * the handler if an exception be raised. */ + return jump ? 1 : 0; + case SETUP_CLEANUP: + /* As SETUP_FINALLY, but pushes lasti as well */ + return jump ? 2 : 0; + case SETUP_WITH: + /* 0 in the normal flow. + * Restore the stack position to the position before the result + * of __(a)enter__ and push 2 values before jumping to the handler + * if an exception be raised. */ + return jump ? 1 : 0; + + case STORE_FAST_MAYBE_NULL: + return -1; + case LOAD_METHOD: + return 1; + case LOAD_SUPER_METHOD: + case LOAD_ZERO_SUPER_METHOD: + case LOAD_ZERO_SUPER_ATTR: + return -1; + default: + return PY_INVALID_STACK_EFFECT; + } + + return PY_INVALID_STACK_EFFECT; /* not reachable */ +} + +int +PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump) +{ + return stack_effect(opcode, oparg, jump); +} + +int +PyCompile_OpcodeStackEffect(int opcode, int oparg) +{ + return stack_effect(opcode, oparg, -1); +} + +static int +codegen_addop_noarg(instr_sequence *seq, int opcode, location loc) +{ + assert(!HAS_ARG(opcode)); + assert(!IS_ASSEMBLER_OPCODE(opcode)); + return instr_sequence_addop(seq, opcode, 0, loc); +} + +static Py_ssize_t +dict_add_o(PyObject *dict, PyObject *o) +{ + PyObject *v; + Py_ssize_t arg; + + v = PyDict_GetItemWithError(dict, o); + if (!v) { + if (PyErr_Occurred()) { + return ERROR; + } + arg = PyDict_GET_SIZE(dict); + v = PyLong_FromSsize_t(arg); + if (!v) { + return ERROR; + } + if (PyDict_SetItem(dict, o, v) < 0) { + Py_DECREF(v); + return ERROR; + } + Py_DECREF(v); + } + else + arg = PyLong_AsLong(v); + return arg; +} + +// Merge const *o* recursively and return constant key object. +static PyObject* +merge_consts_recursive(PyObject *const_cache, PyObject *o) +{ + assert(PyDict_CheckExact(const_cache)); + // None and Ellipsis are singleton, and key is the singleton. + // No need to merge object and key. + if (o == Py_None || o == Py_Ellipsis) { + return Py_NewRef(o); + } + + PyObject *key = _PyCode_ConstantKey(o); + if (key == NULL) { + return NULL; + } + + // t is borrowed reference + PyObject *t = PyDict_SetDefault(const_cache, key, key); + if (t != key) { + // o is registered in const_cache. Just use it. + Py_XINCREF(t); + Py_DECREF(key); + return t; + } + + // We registered o in const_cache. + // When o is a tuple or frozenset, we want to merge its + // items too. + if (PyTuple_CheckExact(o)) { + Py_ssize_t len = PyTuple_GET_SIZE(o); + for (Py_ssize_t i = 0; i < len; i++) { + PyObject *item = PyTuple_GET_ITEM(o, i); + PyObject *u = merge_consts_recursive(const_cache, item); + if (u == NULL) { + Py_DECREF(key); + return NULL; + } + + // See _PyCode_ConstantKey() + PyObject *v; // borrowed + if (PyTuple_CheckExact(u)) { + v = PyTuple_GET_ITEM(u, 1); + } + else { + v = u; + } + if (v != item) { + PyTuple_SET_ITEM(o, i, Py_NewRef(v)); + Py_DECREF(item); + } + + Py_DECREF(u); + } + } + else if (PyFrozenSet_CheckExact(o)) { + // *key* is tuple. And its first item is frozenset of + // constant keys. + // See _PyCode_ConstantKey() for detail. + assert(PyTuple_CheckExact(key)); + assert(PyTuple_GET_SIZE(key) == 2); + + Py_ssize_t len = PySet_GET_SIZE(o); + if (len == 0) { // empty frozenset should not be re-created. + return key; + } + PyObject *tuple = PyTuple_New(len); + if (tuple == NULL) { + Py_DECREF(key); + return NULL; + } + Py_ssize_t i = 0, pos = 0; + PyObject *item; + Py_hash_t hash; + while (_PySet_NextEntry(o, &pos, &item, &hash)) { + PyObject *k = merge_consts_recursive(const_cache, item); + if (k == NULL) { + Py_DECREF(tuple); + Py_DECREF(key); + return NULL; + } + PyObject *u; + if (PyTuple_CheckExact(k)) { + u = Py_NewRef(PyTuple_GET_ITEM(k, 1)); + Py_DECREF(k); + } + else { + u = k; + } + PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u. + i++; + } + + // Instead of rewriting o, we create new frozenset and embed in the + // key tuple. Caller should get merged frozenset from the key tuple. + PyObject *new = PyFrozenSet_New(tuple); + Py_DECREF(tuple); + if (new == NULL) { + Py_DECREF(key); + return NULL; + } + assert(PyTuple_GET_ITEM(key, 1) == o); + Py_DECREF(o); + PyTuple_SET_ITEM(key, 1, new); + } + + return key; +} + +static Py_ssize_t +compiler_add_const(PyObject *const_cache, struct compiler_unit *u, PyObject *o) +{ + assert(PyDict_CheckExact(const_cache)); + PyObject *key = merge_consts_recursive(const_cache, o); + if (key == NULL) { + return ERROR; + } + + Py_ssize_t arg = dict_add_o(u->u_metadata.u_consts, key); + Py_DECREF(key); + return arg; +} + +static int +compiler_addop_load_const(PyObject *const_cache, struct compiler_unit *u, location loc, PyObject *o) +{ + Py_ssize_t arg = compiler_add_const(const_cache, u, o); + if (arg < 0) { + return ERROR; + } + return codegen_addop_i(&u->u_instr_sequence, LOAD_CONST, arg, loc); +} + +static int +compiler_addop_o(struct compiler_unit *u, location loc, + int opcode, PyObject *dict, PyObject *o) +{ + Py_ssize_t arg = dict_add_o(dict, o); + if (arg < 0) { + return ERROR; + } + return codegen_addop_i(&u->u_instr_sequence, opcode, arg, loc); +} + +static int +compiler_addop_name(struct compiler_unit *u, location loc, + int opcode, PyObject *dict, PyObject *o) +{ + PyObject *mangled = _Py_Mangle(u->u_private, o); + if (!mangled) { + return ERROR; + } + Py_ssize_t arg = dict_add_o(dict, mangled); + Py_DECREF(mangled); + if (arg < 0) { + return ERROR; + } + if (opcode == LOAD_ATTR) { + arg <<= 1; + } + if (opcode == LOAD_METHOD) { + opcode = LOAD_ATTR; + arg <<= 1; + arg |= 1; + } + if (opcode == LOAD_SUPER_ATTR) { + arg <<= 2; + arg |= 2; + } + if (opcode == LOAD_SUPER_METHOD) { + opcode = LOAD_SUPER_ATTR; + arg <<= 2; + arg |= 3; + } + if (opcode == LOAD_ZERO_SUPER_ATTR) { + opcode = LOAD_SUPER_ATTR; + arg <<= 2; + } + if (opcode == LOAD_ZERO_SUPER_METHOD) { + opcode = LOAD_SUPER_ATTR; + arg <<= 2; + arg |= 1; + } + return codegen_addop_i(&u->u_instr_sequence, opcode, arg, loc); +} + +/* Add an opcode with an integer argument */ +static int +codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc) +{ + /* oparg value is unsigned, but a signed C int is usually used to store + it in the C code (like Python/ceval.c). + + Limit to 32-bit signed C int (rather than INT_MAX) for portability. + + The argument of a concrete bytecode instruction is limited to 8-bit. + EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */ + + int oparg_ = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int); + assert(!IS_ASSEMBLER_OPCODE(opcode)); + return instr_sequence_addop(seq, opcode, oparg_, loc); +} + +static int +codegen_addop_j(instr_sequence *seq, location loc, + int opcode, jump_target_label target) +{ + assert(IS_LABEL(target)); + assert(IS_JUMP_OPCODE(opcode) || IS_BLOCK_PUSH_OPCODE(opcode)); + assert(!IS_ASSEMBLER_OPCODE(opcode)); + return instr_sequence_addop(seq, opcode, target.id, loc); +} + +#define RETURN_IF_ERROR_IN_SCOPE(C, CALL) { \ + if ((CALL) < 0) { \ + compiler_exit_scope((C)); \ + return ERROR; \ + } \ +} + +#define ADDOP(C, LOC, OP) \ + RETURN_IF_ERROR(codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC))) + +#define ADDOP_IN_SCOPE(C, LOC, OP) RETURN_IF_ERROR_IN_SCOPE((C), codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC))) + +#define ADDOP_LOAD_CONST(C, LOC, O) \ + RETURN_IF_ERROR(compiler_addop_load_const((C)->c_const_cache, (C)->u, (LOC), (O))) + +/* Same as ADDOP_LOAD_CONST, but steals a reference. */ +#define ADDOP_LOAD_CONST_NEW(C, LOC, O) { \ + PyObject *__new_const = (O); \ + if (__new_const == NULL) { \ + return ERROR; \ + } \ + if (compiler_addop_load_const((C)->c_const_cache, (C)->u, (LOC), __new_const) < 0) { \ + Py_DECREF(__new_const); \ + return ERROR; \ + } \ + Py_DECREF(__new_const); \ +} + +#define ADDOP_N(C, LOC, OP, O, TYPE) { \ + assert(!HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \ + if (compiler_addop_o((C)->u, (LOC), (OP), (C)->u->u_metadata.u_ ## TYPE, (O)) < 0) { \ + Py_DECREF((O)); \ + return ERROR; \ + } \ + Py_DECREF((O)); \ +} + +#define ADDOP_NAME(C, LOC, OP, O, TYPE) \ + RETURN_IF_ERROR(compiler_addop_name((C)->u, (LOC), (OP), (C)->u->u_metadata.u_ ## TYPE, (O))) + +#define ADDOP_I(C, LOC, OP, O) \ + RETURN_IF_ERROR(codegen_addop_i(INSTR_SEQUENCE(C), (OP), (O), (LOC))) + +#define ADDOP_JUMP(C, LOC, OP, O) \ + RETURN_IF_ERROR(codegen_addop_j(INSTR_SEQUENCE(C), (LOC), (OP), (O))) + +#define ADDOP_COMPARE(C, LOC, CMP) \ + RETURN_IF_ERROR(compiler_addcompare((C), (LOC), (cmpop_ty)(CMP))) + +#define ADDOP_BINARY(C, LOC, BINOP) \ + RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), false)) + +#define ADDOP_INPLACE(C, LOC, BINOP) \ + RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), true)) + +#define ADD_YIELD_FROM(C, LOC, await) \ + RETURN_IF_ERROR(compiler_add_yield_from((C), (LOC), (await))) + +#define POP_EXCEPT_AND_RERAISE(C, LOC) \ + RETURN_IF_ERROR(compiler_pop_except_and_reraise((C), (LOC))) + +#define ADDOP_YIELD(C, LOC) \ + RETURN_IF_ERROR(addop_yield((C), (LOC))) + +/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use + the ASDL name to synthesize the name of the C type and the visit function. +*/ + +#define VISIT(C, TYPE, V) \ + RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), (V))); + +#define VISIT_IN_SCOPE(C, TYPE, V) \ + RETURN_IF_ERROR_IN_SCOPE((C), compiler_visit_ ## TYPE((C), (V))) + +#define VISIT_SEQ(C, TYPE, SEQ) { \ + int _i; \ + asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \ + for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ + TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ + RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), elt)); \ + } \ +} + +#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \ + int _i; \ + asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \ + for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ + TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ + if (compiler_visit_ ## TYPE((C), elt) < 0) { \ + compiler_exit_scope(C); \ + return ERROR; \ + } \ + } \ +} + + +static int +compiler_enter_scope(struct compiler *c, identifier name, + int scope_type, void *key, int lineno) +{ + location loc = LOCATION(lineno, lineno, 0, 0); + + struct compiler_unit *u; + + u = (struct compiler_unit *)PyObject_Calloc(1, sizeof( + struct compiler_unit)); + if (!u) { + PyErr_NoMemory(); + return ERROR; + } + u->u_scope_type = scope_type; + u->u_metadata.u_argcount = 0; + u->u_metadata.u_posonlyargcount = 0; + u->u_metadata.u_kwonlyargcount = 0; + u->u_ste = PySymtable_Lookup(c->c_st, key); + if (!u->u_ste) { + compiler_unit_free(u); + return ERROR; + } + u->u_metadata.u_name = Py_NewRef(name); + u->u_metadata.u_varnames = list2dict(u->u_ste->ste_varnames); + if (!u->u_metadata.u_varnames) { + compiler_unit_free(u); + return ERROR; + } + u->u_metadata.u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, DEF_COMP_CELL, 0); + if (!u->u_metadata.u_cellvars) { + compiler_unit_free(u); + return ERROR; + } + if (u->u_ste->ste_needs_class_closure) { + /* Cook up an implicit __class__ cell. */ + Py_ssize_t res; + assert(u->u_scope_type == COMPILER_SCOPE_CLASS); + res = dict_add_o(u->u_metadata.u_cellvars, &_Py_ID(__class__)); + if (res < 0) { + compiler_unit_free(u); + return ERROR; + } + } + if (u->u_ste->ste_needs_classdict) { + /* Cook up an implicit __classdict__ cell. */ + Py_ssize_t res; + assert(u->u_scope_type == COMPILER_SCOPE_CLASS); + res = dict_add_o(u->u_metadata.u_cellvars, &_Py_ID(__classdict__)); + if (res < 0) { + compiler_unit_free(u); + return ERROR; + } + } + + u->u_metadata.u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS, + PyDict_GET_SIZE(u->u_metadata.u_cellvars)); + if (!u->u_metadata.u_freevars) { + compiler_unit_free(u); + return ERROR; + } + + u->u_metadata.u_fasthidden = PyDict_New(); + if (!u->u_metadata.u_fasthidden) { + compiler_unit_free(u); + return ERROR; + } + + u->u_nfblocks = 0; + u->u_in_inlined_comp = 0; + u->u_metadata.u_firstlineno = lineno; + u->u_metadata.u_consts = PyDict_New(); + if (!u->u_metadata.u_consts) { + compiler_unit_free(u); + return ERROR; + } + u->u_metadata.u_names = PyDict_New(); + if (!u->u_metadata.u_names) { + compiler_unit_free(u); + return ERROR; + } + + u->u_private = NULL; + + /* Push the old compiler_unit on the stack. */ + if (c->u) { + PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL); + if (!capsule || PyList_Append(c->c_stack, capsule) < 0) { + Py_XDECREF(capsule); + compiler_unit_free(u); + return ERROR; + } + Py_DECREF(capsule); + u->u_private = Py_XNewRef(c->u->u_private); + } + c->u = u; + + c->c_nestlevel++; + + if (u->u_scope_type == COMPILER_SCOPE_MODULE) { + loc.lineno = 0; + } + else { + RETURN_IF_ERROR(compiler_set_qualname(c)); + } + ADDOP_I(c, loc, RESUME, 0); + + if (u->u_scope_type == COMPILER_SCOPE_MODULE) { + loc.lineno = -1; + } + return SUCCESS; +} + +static void +compiler_exit_scope(struct compiler *c) +{ + // Don't call PySequence_DelItem() with an exception raised + PyObject *exc = PyErr_GetRaisedException(); + + c->c_nestlevel--; + compiler_unit_free(c->u); + /* Restore c->u to the parent unit. */ + Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1; + if (n >= 0) { + PyObject *capsule = PyList_GET_ITEM(c->c_stack, n); + c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(c->u); + /* we are deleting from a list so this really shouldn't fail */ + if (PySequence_DelItem(c->c_stack, n) < 0) { + _PyErr_WriteUnraisableMsg("on removing the last compiler " + "stack item", NULL); + } + } + else { + c->u = NULL; + } + + PyErr_SetRaisedException(exc); +} + +/* Search if variable annotations are present statically in a block. */ + +static bool +find_ann(asdl_stmt_seq *stmts) +{ + int i, j, res = 0; + stmt_ty st; + + for (i = 0; i < asdl_seq_LEN(stmts); i++) { + st = (stmt_ty)asdl_seq_GET(stmts, i); + switch (st->kind) { + case AnnAssign_kind: + return true; + case For_kind: + res = find_ann(st->v.For.body) || + find_ann(st->v.For.orelse); + break; + case AsyncFor_kind: + res = find_ann(st->v.AsyncFor.body) || + find_ann(st->v.AsyncFor.orelse); + break; + case While_kind: + res = find_ann(st->v.While.body) || + find_ann(st->v.While.orelse); + break; + case If_kind: + res = find_ann(st->v.If.body) || + find_ann(st->v.If.orelse); + break; + case With_kind: + res = find_ann(st->v.With.body); + break; + case AsyncWith_kind: + res = find_ann(st->v.AsyncWith.body); + break; + case Try_kind: + for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + st->v.Try.handlers, j); + if (find_ann(handler->v.ExceptHandler.body)) { + return true; + } + } + res = find_ann(st->v.Try.body) || + find_ann(st->v.Try.finalbody) || + find_ann(st->v.Try.orelse); + break; + case TryStar_kind: + for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + st->v.TryStar.handlers, j); + if (find_ann(handler->v.ExceptHandler.body)) { + return true; + } + } + res = find_ann(st->v.TryStar.body) || + find_ann(st->v.TryStar.finalbody) || + find_ann(st->v.TryStar.orelse); + break; + case Match_kind: + for (j = 0; j < asdl_seq_LEN(st->v.Match.cases); j++) { + match_case_ty match_case = (match_case_ty)asdl_seq_GET( + st->v.Match.cases, j); + if (find_ann(match_case->body)) { + return true; + } + } + break; + default: + res = false; + break; + } + if (res) { + break; + } + } + return res; +} + +/* + * Frame block handling functions + */ + +static int +compiler_push_fblock(struct compiler *c, location loc, + enum fblocktype t, jump_target_label block_label, + jump_target_label exit, void *datum) +{ + struct fblockinfo *f; + if (c->u->u_nfblocks >= CO_MAXBLOCKS) { + return compiler_error(c, loc, "too many statically nested blocks"); + } + f = &c->u->u_fblock[c->u->u_nfblocks++]; + f->fb_type = t; + f->fb_block = block_label; + f->fb_exit = exit; + f->fb_datum = datum; + return SUCCESS; +} + +static void +compiler_pop_fblock(struct compiler *c, enum fblocktype t, jump_target_label block_label) +{ + struct compiler_unit *u = c->u; + assert(u->u_nfblocks > 0); + u->u_nfblocks--; + assert(u->u_fblock[u->u_nfblocks].fb_type == t); + assert(SAME_LABEL(u->u_fblock[u->u_nfblocks].fb_block, block_label)); +} + +static int +compiler_call_exit_with_nones(struct compiler *c, location loc) +{ + ADDOP_LOAD_CONST(c, loc, Py_None); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADDOP_I(c, loc, CALL, 2); + return SUCCESS; +} + +static int +compiler_add_yield_from(struct compiler *c, location loc, int await) +{ + NEW_JUMP_TARGET_LABEL(c, send); + NEW_JUMP_TARGET_LABEL(c, fail); + NEW_JUMP_TARGET_LABEL(c, exit); + + USE_LABEL(c, send); + ADDOP_JUMP(c, loc, SEND, exit); + // Set up a virtual try/except to handle when StopIteration is raised during + // a close or throw call. The only way YIELD_VALUE raises if they do! + ADDOP_JUMP(c, loc, SETUP_FINALLY, fail); + ADDOP_I(c, loc, YIELD_VALUE, 0); + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP_I(c, loc, RESUME, await ? 3 : 2); + ADDOP_JUMP(c, loc, JUMP_NO_INTERRUPT, send); + + USE_LABEL(c, fail); + ADDOP(c, loc, CLEANUP_THROW); + + USE_LABEL(c, exit); + ADDOP(c, loc, END_SEND); + return SUCCESS; +} + +static int +compiler_pop_except_and_reraise(struct compiler *c, location loc) +{ + /* Stack contents + * [exc_info, lasti, exc] COPY 3 + * [exc_info, lasti, exc, exc_info] POP_EXCEPT + * [exc_info, lasti, exc] RERAISE 1 + * (exception_unwind clears the stack) + */ + + ADDOP_I(c, loc, COPY, 3); + ADDOP(c, loc, POP_EXCEPT); + ADDOP_I(c, loc, RERAISE, 1); + return SUCCESS; +} + +/* Unwind a frame block. If preserve_tos is true, the TOS before + * popping the blocks will be restored afterwards, unless another + * return, break or continue is found. In which case, the TOS will + * be popped. + */ +static int +compiler_unwind_fblock(struct compiler *c, location *ploc, + struct fblockinfo *info, int preserve_tos) +{ + switch (info->fb_type) { + case WHILE_LOOP: + case EXCEPTION_HANDLER: + case EXCEPTION_GROUP_HANDLER: + case ASYNC_COMPREHENSION_GENERATOR: + return SUCCESS; + + case FOR_LOOP: + /* Pop the iterator */ + if (preserve_tos) { + ADDOP_I(c, *ploc, SWAP, 2); + } + ADDOP(c, *ploc, POP_TOP); + return SUCCESS; + + case TRY_EXCEPT: + ADDOP(c, *ploc, POP_BLOCK); + return SUCCESS; + + case FINALLY_TRY: + /* This POP_BLOCK gets the line number of the unwinding statement */ + ADDOP(c, *ploc, POP_BLOCK); + if (preserve_tos) { + RETURN_IF_ERROR( + compiler_push_fblock(c, *ploc, POP_VALUE, NO_LABEL, NO_LABEL, NULL)); + } + /* Emit the finally block */ + VISIT_SEQ(c, stmt, info->fb_datum); + if (preserve_tos) { + compiler_pop_fblock(c, POP_VALUE, NO_LABEL); + } + /* The finally block should appear to execute after the + * statement causing the unwinding, so make the unwinding + * instruction artificial */ + *ploc = NO_LOCATION; + return SUCCESS; + + case FINALLY_END: + if (preserve_tos) { + ADDOP_I(c, *ploc, SWAP, 2); + } + ADDOP(c, *ploc, POP_TOP); /* exc_value */ + if (preserve_tos) { + ADDOP_I(c, *ploc, SWAP, 2); + } + ADDOP(c, *ploc, POP_BLOCK); + ADDOP(c, *ploc, POP_EXCEPT); + return SUCCESS; + + case WITH: + case ASYNC_WITH: + *ploc = LOC((stmt_ty)info->fb_datum); + ADDOP(c, *ploc, POP_BLOCK); + if (preserve_tos) { + ADDOP_I(c, *ploc, SWAP, 2); + } + RETURN_IF_ERROR(compiler_call_exit_with_nones(c, *ploc)); + if (info->fb_type == ASYNC_WITH) { + ADDOP_I(c, *ploc, GET_AWAITABLE, 2); + ADDOP_LOAD_CONST(c, *ploc, Py_None); + ADD_YIELD_FROM(c, *ploc, 1); + } + ADDOP(c, *ploc, POP_TOP); + /* The exit block should appear to execute after the + * statement causing the unwinding, so make the unwinding + * instruction artificial */ + *ploc = NO_LOCATION; + return SUCCESS; + + case HANDLER_CLEANUP: { + if (info->fb_datum) { + ADDOP(c, *ploc, POP_BLOCK); + } + if (preserve_tos) { + ADDOP_I(c, *ploc, SWAP, 2); + } + ADDOP(c, *ploc, POP_BLOCK); + ADDOP(c, *ploc, POP_EXCEPT); + if (info->fb_datum) { + ADDOP_LOAD_CONST(c, *ploc, Py_None); + RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Store)); + RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Del)); + } + return SUCCESS; + } + case POP_VALUE: { + if (preserve_tos) { + ADDOP_I(c, *ploc, SWAP, 2); + } + ADDOP(c, *ploc, POP_TOP); + return SUCCESS; + } + } + Py_UNREACHABLE(); +} + +/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */ +static int +compiler_unwind_fblock_stack(struct compiler *c, location *ploc, + int preserve_tos, struct fblockinfo **loop) +{ + if (c->u->u_nfblocks == 0) { + return SUCCESS; + } + struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1]; + if (top->fb_type == EXCEPTION_GROUP_HANDLER) { + return compiler_error( + c, *ploc, "'break', 'continue' and 'return' cannot appear in an except* block"); + } + if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) { + *loop = top; + return SUCCESS; + } + struct fblockinfo copy = *top; + c->u->u_nfblocks--; + RETURN_IF_ERROR(compiler_unwind_fblock(c, ploc, ©, preserve_tos)); + RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, ploc, preserve_tos, loop)); + c->u->u_fblock[c->u->u_nfblocks] = copy; + c->u->u_nfblocks++; + return SUCCESS; +} + +/* Compile a sequence of statements, checking for a docstring + and for annotations. */ + +static int +compiler_body(struct compiler *c, location loc, asdl_stmt_seq *stmts) +{ + int i = 0; + stmt_ty st; + PyObject *docstring; + + /* Set current line number to the line number of first statement. + This way line number for SETUP_ANNOTATIONS will always + coincide with the line number of first "real" statement in module. + If body is empty, then lineno will be set later in optimize_and_assemble. */ + if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) { + st = (stmt_ty)asdl_seq_GET(stmts, 0); + loc = LOC(st); + } + /* Every annotated class and module should have __annotations__. */ + if (find_ann(stmts)) { + ADDOP(c, loc, SETUP_ANNOTATIONS); + } + if (!asdl_seq_LEN(stmts)) { + return SUCCESS; + } + /* if not -OO mode, set docstring */ + if (c->c_optimize < 2) { + docstring = _PyAST_GetDocString(stmts); + if (docstring) { + i = 1; + st = (stmt_ty)asdl_seq_GET(stmts, 0); + assert(st->kind == Expr_kind); + VISIT(c, expr, st->v.Expr.value); + RETURN_IF_ERROR(compiler_nameop(c, NO_LOCATION, &_Py_ID(__doc__), Store)); + } + } + for (; i < asdl_seq_LEN(stmts); i++) { + VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i)); + } + return SUCCESS; +} + +static int +compiler_codegen(struct compiler *c, mod_ty mod) +{ + _Py_DECLARE_STR(anon_module, "<module>"); + RETURN_IF_ERROR( + compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE, + mod, 1)); + + location loc = LOCATION(1, 1, 0, 0); + switch (mod->kind) { + case Module_kind: + if (compiler_body(c, loc, mod->v.Module.body) < 0) { + compiler_exit_scope(c); + return ERROR; + } + break; + case Interactive_kind: + if (find_ann(mod->v.Interactive.body)) { + ADDOP(c, loc, SETUP_ANNOTATIONS); + } + c->c_interactive = 1; + VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body); + break; + case Expression_kind: + VISIT_IN_SCOPE(c, expr, mod->v.Expression.body); + break; + default: + PyErr_Format(PyExc_SystemError, + "module kind %d should not be possible", + mod->kind); + return ERROR; + } + return SUCCESS; +} + +static PyCodeObject * +compiler_mod(struct compiler *c, mod_ty mod) +{ + int addNone = mod->kind != Expression_kind; + if (compiler_codegen(c, mod) < 0) { + return NULL; + } + PyCodeObject *co = optimize_and_assemble(c, addNone); + compiler_exit_scope(c); + return co; +} + +/* The test for LOCAL must come before the test for FREE in order to + handle classes where name is both local and free. The local var is + a method and the free var is a free var referenced within a method. +*/ + +static int +get_ref_type(struct compiler *c, PyObject *name) +{ + int scope; + if (c->u->u_scope_type == COMPILER_SCOPE_CLASS && + (_PyUnicode_EqualToASCIIString(name, "__class__") || + _PyUnicode_EqualToASCIIString(name, "__classdict__"))) { + return CELL; + } + scope = _PyST_GetScope(c->u->u_ste, name); + if (scope == 0) { + PyErr_Format(PyExc_SystemError, + "_PyST_GetScope(name=%R) failed: " + "unknown scope in unit %S (%R); " + "symbols: %R; locals: %R; globals: %R", + name, + c->u->u_metadata.u_name, c->u->u_ste->ste_id, + c->u->u_ste->ste_symbols, c->u->u_metadata.u_varnames, c->u->u_metadata.u_names); + return ERROR; + } + return scope; +} + +static int +compiler_lookup_arg(PyObject *dict, PyObject *name) +{ + PyObject *v = PyDict_GetItemWithError(dict, name); + if (v == NULL) { + return ERROR; + } + return PyLong_AS_LONG(v); +} + +static int +compiler_make_closure(struct compiler *c, location loc, + PyCodeObject *co, Py_ssize_t flags) +{ + if (co->co_nfreevars) { + int i = PyCode_GetFirstFree(co); + for (; i < co->co_nlocalsplus; ++i) { + /* Bypass com_addop_varname because it will generate + LOAD_DEREF but LOAD_CLOSURE is needed. + */ + PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i); + + /* Special case: If a class contains a method with a + free variable that has the same name as a method, + the name will be considered free *and* local in the + class. It should be handled by the closure, as + well as by the normal name lookup logic. + */ + int reftype = get_ref_type(c, name); + if (reftype == -1) { + return ERROR; + } + int arg; + if (reftype == CELL) { + arg = compiler_lookup_arg(c->u->u_metadata.u_cellvars, name); + } + else { + arg = compiler_lookup_arg(c->u->u_metadata.u_freevars, name); + } + if (arg == -1) { + PyObject *freevars = _PyCode_GetFreevars(co); + if (freevars == NULL) { + PyErr_Clear(); + } + PyErr_Format(PyExc_SystemError, + "compiler_lookup_arg(name=%R) with reftype=%d failed in %S; " + "freevars of code %S: %R", + name, + reftype, + c->u->u_metadata.u_name, + co->co_name, + freevars); + Py_DECREF(freevars); + return ERROR; + } + ADDOP_I(c, loc, LOAD_CLOSURE, arg); + } + flags |= 0x08; + ADDOP_I(c, loc, BUILD_TUPLE, co->co_nfreevars); + } + ADDOP_LOAD_CONST(c, loc, (PyObject*)co); + ADDOP_I(c, loc, MAKE_FUNCTION, flags); + return SUCCESS; +} + +static int +compiler_decorators(struct compiler *c, asdl_expr_seq* decos) +{ + if (!decos) { + return SUCCESS; + } + + for (Py_ssize_t i = 0; i < asdl_seq_LEN(decos); i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i)); + } + return SUCCESS; +} + +static int +compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos) +{ + if (!decos) { + return SUCCESS; + } + + for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) { + location loc = LOC((expr_ty)asdl_seq_GET(decos, i)); + ADDOP_I(c, loc, CALL, 0); + } + return SUCCESS; +} + +static int +compiler_visit_kwonlydefaults(struct compiler *c, location loc, + asdl_arg_seq *kwonlyargs, asdl_expr_seq *kw_defaults) +{ + /* Push a dict of keyword-only default values. + + Return -1 on error, 0 if no dict pushed, 1 if a dict is pushed. + */ + int i; + PyObject *keys = NULL; + + for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) { + arg_ty arg = asdl_seq_GET(kwonlyargs, i); + expr_ty default_ = asdl_seq_GET(kw_defaults, i); + if (default_) { + PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg); + if (!mangled) { + goto error; + } + if (keys == NULL) { + keys = PyList_New(1); + if (keys == NULL) { + Py_DECREF(mangled); + return ERROR; + } + PyList_SET_ITEM(keys, 0, mangled); + } + else { + int res = PyList_Append(keys, mangled); + Py_DECREF(mangled); + if (res == -1) { + goto error; + } + } + if (compiler_visit_expr(c, default_) < 0) { + goto error; + } + } + } + if (keys != NULL) { + Py_ssize_t default_count = PyList_GET_SIZE(keys); + PyObject *keys_tuple = PyList_AsTuple(keys); + Py_DECREF(keys); + ADDOP_LOAD_CONST_NEW(c, loc, keys_tuple); + ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, default_count); + assert(default_count > 0); + return 1; + } + else { + return 0; + } + +error: + Py_XDECREF(keys); + return ERROR; +} + +static int +compiler_visit_annexpr(struct compiler *c, expr_ty annotation) +{ + location loc = LOC(annotation); + ADDOP_LOAD_CONST_NEW(c, loc, _PyAST_ExprAsUnicode(annotation)); + return SUCCESS; +} + +static int +compiler_visit_argannotation(struct compiler *c, identifier id, + expr_ty annotation, Py_ssize_t *annotations_len, location loc) +{ + if (!annotation) { + return SUCCESS; + } + PyObject *mangled = _Py_Mangle(c->u->u_private, id); + if (!mangled) { + return ERROR; + } + ADDOP_LOAD_CONST(c, loc, mangled); + Py_DECREF(mangled); + + if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) { + VISIT(c, annexpr, annotation); + } + else { + if (annotation->kind == Starred_kind) { + // *args: *Ts (where Ts is a TypeVarTuple). + // Do [annotation_value] = [*Ts]. + // (Note that in theory we could end up here even for an argument + // other than *args, but in practice the grammar doesn't allow it.) + VISIT(c, expr, annotation->v.Starred.value); + ADDOP_I(c, loc, UNPACK_SEQUENCE, (Py_ssize_t) 1); + } + else { + VISIT(c, expr, annotation); + } + } + *annotations_len += 2; + return SUCCESS; +} + +static int +compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args, + Py_ssize_t *annotations_len, location loc) +{ + int i; + for (i = 0; i < asdl_seq_LEN(args); i++) { + arg_ty arg = (arg_ty)asdl_seq_GET(args, i); + RETURN_IF_ERROR( + compiler_visit_argannotation( + c, + arg->arg, + arg->annotation, + annotations_len, + loc)); + } + return SUCCESS; +} + +static int +compiler_visit_annotations(struct compiler *c, location loc, + arguments_ty args, expr_ty returns) +{ + /* Push arg annotation names and values. + The expressions are evaluated out-of-order wrt the source code. + + Return -1 on error, 0 if no annotations pushed, 1 if a annotations is pushed. + */ + Py_ssize_t annotations_len = 0; + + RETURN_IF_ERROR( + compiler_visit_argannotations(c, args->args, &annotations_len, loc)); + + RETURN_IF_ERROR( + compiler_visit_argannotations(c, args->posonlyargs, &annotations_len, loc)); + + if (args->vararg && args->vararg->annotation) { + RETURN_IF_ERROR( + compiler_visit_argannotation(c, args->vararg->arg, + args->vararg->annotation, &annotations_len, loc)); + } + + RETURN_IF_ERROR( + compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len, loc)); + + if (args->kwarg && args->kwarg->annotation) { + RETURN_IF_ERROR( + compiler_visit_argannotation(c, args->kwarg->arg, + args->kwarg->annotation, &annotations_len, loc)); + } + + RETURN_IF_ERROR( + compiler_visit_argannotation(c, &_Py_ID(return), returns, &annotations_len, loc)); + + if (annotations_len) { + ADDOP_I(c, loc, BUILD_TUPLE, annotations_len); + return 1; + } + + return 0; +} + +static int +compiler_visit_defaults(struct compiler *c, arguments_ty args, + location loc) +{ + VISIT_SEQ(c, expr, args->defaults); + ADDOP_I(c, loc, BUILD_TUPLE, asdl_seq_LEN(args->defaults)); + return SUCCESS; +} + +static Py_ssize_t +compiler_default_arguments(struct compiler *c, location loc, + arguments_ty args) +{ + Py_ssize_t funcflags = 0; + if (args->defaults && asdl_seq_LEN(args->defaults) > 0) { + RETURN_IF_ERROR(compiler_visit_defaults(c, args, loc)); + funcflags |= 0x01; + } + if (args->kwonlyargs) { + int res = compiler_visit_kwonlydefaults(c, loc, + args->kwonlyargs, + args->kw_defaults); + RETURN_IF_ERROR(res); + if (res > 0) { + funcflags |= 0x02; + } + } + return funcflags; +} + +static bool +forbidden_name(struct compiler *c, location loc, identifier name, + expr_context_ty ctx) +{ + if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) { + compiler_error(c, loc, "cannot assign to __debug__"); + return true; + } + if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) { + compiler_error(c, loc, "cannot delete __debug__"); + return true; + } + return false; +} + +static int +compiler_check_debug_one_arg(struct compiler *c, arg_ty arg) +{ + if (arg != NULL) { + if (forbidden_name(c, LOC(arg), arg->arg, Store)) { + return ERROR; + } + } + return SUCCESS; +} + +static int +compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args) +{ + if (args != NULL) { + for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) { + RETURN_IF_ERROR( + compiler_check_debug_one_arg(c, asdl_seq_GET(args, i))); + } + } + return SUCCESS; +} + +static int +compiler_check_debug_args(struct compiler *c, arguments_ty args) +{ + RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->posonlyargs)); + RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->args)); + RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->vararg)); + RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->kwonlyargs)); + RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->kwarg)); + return SUCCESS; +} + +static int +wrap_in_stopiteration_handler(struct compiler *c) +{ + NEW_JUMP_TARGET_LABEL(c, handler); + + /* Insert SETUP_CLEANUP at start */ + RETURN_IF_ERROR( + instr_sequence_insert_instruction( + INSTR_SEQUENCE(c), 0, + SETUP_CLEANUP, handler.id, NO_LOCATION)); + + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + ADDOP(c, NO_LOCATION, RETURN_VALUE); + USE_LABEL(c, handler); + ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_1, INTRINSIC_STOPITERATION_ERROR); + ADDOP_I(c, NO_LOCATION, RERAISE, 1); + return SUCCESS; +} + +static int +compiler_type_params(struct compiler *c, asdl_type_param_seq *type_params) +{ + if (!type_params) { + return SUCCESS; + } + Py_ssize_t n = asdl_seq_LEN(type_params); + + for (Py_ssize_t i = 0; i < n; i++) { + type_param_ty typeparam = asdl_seq_GET(type_params, i); + location loc = LOC(typeparam); + switch(typeparam->kind) { + case TypeVar_kind: + ADDOP_LOAD_CONST(c, loc, typeparam->v.TypeVar.name); + if (typeparam->v.TypeVar.bound) { + expr_ty bound = typeparam->v.TypeVar.bound; + if (compiler_enter_scope(c, typeparam->v.TypeVar.name, COMPILER_SCOPE_TYPEPARAMS, + (void *)typeparam, bound->lineno) == -1) { + return ERROR; + } + VISIT_IN_SCOPE(c, expr, bound); + ADDOP_IN_SCOPE(c, loc, RETURN_VALUE); + PyCodeObject *co = optimize_and_assemble(c, 1); + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + if (compiler_make_closure(c, loc, co, 0) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + + int intrinsic = bound->kind == Tuple_kind + ? INTRINSIC_TYPEVAR_WITH_CONSTRAINTS + : INTRINSIC_TYPEVAR_WITH_BOUND; + ADDOP_I(c, loc, CALL_INTRINSIC_2, intrinsic); + } + else { + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEVAR); + } + ADDOP_I(c, loc, COPY, 1); + RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.TypeVar.name, Store)); + break; + case TypeVarTuple_kind: + ADDOP_LOAD_CONST(c, loc, typeparam->v.TypeVarTuple.name); + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEVARTUPLE); + ADDOP_I(c, loc, COPY, 1); + RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.TypeVarTuple.name, Store)); + break; + case ParamSpec_kind: + ADDOP_LOAD_CONST(c, loc, typeparam->v.ParamSpec.name); + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PARAMSPEC); + ADDOP_I(c, loc, COPY, 1); + RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.ParamSpec.name, Store)); + break; + } + } + ADDOP_I(c, LOC(asdl_seq_GET(type_params, 0)), BUILD_TUPLE, n); + return SUCCESS; +} + +static int +compiler_function_body(struct compiler *c, stmt_ty s, int is_async, Py_ssize_t funcflags, + int firstlineno) +{ + PyObject *docstring = NULL; + arguments_ty args; + identifier name; + asdl_stmt_seq *body; + int scope_type; + + if (is_async) { + assert(s->kind == AsyncFunctionDef_kind); + + args = s->v.AsyncFunctionDef.args; + name = s->v.AsyncFunctionDef.name; + body = s->v.AsyncFunctionDef.body; + + scope_type = COMPILER_SCOPE_ASYNC_FUNCTION; + } else { + assert(s->kind == FunctionDef_kind); + + args = s->v.FunctionDef.args; + name = s->v.FunctionDef.name; + body = s->v.FunctionDef.body; + + scope_type = COMPILER_SCOPE_FUNCTION; + } + + RETURN_IF_ERROR( + compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)); + + /* if not -OO mode, add docstring */ + if (c->c_optimize < 2) { + docstring = _PyAST_GetDocString(body); + } + if (compiler_add_const(c->c_const_cache, c->u, docstring ? docstring : Py_None) < 0) { + compiler_exit_scope(c); + return ERROR; + } + + c->u->u_metadata.u_argcount = asdl_seq_LEN(args->args); + c->u->u_metadata.u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); + c->u->u_metadata.u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); + for (Py_ssize_t i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) { + VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i)); + } + if (c->u->u_ste->ste_coroutine || c->u->u_ste->ste_generator) { + if (wrap_in_stopiteration_handler(c) < 0) { + compiler_exit_scope(c); + return ERROR; + } + } + PyCodeObject *co = optimize_and_assemble(c, 1); + compiler_exit_scope(c); + if (co == NULL) { + Py_XDECREF(co); + return ERROR; + } + location loc = LOC(s); + if (compiler_make_closure(c, loc, co, funcflags) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + return SUCCESS; +} + +static int +compiler_function(struct compiler *c, stmt_ty s, int is_async) +{ + arguments_ty args; + expr_ty returns; + identifier name; + asdl_expr_seq *decos; + asdl_type_param_seq *type_params; + Py_ssize_t funcflags; + int annotations; + int firstlineno; + + if (is_async) { + assert(s->kind == AsyncFunctionDef_kind); + + args = s->v.AsyncFunctionDef.args; + returns = s->v.AsyncFunctionDef.returns; + decos = s->v.AsyncFunctionDef.decorator_list; + name = s->v.AsyncFunctionDef.name; + type_params = s->v.AsyncFunctionDef.type_params; + } else { + assert(s->kind == FunctionDef_kind); + + args = s->v.FunctionDef.args; + returns = s->v.FunctionDef.returns; + decos = s->v.FunctionDef.decorator_list; + name = s->v.FunctionDef.name; + type_params = s->v.FunctionDef.type_params; + } + + RETURN_IF_ERROR(compiler_check_debug_args(c, args)); + RETURN_IF_ERROR(compiler_decorators(c, decos)); + + firstlineno = s->lineno; + if (asdl_seq_LEN(decos)) { + firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; + } + + location loc = LOC(s); + + int is_generic = asdl_seq_LEN(type_params) > 0; + + if (is_generic) { + // Used by the CALL to the type parameters function. + ADDOP(c, loc, PUSH_NULL); + } + + funcflags = compiler_default_arguments(c, loc, args); + if (funcflags == -1) { + return ERROR; + } + + int num_typeparam_args = 0; + + if (is_generic) { + if (funcflags & 0x01) { + num_typeparam_args += 1; + } + if (funcflags & 0x02) { + num_typeparam_args += 1; + } + if (num_typeparam_args == 2) { + ADDOP_I(c, loc, SWAP, 2); + } + PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>", name); + if (!type_params_name) { + return ERROR; + } + if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS, + (void *)type_params, firstlineno) == -1) { + Py_DECREF(type_params_name); + return ERROR; + } + Py_DECREF(type_params_name); + RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params)); + if ((funcflags & 0x01) || (funcflags & 0x02)) { + RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(INSTR_SEQUENCE(c), LOAD_FAST, 0, loc)); + } + if ((funcflags & 0x01) && (funcflags & 0x02)) { + RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(INSTR_SEQUENCE(c), LOAD_FAST, 1, loc)); + } + } + + annotations = compiler_visit_annotations(c, loc, args, returns); + if (annotations < 0) { + if (is_generic) { + compiler_exit_scope(c); + } + return ERROR; + } + if (annotations > 0) { + funcflags |= 0x04; + } + + if (compiler_function_body(c, s, is_async, funcflags, firstlineno) < 0) { + if (is_generic) { + compiler_exit_scope(c); + } + return ERROR; + } + + if (is_generic) { + RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i( + INSTR_SEQUENCE(c), SWAP, 2, loc)); + RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i( + INSTR_SEQUENCE(c), CALL_INTRINSIC_2, INTRINSIC_SET_FUNCTION_TYPE_PARAMS, loc)); + + c->u->u_metadata.u_argcount = num_typeparam_args; + PyCodeObject *co = optimize_and_assemble(c, 0); + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + if (compiler_make_closure(c, loc, co, 0) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + if (num_typeparam_args > 0) { + ADDOP_I(c, loc, SWAP, num_typeparam_args + 1); + } + ADDOP_I(c, loc, CALL, num_typeparam_args); + } + + RETURN_IF_ERROR(compiler_apply_decorators(c, decos)); + return compiler_nameop(c, loc, name, Store); +} + +static int +compiler_set_type_params_in_class(struct compiler *c, location loc) +{ + _Py_DECLARE_STR(type_params, ".type_params"); + RETURN_IF_ERROR(compiler_nameop(c, loc, &_Py_STR(type_params), Load)); + RETURN_IF_ERROR(compiler_nameop(c, loc, &_Py_ID(__type_params__), Store)); + return 1; +} + +static int +compiler_class_body(struct compiler *c, stmt_ty s, int firstlineno) +{ + /* ultimately generate code for: + <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>) + where: + <func> is a zero arg function/closure created from the class body. + It mutates its locals to build the class namespace. + <name> is the class name + <bases> is the positional arguments and *varargs argument + <keywords> is the keyword arguments and **kwds argument + This borrows from compiler_call. + */ + + /* 1. compile the class body into a code object */ + RETURN_IF_ERROR( + compiler_enter_scope(c, s->v.ClassDef.name, + COMPILER_SCOPE_CLASS, (void *)s, firstlineno)); + + location loc = LOCATION(firstlineno, firstlineno, 0, 0); + /* use the class name for name mangling */ + Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name)); + /* load (global) __name__ ... */ + if (compiler_nameop(c, loc, &_Py_ID(__name__), Load) < 0) { + compiler_exit_scope(c); + return ERROR; + } + /* ... and store it as __module__ */ + if (compiler_nameop(c, loc, &_Py_ID(__module__), Store) < 0) { + compiler_exit_scope(c); + return ERROR; + } + assert(c->u->u_metadata.u_qualname); + ADDOP_LOAD_CONST(c, loc, c->u->u_metadata.u_qualname); + if (compiler_nameop(c, loc, &_Py_ID(__qualname__), Store) < 0) { + compiler_exit_scope(c); + return ERROR; + } + asdl_type_param_seq *type_params = s->v.ClassDef.type_params; + if (asdl_seq_LEN(type_params) > 0) { + if (!compiler_set_type_params_in_class(c, loc)) { + compiler_exit_scope(c); + return ERROR; + } + } + if (c->u->u_ste->ste_needs_classdict) { + ADDOP(c, loc, LOAD_LOCALS); + + // We can't use compiler_nameop here because we need to generate a + // STORE_DEREF in a class namespace, and compiler_nameop() won't do + // that by default. + PyObject *cellvars = c->u->u_metadata.u_cellvars; + if (compiler_addop_o(c->u, loc, STORE_DEREF, cellvars, + &_Py_ID(__classdict__)) < 0) { + compiler_exit_scope(c); + return ERROR; + } + } + /* compile the body proper */ + if (compiler_body(c, loc, s->v.ClassDef.body) < 0) { + compiler_exit_scope(c); + return ERROR; + } + /* The following code is artificial */ + /* Set __classdictcell__ if necessary */ + if (c->u->u_ste->ste_needs_classdict) { + /* Store __classdictcell__ into class namespace */ + int i = compiler_lookup_arg(c->u->u_metadata.u_cellvars, &_Py_ID(__classdict__)); + if (i < 0) { + compiler_exit_scope(c); + return ERROR; + } + ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i); + if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classdictcell__), Store) < 0) { + compiler_exit_scope(c); + return ERROR; + } + } + /* Return __classcell__ if it is referenced, otherwise return None */ + if (c->u->u_ste->ste_needs_class_closure) { + /* Store __classcell__ into class namespace & return it */ + int i = compiler_lookup_arg(c->u->u_metadata.u_cellvars, &_Py_ID(__class__)); + if (i < 0) { + compiler_exit_scope(c); + return ERROR; + } + ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i); + ADDOP_I(c, NO_LOCATION, COPY, 1); + if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classcell__), Store) < 0) { + compiler_exit_scope(c); + return ERROR; + } + } + else { + /* No methods referenced __class__, so just return None */ + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + } + ADDOP_IN_SCOPE(c, NO_LOCATION, RETURN_VALUE); + /* create the code object */ + PyCodeObject *co = optimize_and_assemble(c, 1); + + /* leave the new scope */ + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + + /* 2. load the 'build_class' function */ + + // these instructions should be attributed to the class line, + // not a decorator line + loc = LOC(s); + ADDOP(c, loc, PUSH_NULL); + ADDOP(c, loc, LOAD_BUILD_CLASS); + + /* 3. load a function (or closure) made from the code object */ + if (compiler_make_closure(c, loc, co, 0) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + + /* 4. load class name */ + ADDOP_LOAD_CONST(c, loc, s->v.ClassDef.name); + + return SUCCESS; +} + +static int +compiler_class(struct compiler *c, stmt_ty s) +{ + asdl_expr_seq *decos = s->v.ClassDef.decorator_list; + + RETURN_IF_ERROR(compiler_decorators(c, decos)); + + int firstlineno = s->lineno; + if (asdl_seq_LEN(decos)) { + firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; + } + location loc = LOC(s); + + asdl_type_param_seq *type_params = s->v.ClassDef.type_params; + int is_generic = asdl_seq_LEN(type_params) > 0; + if (is_generic) { + Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name)); + ADDOP(c, loc, PUSH_NULL); + PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>", + s->v.ClassDef.name); + if (!type_params_name) { + return ERROR; + } + if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS, + (void *)type_params, firstlineno) == -1) { + Py_DECREF(type_params_name); + return ERROR; + } + Py_DECREF(type_params_name); + RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params)); + _Py_DECLARE_STR(type_params, ".type_params"); + RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(type_params), Store)); + } + + if (compiler_class_body(c, s, firstlineno) < 0) { + if (is_generic) { + compiler_exit_scope(c); + } + return ERROR; + } + + /* generate the rest of the code for the call */ + + if (is_generic) { + _Py_DECLARE_STR(type_params, ".type_params"); + _Py_DECLARE_STR(generic_base, ".generic_base"); + RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(type_params), Load)); + RETURN_IF_ERROR_IN_SCOPE( + c, codegen_addop_i(INSTR_SEQUENCE(c), CALL_INTRINSIC_1, INTRINSIC_SUBSCRIPT_GENERIC, loc) + ) + RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(generic_base), Store)); + + Py_ssize_t original_len = asdl_seq_LEN(s->v.ClassDef.bases); + asdl_expr_seq *bases = _Py_asdl_expr_seq_new( + original_len + 1, c->c_arena); + if (bases == NULL) { + compiler_exit_scope(c); + return ERROR; + } + for (Py_ssize_t i = 0; i < original_len; i++) { + asdl_seq_SET(bases, i, asdl_seq_GET(s->v.ClassDef.bases, i)); + } + expr_ty name_node = _PyAST_Name( + &_Py_STR(generic_base), Load, + loc.lineno, loc.col_offset, loc.end_lineno, loc.end_col_offset, c->c_arena + ); + if (name_node == NULL) { + compiler_exit_scope(c); + return ERROR; + } + asdl_seq_SET(bases, original_len, name_node); + RETURN_IF_ERROR_IN_SCOPE(c, compiler_call_helper(c, loc, 2, + bases, + s->v.ClassDef.keywords)); + + PyCodeObject *co = optimize_and_assemble(c, 0); + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + if (compiler_make_closure(c, loc, co, 0) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + ADDOP_I(c, loc, CALL, 0); + } else { + RETURN_IF_ERROR(compiler_call_helper(c, loc, 2, + s->v.ClassDef.bases, + s->v.ClassDef.keywords)); + } + + /* 6. apply decorators */ + RETURN_IF_ERROR(compiler_apply_decorators(c, decos)); + + /* 7. store into <name> */ + RETURN_IF_ERROR(compiler_nameop(c, loc, s->v.ClassDef.name, Store)); + return SUCCESS; +} + +static int +compiler_typealias_body(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + PyObject *name = s->v.TypeAlias.name->v.Name.id; + RETURN_IF_ERROR( + compiler_enter_scope(c, name, COMPILER_SCOPE_FUNCTION, s, loc.lineno)); + /* Make None the first constant, so the evaluate function can't have a + docstring. */ + RETURN_IF_ERROR(compiler_add_const(c->c_const_cache, c->u, Py_None)); + VISIT_IN_SCOPE(c, expr, s->v.TypeAlias.value); + ADDOP_IN_SCOPE(c, loc, RETURN_VALUE); + PyCodeObject *co = optimize_and_assemble(c, 0); + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + if (compiler_make_closure(c, loc, co, 0) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + ADDOP_I(c, loc, BUILD_TUPLE, 3); + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEALIAS); + return SUCCESS; +} + +static int +compiler_typealias(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + asdl_type_param_seq *type_params = s->v.TypeAlias.type_params; + int is_generic = asdl_seq_LEN(type_params) > 0; + PyObject *name = s->v.TypeAlias.name->v.Name.id; + if (is_generic) { + ADDOP(c, loc, PUSH_NULL); + PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>", + name); + if (!type_params_name) { + return ERROR; + } + if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS, + (void *)type_params, loc.lineno) == -1) { + Py_DECREF(type_params_name); + return ERROR; + } + Py_DECREF(type_params_name); + RETURN_IF_ERROR_IN_SCOPE( + c, compiler_addop_load_const(c->c_const_cache, c->u, loc, name) + ); + RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params)); + } + else { + ADDOP_LOAD_CONST(c, loc, name); + ADDOP_LOAD_CONST(c, loc, Py_None); + } + + if (compiler_typealias_body(c, s) < 0) { + if (is_generic) { + compiler_exit_scope(c); + } + return ERROR; + } + + if (is_generic) { + PyCodeObject *co = optimize_and_assemble(c, 0); + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + if (compiler_make_closure(c, loc, co, 0) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + ADDOP_I(c, loc, CALL, 0); + } + RETURN_IF_ERROR(compiler_nameop(c, loc, name, Store)); + return SUCCESS; +} + +/* Return false if the expression is a constant value except named singletons. + Return true otherwise. */ +static bool +check_is_arg(expr_ty e) +{ + if (e->kind != Constant_kind) { + return true; + } + PyObject *value = e->v.Constant.value; + return (value == Py_None + || value == Py_False + || value == Py_True + || value == Py_Ellipsis); +} + +static PyTypeObject * infer_type(expr_ty e); + +/* Check operands of identity checks ("is" and "is not"). + Emit a warning if any operand is a constant except named singletons. + */ +static int +check_compare(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n; + bool left = check_is_arg(e->v.Compare.left); + expr_ty left_expr = e->v.Compare.left; + n = asdl_seq_LEN(e->v.Compare.ops); + for (i = 0; i < n; i++) { + cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i); + expr_ty right_expr = (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i); + bool right = check_is_arg(right_expr); + if (op == Is || op == IsNot) { + if (!right || !left) { + const char *msg = (op == Is) + ? "\"is\" with '%.200s' literal. Did you mean \"==\"?" + : "\"is not\" with '%.200s' literal. Did you mean \"!=\"?"; + expr_ty literal = !left ? left_expr : right_expr; + return compiler_warn( + c, LOC(e), msg, infer_type(literal)->tp_name + ); + } + } + left = right; + left_expr = right_expr; + } + return SUCCESS; +} + +static const int compare_masks[] = { + [Py_LT] = COMPARISON_LESS_THAN, + [Py_LE] = COMPARISON_LESS_THAN | COMPARISON_EQUALS, + [Py_EQ] = COMPARISON_EQUALS, + [Py_NE] = COMPARISON_NOT_EQUALS, + [Py_GT] = COMPARISON_GREATER_THAN, + [Py_GE] = COMPARISON_GREATER_THAN | COMPARISON_EQUALS, +}; + +static int compiler_addcompare(struct compiler *c, location loc, + cmpop_ty op) +{ + int cmp; + switch (op) { + case Eq: + cmp = Py_EQ; + break; + case NotEq: + cmp = Py_NE; + break; + case Lt: + cmp = Py_LT; + break; + case LtE: + cmp = Py_LE; + break; + case Gt: + cmp = Py_GT; + break; + case GtE: + cmp = Py_GE; + break; + case Is: + ADDOP_I(c, loc, IS_OP, 0); + return SUCCESS; + case IsNot: + ADDOP_I(c, loc, IS_OP, 1); + return SUCCESS; + case In: + ADDOP_I(c, loc, CONTAINS_OP, 0); + return SUCCESS; + case NotIn: + ADDOP_I(c, loc, CONTAINS_OP, 1); + return SUCCESS; + default: + Py_UNREACHABLE(); + } + /* cmp goes in top bits of the oparg, while the low bits are used by quickened + * versions of this opcode to store the comparison mask. */ + ADDOP_I(c, loc, COMPARE_OP, (cmp << 4) | compare_masks[cmp]); + return SUCCESS; +} + + + +static int +compiler_jump_if(struct compiler *c, location loc, + expr_ty e, jump_target_label next, int cond) +{ + switch (e->kind) { + case UnaryOp_kind: + if (e->v.UnaryOp.op == Not) { + return compiler_jump_if(c, loc, e->v.UnaryOp.operand, next, !cond); + } + /* fallback to general implementation */ + break; + case BoolOp_kind: { + asdl_expr_seq *s = e->v.BoolOp.values; + Py_ssize_t i, n = asdl_seq_LEN(s) - 1; + assert(n >= 0); + int cond2 = e->v.BoolOp.op == Or; + jump_target_label next2 = next; + if (!cond2 != !cond) { + NEW_JUMP_TARGET_LABEL(c, new_next2); + next2 = new_next2; + } + for (i = 0; i < n; ++i) { + RETURN_IF_ERROR( + compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, i), next2, cond2)); + } + RETURN_IF_ERROR( + compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, n), next, cond)); + if (!SAME_LABEL(next2, next)) { + USE_LABEL(c, next2); + } + return SUCCESS; + } + case IfExp_kind: { + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, next2); + RETURN_IF_ERROR( + compiler_jump_if(c, loc, e->v.IfExp.test, next2, 0)); + RETURN_IF_ERROR( + compiler_jump_if(c, loc, e->v.IfExp.body, next, cond)); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + USE_LABEL(c, next2); + RETURN_IF_ERROR( + compiler_jump_if(c, loc, e->v.IfExp.orelse, next, cond)); + + USE_LABEL(c, end); + return SUCCESS; + } + case Compare_kind: { + Py_ssize_t n = asdl_seq_LEN(e->v.Compare.ops) - 1; + if (n > 0) { + RETURN_IF_ERROR(check_compare(c, e)); + NEW_JUMP_TARGET_LABEL(c, cleanup); + VISIT(c, expr, e->v.Compare.left); + for (Py_ssize_t i = 0; i < n; i++) { + VISIT(c, expr, + (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + ADDOP_I(c, LOC(e), SWAP, 2); + ADDOP_I(c, LOC(e), COPY, 2); + ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, i)); + ADDOP_JUMP(c, LOC(e), POP_JUMP_IF_FALSE, cleanup); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); + ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, n)); + ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); + NEW_JUMP_TARGET_LABEL(c, end); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + USE_LABEL(c, cleanup); + ADDOP(c, LOC(e), POP_TOP); + if (!cond) { + ADDOP_JUMP(c, NO_LOCATION, JUMP, next); + } + + USE_LABEL(c, end); + return SUCCESS; + } + /* fallback to general implementation */ + break; + } + default: + /* fallback to general implementation */ + break; + } + + /* general implementation */ + VISIT(c, expr, e); + ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); + return SUCCESS; +} + +static int +compiler_ifexp(struct compiler *c, expr_ty e) +{ + assert(e->kind == IfExp_kind); + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, next); + + RETURN_IF_ERROR( + compiler_jump_if(c, LOC(e), e->v.IfExp.test, next, 0)); + + VISIT(c, expr, e->v.IfExp.body); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + USE_LABEL(c, next); + VISIT(c, expr, e->v.IfExp.orelse); + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_lambda(struct compiler *c, expr_ty e) +{ + PyCodeObject *co; + Py_ssize_t funcflags; + arguments_ty args = e->v.Lambda.args; + assert(e->kind == Lambda_kind); + + RETURN_IF_ERROR(compiler_check_debug_args(c, args)); + + location loc = LOC(e); + funcflags = compiler_default_arguments(c, loc, args); + if (funcflags == -1) { + return ERROR; + } + + _Py_DECLARE_STR(anon_lambda, "<lambda>"); + RETURN_IF_ERROR( + compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA, + (void *)e, e->lineno)); + + /* Make None the first constant, so the lambda can't have a + docstring. */ + RETURN_IF_ERROR(compiler_add_const(c->c_const_cache, c->u, Py_None)); + + c->u->u_metadata.u_argcount = asdl_seq_LEN(args->args); + c->u->u_metadata.u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); + c->u->u_metadata.u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); + VISIT_IN_SCOPE(c, expr, e->v.Lambda.body); + if (c->u->u_ste->ste_generator) { + co = optimize_and_assemble(c, 0); + } + else { + location loc = LOCATION(e->lineno, e->lineno, 0, 0); + ADDOP_IN_SCOPE(c, loc, RETURN_VALUE); + co = optimize_and_assemble(c, 1); + } + compiler_exit_scope(c); + if (co == NULL) { + return ERROR; + } + + if (compiler_make_closure(c, loc, co, funcflags) < 0) { + Py_DECREF(co); + return ERROR; + } + Py_DECREF(co); + + return SUCCESS; +} + +static int +compiler_if(struct compiler *c, stmt_ty s) +{ + jump_target_label next; + assert(s->kind == If_kind); + NEW_JUMP_TARGET_LABEL(c, end); + if (asdl_seq_LEN(s->v.If.orelse)) { + NEW_JUMP_TARGET_LABEL(c, orelse); + next = orelse; + } + else { + next = end; + } + RETURN_IF_ERROR( + compiler_jump_if(c, LOC(s), s->v.If.test, next, 0)); + + VISIT_SEQ(c, stmt, s->v.If.body); + if (asdl_seq_LEN(s->v.If.orelse)) { + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + USE_LABEL(c, next); + VISIT_SEQ(c, stmt, s->v.If.orelse); + } + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_for(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + NEW_JUMP_TARGET_LABEL(c, start); + NEW_JUMP_TARGET_LABEL(c, body); + NEW_JUMP_TARGET_LABEL(c, cleanup); + NEW_JUMP_TARGET_LABEL(c, end); + + RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL)); + + VISIT(c, expr, s->v.For.iter); + ADDOP(c, loc, GET_ITER); + + USE_LABEL(c, start); + ADDOP_JUMP(c, loc, FOR_ITER, cleanup); + + USE_LABEL(c, body); + VISIT(c, expr, s->v.For.target); + VISIT_SEQ(c, stmt, s->v.For.body); + /* Mark jump as artificial */ + ADDOP_JUMP(c, NO_LOCATION, JUMP, start); + + USE_LABEL(c, cleanup); + ADDOP(c, NO_LOCATION, END_FOR); + + compiler_pop_fblock(c, FOR_LOOP, start); + + VISIT_SEQ(c, stmt, s->v.For.orelse); + + USE_LABEL(c, end); + return SUCCESS; +} + + +static int +compiler_async_for(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + if (IS_TOP_LEVEL_AWAIT(c)){ + c->u->u_ste->ste_coroutine = 1; + } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) { + return compiler_error(c, loc, "'async for' outside async function"); + } + + NEW_JUMP_TARGET_LABEL(c, start); + NEW_JUMP_TARGET_LABEL(c, except); + NEW_JUMP_TARGET_LABEL(c, end); + + VISIT(c, expr, s->v.AsyncFor.iter); + ADDOP(c, loc, GET_AITER); + + USE_LABEL(c, start); + RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL)); + + /* SETUP_FINALLY to guard the __anext__ call */ + ADDOP_JUMP(c, loc, SETUP_FINALLY, except); + ADDOP(c, loc, GET_ANEXT); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + ADDOP(c, loc, POP_BLOCK); /* for SETUP_FINALLY */ + + /* Success block for __anext__ */ + VISIT(c, expr, s->v.AsyncFor.target); + VISIT_SEQ(c, stmt, s->v.AsyncFor.body); + /* Mark jump as artificial */ + ADDOP_JUMP(c, NO_LOCATION, JUMP, start); + + compiler_pop_fblock(c, FOR_LOOP, start); + + /* Except block for __anext__ */ + USE_LABEL(c, except); + + /* Use same line number as the iterator, + * as the END_ASYNC_FOR succeeds the `for`, not the body. */ + loc = LOC(s->v.AsyncFor.iter); + ADDOP(c, loc, END_ASYNC_FOR); + + /* `else` block */ + VISIT_SEQ(c, stmt, s->v.For.orelse); + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_while(struct compiler *c, stmt_ty s) +{ + NEW_JUMP_TARGET_LABEL(c, loop); + NEW_JUMP_TARGET_LABEL(c, body); + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, anchor); + + USE_LABEL(c, loop); + + RETURN_IF_ERROR(compiler_push_fblock(c, LOC(s), WHILE_LOOP, loop, end, NULL)); + RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, anchor, 0)); + + USE_LABEL(c, body); + VISIT_SEQ(c, stmt, s->v.While.body); + RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, body, 1)); + + compiler_pop_fblock(c, WHILE_LOOP, loop); + + USE_LABEL(c, anchor); + if (s->v.While.orelse) { + VISIT_SEQ(c, stmt, s->v.While.orelse); + } + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_return(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + int preserve_tos = ((s->v.Return.value != NULL) && + (s->v.Return.value->kind != Constant_kind)); + if (!_PyST_IsFunctionLike(c->u->u_ste)) { + return compiler_error(c, loc, "'return' outside function"); + } + if (s->v.Return.value != NULL && + c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator) + { + return compiler_error(c, loc, "'return' with value in async generator"); + } + + if (preserve_tos) { + VISIT(c, expr, s->v.Return.value); + } else { + /* Emit instruction with line number for return value */ + if (s->v.Return.value != NULL) { + loc = LOC(s->v.Return.value); + ADDOP(c, loc, NOP); + } + } + if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) { + loc = LOC(s); + ADDOP(c, loc, NOP); + } + + RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, preserve_tos, NULL)); + if (s->v.Return.value == NULL) { + ADDOP_LOAD_CONST(c, loc, Py_None); + } + else if (!preserve_tos) { + ADDOP_LOAD_CONST(c, loc, s->v.Return.value->v.Constant.value); + } + ADDOP(c, loc, RETURN_VALUE); + + return SUCCESS; +} + +static int +compiler_break(struct compiler *c, location loc) +{ + struct fblockinfo *loop = NULL; + location origin_loc = loc; + /* Emit instruction with line number */ + ADDOP(c, loc, NOP); + RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop)); + if (loop == NULL) { + return compiler_error(c, origin_loc, "'break' outside loop"); + } + RETURN_IF_ERROR(compiler_unwind_fblock(c, &loc, loop, 0)); + ADDOP_JUMP(c, loc, JUMP, loop->fb_exit); + return SUCCESS; +} + +static int +compiler_continue(struct compiler *c, location loc) +{ + struct fblockinfo *loop = NULL; + location origin_loc = loc; + /* Emit instruction with line number */ + ADDOP(c, loc, NOP); + RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop)); + if (loop == NULL) { + return compiler_error(c, origin_loc, "'continue' not properly in loop"); + } + ADDOP_JUMP(c, loc, JUMP, loop->fb_block); + return SUCCESS; +} + + +/* Code generated for "try: <body> finally: <finalbody>" is as follows: + + SETUP_FINALLY L + <code for body> + POP_BLOCK + <code for finalbody> + JUMP E + L: + <code for finalbody> + E: + + The special instructions use the block stack. Each block + stack entry contains the instruction that created it (here + SETUP_FINALLY), the level of the value stack at the time the + block stack entry was created, and a label (here L). + + SETUP_FINALLY: + Pushes the current value stack level and the label + onto the block stack. + POP_BLOCK: + Pops en entry from the block stack. + + The block stack is unwound when an exception is raised: + when a SETUP_FINALLY entry is found, the raised and the caught + exceptions are pushed onto the value stack (and the exception + condition is cleared), and the interpreter jumps to the label + gotten from the block stack. +*/ + +static int +compiler_try_finally(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + + NEW_JUMP_TARGET_LABEL(c, body); + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, exit); + NEW_JUMP_TARGET_LABEL(c, cleanup); + + /* `try` block */ + ADDOP_JUMP(c, loc, SETUP_FINALLY, end); + + USE_LABEL(c, body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, FINALLY_TRY, body, end, + s->v.Try.finalbody)); + + if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) { + RETURN_IF_ERROR(compiler_try_except(c, s)); + } + else { + VISIT_SEQ(c, stmt, s->v.Try.body); + } + ADDOP(c, NO_LOCATION, POP_BLOCK); + compiler_pop_fblock(c, FINALLY_TRY, body); + VISIT_SEQ(c, stmt, s->v.Try.finalbody); + + ADDOP_JUMP(c, NO_LOCATION, JUMP, exit); + /* `finally` block */ + + USE_LABEL(c, end); + + loc = NO_LOCATION; + ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup); + ADDOP(c, loc, PUSH_EXC_INFO); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL)); + VISIT_SEQ(c, stmt, s->v.Try.finalbody); + compiler_pop_fblock(c, FINALLY_END, end); + + loc = NO_LOCATION; + ADDOP_I(c, loc, RERAISE, 0); + + USE_LABEL(c, cleanup); + POP_EXCEPT_AND_RERAISE(c, loc); + + USE_LABEL(c, exit); + return SUCCESS; +} + +static int +compiler_try_star_finally(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + + NEW_JUMP_TARGET_LABEL(c, body); + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, exit); + NEW_JUMP_TARGET_LABEL(c, cleanup); + /* `try` block */ + ADDOP_JUMP(c, loc, SETUP_FINALLY, end); + + USE_LABEL(c, body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, FINALLY_TRY, body, end, + s->v.TryStar.finalbody)); + + if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) { + RETURN_IF_ERROR(compiler_try_star_except(c, s)); + } + else { + VISIT_SEQ(c, stmt, s->v.TryStar.body); + } + ADDOP(c, NO_LOCATION, POP_BLOCK); + compiler_pop_fblock(c, FINALLY_TRY, body); + VISIT_SEQ(c, stmt, s->v.TryStar.finalbody); + + ADDOP_JUMP(c, NO_LOCATION, JUMP, exit); + + /* `finally` block */ + USE_LABEL(c, end); + + loc = NO_LOCATION; + ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup); + ADDOP(c, loc, PUSH_EXC_INFO); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL)); + + VISIT_SEQ(c, stmt, s->v.TryStar.finalbody); + + compiler_pop_fblock(c, FINALLY_END, end); + loc = NO_LOCATION; + ADDOP_I(c, loc, RERAISE, 0); + + USE_LABEL(c, cleanup); + POP_EXCEPT_AND_RERAISE(c, loc); + + USE_LABEL(c, exit); + return SUCCESS; +} + + +/* + Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...": + (The contents of the value stack is shown in [], with the top + at the right; 'tb' is trace-back info, 'val' the exception's + associated value, and 'exc' the exception.) + + Value stack Label Instruction Argument + [] SETUP_FINALLY L1 + [] <code for S> + [] POP_BLOCK + [] JUMP L0 + + [exc] L1: <evaluate E1> ) + [exc, E1] CHECK_EXC_MATCH ) + [exc, bool] POP_JUMP_IF_FALSE L2 ) only if E1 + [exc] <assign to V1> (or POP if no V1) + [] <code for S1> + JUMP L0 + + [exc] L2: <evaluate E2> + .............................etc....................... + + [exc] Ln+1: RERAISE # re-raise exception + + [] L0: <next statement> + + Of course, parts are not generated if Vi or Ei is not present. +*/ +static int +compiler_try_except(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + Py_ssize_t i, n; + + NEW_JUMP_TARGET_LABEL(c, body); + NEW_JUMP_TARGET_LABEL(c, except); + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, cleanup); + + ADDOP_JUMP(c, loc, SETUP_FINALLY, except); + + USE_LABEL(c, body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL)); + VISIT_SEQ(c, stmt, s->v.Try.body); + compiler_pop_fblock(c, TRY_EXCEPT, body); + ADDOP(c, NO_LOCATION, POP_BLOCK); + if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) { + VISIT_SEQ(c, stmt, s->v.Try.orelse); + } + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + n = asdl_seq_LEN(s->v.Try.handlers); + + USE_LABEL(c, except); + + ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup); + ADDOP(c, NO_LOCATION, PUSH_EXC_INFO); + + /* Runtime will push a block here, so we need to account for that */ + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, EXCEPTION_HANDLER, NO_LABEL, NO_LABEL, NULL)); + + for (i = 0; i < n; i++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + s->v.Try.handlers, i); + location loc = LOC(handler); + if (!handler->v.ExceptHandler.type && i < n-1) { + return compiler_error(c, loc, "default 'except:' must be last"); + } + NEW_JUMP_TARGET_LABEL(c, next_except); + except = next_except; + if (handler->v.ExceptHandler.type) { + VISIT(c, expr, handler->v.ExceptHandler.type); + ADDOP(c, loc, CHECK_EXC_MATCH); + ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, except); + } + if (handler->v.ExceptHandler.name) { + NEW_JUMP_TARGET_LABEL(c, cleanup_end); + NEW_JUMP_TARGET_LABEL(c, cleanup_body); + + RETURN_IF_ERROR( + compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store)); + + /* + try: + # body + except type as name: + try: + # body + finally: + name = None # in case body contains "del name" + del name + */ + + /* second try: */ + ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end); + + USE_LABEL(c, cleanup_body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body, + NO_LABEL, handler->v.ExceptHandler.name)); + + /* second # body */ + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + /* name = None; del name; # Mark as artificial */ + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP(c, NO_LOCATION, POP_EXCEPT); + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store)); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del)); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + /* except: */ + USE_LABEL(c, cleanup_end); + + /* name = None; del name; # artificial */ + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store)); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del)); + + ADDOP_I(c, NO_LOCATION, RERAISE, 1); + } + else { + NEW_JUMP_TARGET_LABEL(c, cleanup_body); + + ADDOP(c, loc, POP_TOP); /* exc_value */ + + USE_LABEL(c, cleanup_body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body, + NO_LABEL, NULL)); + + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP(c, NO_LOCATION, POP_EXCEPT); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + } + + USE_LABEL(c, except); + } + /* artificial */ + compiler_pop_fblock(c, EXCEPTION_HANDLER, NO_LABEL); + ADDOP_I(c, NO_LOCATION, RERAISE, 0); + + USE_LABEL(c, cleanup); + POP_EXCEPT_AND_RERAISE(c, NO_LOCATION); + + USE_LABEL(c, end); + return SUCCESS; +} + +/* + Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...": + (The contents of the value stack is shown in [], with the top + at the right; 'tb' is trace-back info, 'val' the exception instance, + and 'typ' the exception's type.) + + Value stack Label Instruction Argument + [] SETUP_FINALLY L1 + [] <code for S> + [] POP_BLOCK + [] JUMP L0 + + [exc] L1: BUILD_LIST ) list for raised/reraised excs ("result") + [orig, res] COPY 2 ) make a copy of the original EG + + [orig, res, exc] <evaluate E1> + [orig, res, exc, E1] CHECK_EG_MATCH + [orig, res, rest/exc, match?] COPY 1 + [orig, res, rest/exc, match?, match?] POP_JUMP_IF_NONE C1 + + [orig, res, rest, match] <assign to V1> (or POP if no V1) + + [orig, res, rest] SETUP_FINALLY R1 + [orig, res, rest] <code for S1> + [orig, res, rest] JUMP L2 + + [orig, res, rest, i, v] R1: LIST_APPEND 3 ) exc raised in except* body - add to res + [orig, res, rest, i] POP + [orig, res, rest] JUMP LE2 + + [orig, res, rest] L2: NOP ) for lineno + [orig, res, rest] JUMP LE2 + + [orig, res, rest/exc, None] C1: POP + + [orig, res, rest] LE2: <evaluate E2> + .............................etc....................... + + [orig, res, rest] Ln+1: LIST_APPEND 1 ) add unhandled exc to res (could be None) + + [orig, res] CALL_INTRINSIC_2 PREP_RERAISE_STAR + [exc] COPY 1 + [exc, exc] POP_JUMP_IF_NOT_NONE RER + [exc] POP_TOP + [] JUMP L0 + + [exc] RER: SWAP 2 + [exc, prev_exc_info] POP_EXCEPT + [exc] RERAISE 0 + + [] L0: <next statement> +*/ +static int +compiler_try_star_except(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + + NEW_JUMP_TARGET_LABEL(c, body); + NEW_JUMP_TARGET_LABEL(c, except); + NEW_JUMP_TARGET_LABEL(c, orelse); + NEW_JUMP_TARGET_LABEL(c, end); + NEW_JUMP_TARGET_LABEL(c, cleanup); + NEW_JUMP_TARGET_LABEL(c, reraise_star); + + ADDOP_JUMP(c, loc, SETUP_FINALLY, except); + + USE_LABEL(c, body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL)); + VISIT_SEQ(c, stmt, s->v.TryStar.body); + compiler_pop_fblock(c, TRY_EXCEPT, body); + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP_JUMP(c, NO_LOCATION, JUMP, orelse); + Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers); + + USE_LABEL(c, except); + + ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup); + ADDOP(c, NO_LOCATION, PUSH_EXC_INFO); + + /* Runtime will push a block here, so we need to account for that */ + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, EXCEPTION_GROUP_HANDLER, + NO_LABEL, NO_LABEL, "except handler")); + + for (Py_ssize_t i = 0; i < n; i++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + s->v.TryStar.handlers, i); + location loc = LOC(handler); + NEW_JUMP_TARGET_LABEL(c, next_except); + except = next_except; + NEW_JUMP_TARGET_LABEL(c, except_with_error); + NEW_JUMP_TARGET_LABEL(c, no_match); + if (i == 0) { + /* create empty list for exceptions raised/reraise in the except* blocks */ + /* + [orig] BUILD_LIST + */ + /* Create a copy of the original EG */ + /* + [orig, []] COPY 2 + [orig, [], exc] + */ + ADDOP_I(c, loc, BUILD_LIST, 0); + ADDOP_I(c, loc, COPY, 2); + } + if (handler->v.ExceptHandler.type) { + VISIT(c, expr, handler->v.ExceptHandler.type); + ADDOP(c, loc, CHECK_EG_MATCH); + ADDOP_I(c, loc, COPY, 1); + ADDOP_JUMP(c, loc, POP_JUMP_IF_NONE, no_match); + } + + NEW_JUMP_TARGET_LABEL(c, cleanup_end); + NEW_JUMP_TARGET_LABEL(c, cleanup_body); + + if (handler->v.ExceptHandler.name) { + RETURN_IF_ERROR( + compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store)); + } + else { + ADDOP(c, loc, POP_TOP); // match + } + + /* + try: + # body + except type as name: + try: + # body + finally: + name = None # in case body contains "del name" + del name + */ + /* second try: */ + ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end); + + USE_LABEL(c, cleanup_body); + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body, + NO_LABEL, handler->v.ExceptHandler.name)); + + /* second # body */ + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + /* name = None; del name; # artificial */ + ADDOP(c, NO_LOCATION, POP_BLOCK); + if (handler->v.ExceptHandler.name) { + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store)); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del)); + } + ADDOP_JUMP(c, NO_LOCATION, JUMP, except); + + /* except: */ + USE_LABEL(c, cleanup_end); + + /* name = None; del name; # artificial */ + if (handler->v.ExceptHandler.name) { + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store)); + RETURN_IF_ERROR( + compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del)); + } + + /* add exception raised to the res list */ + ADDOP_I(c, NO_LOCATION, LIST_APPEND, 3); // exc + ADDOP(c, NO_LOCATION, POP_TOP); // lasti + ADDOP_JUMP(c, NO_LOCATION, JUMP, except_with_error); + + USE_LABEL(c, except); + ADDOP(c, NO_LOCATION, NOP); // to hold a propagated location info + ADDOP_JUMP(c, NO_LOCATION, JUMP, except_with_error); + + USE_LABEL(c, no_match); + ADDOP(c, loc, POP_TOP); // match (None) + + USE_LABEL(c, except_with_error); + + if (i == n - 1) { + /* Add exc to the list (if not None it's the unhandled part of the EG) */ + ADDOP_I(c, NO_LOCATION, LIST_APPEND, 1); + ADDOP_JUMP(c, NO_LOCATION, JUMP, reraise_star); + } + } + /* artificial */ + compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NO_LABEL); + NEW_JUMP_TARGET_LABEL(c, reraise); + + USE_LABEL(c, reraise_star); + ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_2, INTRINSIC_PREP_RERAISE_STAR); + ADDOP_I(c, NO_LOCATION, COPY, 1); + ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_NOT_NONE, reraise); + + /* Nothing to reraise */ + ADDOP(c, NO_LOCATION, POP_TOP); + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP(c, NO_LOCATION, POP_EXCEPT); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + USE_LABEL(c, reraise); + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP_I(c, NO_LOCATION, SWAP, 2); + ADDOP(c, NO_LOCATION, POP_EXCEPT); + ADDOP_I(c, NO_LOCATION, RERAISE, 0); + + USE_LABEL(c, cleanup); + POP_EXCEPT_AND_RERAISE(c, NO_LOCATION); + + USE_LABEL(c, orelse); + VISIT_SEQ(c, stmt, s->v.TryStar.orelse); + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_try(struct compiler *c, stmt_ty s) { + if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody)) + return compiler_try_finally(c, s); + else + return compiler_try_except(c, s); +} + +static int +compiler_try_star(struct compiler *c, stmt_ty s) +{ + if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) { + return compiler_try_star_finally(c, s); + } + else { + return compiler_try_star_except(c, s); + } +} + +static int +compiler_import_as(struct compiler *c, location loc, + identifier name, identifier asname) +{ + /* The IMPORT_NAME opcode was already generated. This function + merely needs to bind the result to a name. + + If there is a dot in name, we need to split it and emit a + IMPORT_FROM for each name. + */ + Py_ssize_t len = PyUnicode_GET_LENGTH(name); + Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1); + if (dot == -2) { + return ERROR; + } + if (dot != -1) { + /* Consume the base module name to get the first attribute */ + while (1) { + Py_ssize_t pos = dot + 1; + PyObject *attr; + dot = PyUnicode_FindChar(name, '.', pos, len, 1); + if (dot == -2) { + return ERROR; + } + attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len); + if (!attr) { + return ERROR; + } + ADDOP_N(c, loc, IMPORT_FROM, attr, names); + if (dot == -1) { + break; + } + ADDOP_I(c, loc, SWAP, 2); + ADDOP(c, loc, POP_TOP); + } + RETURN_IF_ERROR(compiler_nameop(c, loc, asname, Store)); + ADDOP(c, loc, POP_TOP); + return SUCCESS; + } + return compiler_nameop(c, loc, asname, Store); +} + +static int +compiler_import(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + /* The Import node stores a module name like a.b.c as a single + string. This is convenient for all cases except + import a.b.c as d + where we need to parse that string to extract the individual + module names. + XXX Perhaps change the representation to make this case simpler? + */ + Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names); + + PyObject *zero = _PyLong_GetZero(); // borrowed reference + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i); + int r; + + ADDOP_LOAD_CONST(c, loc, zero); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADDOP_NAME(c, loc, IMPORT_NAME, alias->name, names); + + if (alias->asname) { + r = compiler_import_as(c, loc, alias->name, alias->asname); + RETURN_IF_ERROR(r); + } + else { + identifier tmp = alias->name; + Py_ssize_t dot = PyUnicode_FindChar( + alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1); + if (dot != -1) { + tmp = PyUnicode_Substring(alias->name, 0, dot); + if (tmp == NULL) { + return ERROR; + } + } + r = compiler_nameop(c, loc, tmp, Store); + if (dot != -1) { + Py_DECREF(tmp); + } + RETURN_IF_ERROR(r); + } + } + return SUCCESS; +} + +static int +compiler_from_import(struct compiler *c, stmt_ty s) +{ + Py_ssize_t n = asdl_seq_LEN(s->v.ImportFrom.names); + + ADDOP_LOAD_CONST_NEW(c, LOC(s), PyLong_FromLong(s->v.ImportFrom.level)); + + PyObject *names = PyTuple_New(n); + if (!names) { + return ERROR; + } + + /* build up the names */ + for (Py_ssize_t i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); + PyTuple_SET_ITEM(names, i, Py_NewRef(alias->name)); + } + + if (location_is_after(LOC(s), c->c_future.ff_location) && + s->v.ImportFrom.module && + _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) + { + Py_DECREF(names); + return compiler_error(c, LOC(s), "from __future__ imports must occur " + "at the beginning of the file"); + } + ADDOP_LOAD_CONST_NEW(c, LOC(s), names); + + if (s->v.ImportFrom.module) { + ADDOP_NAME(c, LOC(s), IMPORT_NAME, s->v.ImportFrom.module, names); + } + else { + _Py_DECLARE_STR(empty, ""); + ADDOP_NAME(c, LOC(s), IMPORT_NAME, &_Py_STR(empty), names); + } + for (Py_ssize_t i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); + identifier store_name; + + if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') { + assert(n == 1); + ADDOP_I(c, LOC(s), CALL_INTRINSIC_1, INTRINSIC_IMPORT_STAR); + ADDOP(c, NO_LOCATION, POP_TOP); + return SUCCESS; + } + + ADDOP_NAME(c, LOC(s), IMPORT_FROM, alias->name, names); + store_name = alias->name; + if (alias->asname) { + store_name = alias->asname; + } + + RETURN_IF_ERROR(compiler_nameop(c, LOC(s), store_name, Store)); + } + /* remove imported module */ + ADDOP(c, LOC(s), POP_TOP); + return SUCCESS; +} + +static int +compiler_assert(struct compiler *c, stmt_ty s) +{ + /* Always emit a warning if the test is a non-zero length tuple */ + if ((s->v.Assert.test->kind == Tuple_kind && + asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) || + (s->v.Assert.test->kind == Constant_kind && + PyTuple_Check(s->v.Assert.test->v.Constant.value) && + PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0)) + { + RETURN_IF_ERROR( + compiler_warn(c, LOC(s), "assertion is always true, " + "perhaps remove parentheses?")); + } + if (c->c_optimize) { + return SUCCESS; + } + NEW_JUMP_TARGET_LABEL(c, end); + RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.Assert.test, end, 1)); + ADDOP(c, LOC(s), LOAD_ASSERTION_ERROR); + if (s->v.Assert.msg) { + VISIT(c, expr, s->v.Assert.msg); + ADDOP_I(c, LOC(s), CALL, 0); + } + ADDOP_I(c, LOC(s), RAISE_VARARGS, 1); + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_stmt_expr(struct compiler *c, location loc, expr_ty value) +{ + if (c->c_interactive && c->c_nestlevel <= 1) { + VISIT(c, expr, value); + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PRINT); + ADDOP(c, NO_LOCATION, POP_TOP); + return SUCCESS; + } + + if (value->kind == Constant_kind) { + /* ignore constant statement */ + ADDOP(c, loc, NOP); + return SUCCESS; + } + + VISIT(c, expr, value); + ADDOP(c, NO_LOCATION, POP_TOP); /* artificial */ + return SUCCESS; +} + +static int +compiler_visit_stmt(struct compiler *c, stmt_ty s) +{ + + switch (s->kind) { + case FunctionDef_kind: + return compiler_function(c, s, 0); + case ClassDef_kind: + return compiler_class(c, s); + case TypeAlias_kind: + return compiler_typealias(c, s); + case Return_kind: + return compiler_return(c, s); + case Delete_kind: + VISIT_SEQ(c, expr, s->v.Delete.targets) + break; + case Assign_kind: + { + Py_ssize_t n = asdl_seq_LEN(s->v.Assign.targets); + VISIT(c, expr, s->v.Assign.value); + for (Py_ssize_t i = 0; i < n; i++) { + if (i < n - 1) { + ADDOP_I(c, LOC(s), COPY, 1); + } + VISIT(c, expr, + (expr_ty)asdl_seq_GET(s->v.Assign.targets, i)); + } + break; + } + case AugAssign_kind: + return compiler_augassign(c, s); + case AnnAssign_kind: + return compiler_annassign(c, s); + case For_kind: + return compiler_for(c, s); + case While_kind: + return compiler_while(c, s); + case If_kind: + return compiler_if(c, s); + case Match_kind: + return compiler_match(c, s); + case Raise_kind: + { + Py_ssize_t n = 0; + if (s->v.Raise.exc) { + VISIT(c, expr, s->v.Raise.exc); + n++; + if (s->v.Raise.cause) { + VISIT(c, expr, s->v.Raise.cause); + n++; + } + } + ADDOP_I(c, LOC(s), RAISE_VARARGS, (int)n); + break; + } + case Try_kind: + return compiler_try(c, s); + case TryStar_kind: + return compiler_try_star(c, s); + case Assert_kind: + return compiler_assert(c, s); + case Import_kind: + return compiler_import(c, s); + case ImportFrom_kind: + return compiler_from_import(c, s); + case Global_kind: + case Nonlocal_kind: + break; + case Expr_kind: + { + return compiler_stmt_expr(c, LOC(s), s->v.Expr.value); + } + case Pass_kind: + { + ADDOP(c, LOC(s), NOP); + break; + } + case Break_kind: + { + return compiler_break(c, LOC(s)); + } + case Continue_kind: + { + return compiler_continue(c, LOC(s)); + } + case With_kind: + return compiler_with(c, s, 0); + case AsyncFunctionDef_kind: + return compiler_function(c, s, 1); + case AsyncWith_kind: + return compiler_async_with(c, s, 0); + case AsyncFor_kind: + return compiler_async_for(c, s); + } + + return SUCCESS; +} + +static int +unaryop(unaryop_ty op) +{ + switch (op) { + case Invert: + return UNARY_INVERT; + case Not: + return UNARY_NOT; + case USub: + return UNARY_NEGATIVE; + default: + PyErr_Format(PyExc_SystemError, + "unary op %d should not be possible", op); + return 0; + } +} + +static int +addop_binary(struct compiler *c, location loc, operator_ty binop, + bool inplace) +{ + int oparg; + switch (binop) { + case Add: + oparg = inplace ? NB_INPLACE_ADD : NB_ADD; + break; + case Sub: + oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT; + break; + case Mult: + oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY; + break; + case MatMult: + oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY; + break; + case Div: + oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE; + break; + case Mod: + oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER; + break; + case Pow: + oparg = inplace ? NB_INPLACE_POWER : NB_POWER; + break; + case LShift: + oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT; + break; + case RShift: + oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT; + break; + case BitOr: + oparg = inplace ? NB_INPLACE_OR : NB_OR; + break; + case BitXor: + oparg = inplace ? NB_INPLACE_XOR : NB_XOR; + break; + case BitAnd: + oparg = inplace ? NB_INPLACE_AND : NB_AND; + break; + case FloorDiv: + oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE; + break; + default: + PyErr_Format(PyExc_SystemError, "%s op %d should not be possible", + inplace ? "inplace" : "binary", binop); + return ERROR; + } + ADDOP_I(c, loc, BINARY_OP, oparg); + return SUCCESS; +} + + +static int +addop_yield(struct compiler *c, location loc) { + if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) { + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_ASYNC_GEN_WRAP); + } + ADDOP_I(c, loc, YIELD_VALUE, 0); + ADDOP_I(c, loc, RESUME, 1); + return SUCCESS; +} + +static int +compiler_nameop(struct compiler *c, location loc, + identifier name, expr_context_ty ctx) +{ + int op, scope; + Py_ssize_t arg; + enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype; + + PyObject *dict = c->u->u_metadata.u_names; + PyObject *mangled; + + assert(!_PyUnicode_EqualToASCIIString(name, "None") && + !_PyUnicode_EqualToASCIIString(name, "True") && + !_PyUnicode_EqualToASCIIString(name, "False")); + + if (forbidden_name(c, loc, name, ctx)) { + return ERROR; + } + + mangled = _Py_Mangle(c->u->u_private, name); + if (!mangled) { + return ERROR; + } + + op = 0; + optype = OP_NAME; + scope = _PyST_GetScope(c->u->u_ste, mangled); + switch (scope) { + case FREE: + dict = c->u->u_metadata.u_freevars; + optype = OP_DEREF; + break; + case CELL: + dict = c->u->u_metadata.u_cellvars; + optype = OP_DEREF; + break; + case LOCAL: + if (_PyST_IsFunctionLike(c->u->u_ste) || + (PyDict_GetItem(c->u->u_metadata.u_fasthidden, mangled) == Py_True)) + optype = OP_FAST; + break; + case GLOBAL_IMPLICIT: + if (_PyST_IsFunctionLike(c->u->u_ste)) + optype = OP_GLOBAL; + break; + case GLOBAL_EXPLICIT: + optype = OP_GLOBAL; + break; + default: + /* scope can be 0 */ + break; + } + + /* XXX Leave assert here, but handle __doc__ and the like better */ + assert(scope || PyUnicode_READ_CHAR(name, 0) == '_'); + + switch (optype) { + case OP_DEREF: + switch (ctx) { + case Load: + if (c->u->u_ste->ste_type == ClassBlock && !c->u->u_in_inlined_comp) { + op = LOAD_FROM_DICT_OR_DEREF; + // First load the locals + if (codegen_addop_noarg(INSTR_SEQUENCE(c), LOAD_LOCALS, loc) < 0) { + return ERROR; + } + } + else if (c->u->u_ste->ste_can_see_class_scope) { + op = LOAD_FROM_DICT_OR_DEREF; + // First load the classdict + if (compiler_addop_o(c->u, loc, LOAD_DEREF, + c->u->u_metadata.u_freevars, &_Py_ID(__classdict__)) < 0) { + return ERROR; + } + } + else { + op = LOAD_DEREF; + } + break; + case Store: op = STORE_DEREF; break; + case Del: op = DELETE_DEREF; break; + } + break; + case OP_FAST: + switch (ctx) { + case Load: op = LOAD_FAST; break; + case Store: op = STORE_FAST; break; + case Del: op = DELETE_FAST; break; + } + ADDOP_N(c, loc, op, mangled, varnames); + return SUCCESS; + case OP_GLOBAL: + switch (ctx) { + case Load: + if (c->u->u_ste->ste_can_see_class_scope && scope == GLOBAL_IMPLICIT) { + op = LOAD_FROM_DICT_OR_GLOBALS; + // First load the classdict + if (compiler_addop_o(c->u, loc, LOAD_DEREF, + c->u->u_metadata.u_freevars, &_Py_ID(__classdict__)) < 0) { + return ERROR; + } + } else { + op = LOAD_GLOBAL; + } + break; + case Store: op = STORE_GLOBAL; break; + case Del: op = DELETE_GLOBAL; break; + } + break; + case OP_NAME: + switch (ctx) { + case Load: + op = (c->u->u_ste->ste_type == ClassBlock + && c->u->u_in_inlined_comp) + ? LOAD_GLOBAL + : LOAD_NAME; + break; + case Store: op = STORE_NAME; break; + case Del: op = DELETE_NAME; break; + } + break; + } + + assert(op); + arg = dict_add_o(dict, mangled); + Py_DECREF(mangled); + if (arg < 0) { + return ERROR; + } + if (op == LOAD_GLOBAL) { + arg <<= 1; + } + return codegen_addop_i(INSTR_SEQUENCE(c), op, arg, loc); +} + +static int +compiler_boolop(struct compiler *c, expr_ty e) +{ + int jumpi; + Py_ssize_t i, n; + asdl_expr_seq *s; + + location loc = LOC(e); + assert(e->kind == BoolOp_kind); + if (e->v.BoolOp.op == And) + jumpi = POP_JUMP_IF_FALSE; + else + jumpi = POP_JUMP_IF_TRUE; + NEW_JUMP_TARGET_LABEL(c, end); + s = e->v.BoolOp.values; + n = asdl_seq_LEN(s) - 1; + assert(n >= 0); + for (i = 0; i < n; ++i) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i)); + ADDOP_I(c, loc, COPY, 1); + ADDOP_JUMP(c, loc, jumpi, end); + ADDOP(c, loc, POP_TOP); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n)); + + USE_LABEL(c, end); + return SUCCESS; +} + +static int +starunpack_helper(struct compiler *c, location loc, + asdl_expr_seq *elts, int pushed, + int build, int add, int extend, int tuple) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + if (n > 2 && are_all_items_const(elts, 0, n)) { + PyObject *folded = PyTuple_New(n); + if (folded == NULL) { + return ERROR; + } + PyObject *val; + for (Py_ssize_t i = 0; i < n; i++) { + val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value; + PyTuple_SET_ITEM(folded, i, Py_NewRef(val)); + } + if (tuple && !pushed) { + ADDOP_LOAD_CONST_NEW(c, loc, folded); + } else { + if (add == SET_ADD) { + Py_SETREF(folded, PyFrozenSet_New(folded)); + if (folded == NULL) { + return ERROR; + } + } + ADDOP_I(c, loc, build, pushed); + ADDOP_LOAD_CONST_NEW(c, loc, folded); + ADDOP_I(c, loc, extend, 1); + if (tuple) { + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE); + } + } + return SUCCESS; + } + + int big = n+pushed > STACK_USE_GUIDELINE; + int seen_star = 0; + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind) { + seen_star = 1; + break; + } + } + if (!seen_star && !big) { + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + VISIT(c, expr, elt); + } + if (tuple) { + ADDOP_I(c, loc, BUILD_TUPLE, n+pushed); + } else { + ADDOP_I(c, loc, build, n+pushed); + } + return SUCCESS; + } + int sequence_built = 0; + if (big) { + ADDOP_I(c, loc, build, pushed); + sequence_built = 1; + } + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind) { + if (sequence_built == 0) { + ADDOP_I(c, loc, build, i+pushed); + sequence_built = 1; + } + VISIT(c, expr, elt->v.Starred.value); + ADDOP_I(c, loc, extend, 1); + } + else { + VISIT(c, expr, elt); + if (sequence_built) { + ADDOP_I(c, loc, add, 1); + } + } + } + assert(sequence_built); + if (tuple) { + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE); + } + return SUCCESS; +} + +static int +unpack_helper(struct compiler *c, location loc, asdl_expr_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + int seen_star = 0; + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind && !seen_star) { + if ((i >= (1 << 8)) || + (n-i-1 >= (INT_MAX >> 8))) { + return compiler_error(c, loc, + "too many expressions in " + "star-unpacking assignment"); + } + ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8))); + seen_star = 1; + } + else if (elt->kind == Starred_kind) { + return compiler_error(c, loc, + "multiple starred expressions in assignment"); + } + } + if (!seen_star) { + ADDOP_I(c, loc, UNPACK_SEQUENCE, n); + } + return SUCCESS; +} + +static int +assignment_helper(struct compiler *c, location loc, asdl_expr_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + RETURN_IF_ERROR(unpack_helper(c, loc, elts)); + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value); + } + return SUCCESS; +} + +static int +compiler_list(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + asdl_expr_seq *elts = e->v.List.elts; + if (e->v.List.ctx == Store) { + return assignment_helper(c, loc, elts); + } + else if (e->v.List.ctx == Load) { + return starunpack_helper(c, loc, elts, 0, + BUILD_LIST, LIST_APPEND, LIST_EXTEND, 0); + } + else { + VISIT_SEQ(c, expr, elts); + } + return SUCCESS; +} + +static int +compiler_tuple(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + asdl_expr_seq *elts = e->v.Tuple.elts; + if (e->v.Tuple.ctx == Store) { + return assignment_helper(c, loc, elts); + } + else if (e->v.Tuple.ctx == Load) { + return starunpack_helper(c, loc, elts, 0, + BUILD_LIST, LIST_APPEND, LIST_EXTEND, 1); + } + else { + VISIT_SEQ(c, expr, elts); + } + return SUCCESS; +} + +static int +compiler_set(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + return starunpack_helper(c, loc, e->v.Set.elts, 0, + BUILD_SET, SET_ADD, SET_UPDATE, 0); +} + +static bool +are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end) +{ + for (Py_ssize_t i = begin; i < end; i++) { + expr_ty key = (expr_ty)asdl_seq_GET(seq, i); + if (key == NULL || key->kind != Constant_kind) { + return false; + } + } + return true; +} + +static int +compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i, n = end - begin; + PyObject *keys, *key; + int big = n*2 > STACK_USE_GUIDELINE; + location loc = LOC(e); + if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) { + for (i = begin; i < end; i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + } + keys = PyTuple_New(n); + if (keys == NULL) { + return SUCCESS; + } + for (i = begin; i < end; i++) { + key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value; + PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key)); + } + ADDOP_LOAD_CONST_NEW(c, loc, keys); + ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n); + return SUCCESS; + } + if (big) { + ADDOP_I(c, loc, BUILD_MAP, 0); + } + for (i = begin; i < end; i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i)); + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + if (big) { + ADDOP_I(c, loc, MAP_ADD, 1); + } + } + if (!big) { + ADDOP_I(c, loc, BUILD_MAP, n); + } + return SUCCESS; +} + +static int +compiler_dict(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + Py_ssize_t i, n, elements; + int have_dict; + int is_unpacking = 0; + n = asdl_seq_LEN(e->v.Dict.values); + have_dict = 0; + elements = 0; + for (i = 0; i < n; i++) { + is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL; + if (is_unpacking) { + if (elements) { + RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i)); + if (have_dict) { + ADDOP_I(c, loc, DICT_UPDATE, 1); + } + have_dict = 1; + elements = 0; + } + if (have_dict == 0) { + ADDOP_I(c, loc, BUILD_MAP, 0); + have_dict = 1; + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + ADDOP_I(c, loc, DICT_UPDATE, 1); + } + else { + if (elements*2 > STACK_USE_GUIDELINE) { + RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i + 1)); + if (have_dict) { + ADDOP_I(c, loc, DICT_UPDATE, 1); + } + have_dict = 1; + elements = 0; + } + else { + elements++; + } + } + } + if (elements) { + RETURN_IF_ERROR(compiler_subdict(c, e, n - elements, n)); + if (have_dict) { + ADDOP_I(c, loc, DICT_UPDATE, 1); + } + have_dict = 1; + } + if (!have_dict) { + ADDOP_I(c, loc, BUILD_MAP, 0); + } + return SUCCESS; +} + +static int +compiler_compare(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + Py_ssize_t i, n; + + RETURN_IF_ERROR(check_compare(c, e)); + VISIT(c, expr, e->v.Compare.left); + assert(asdl_seq_LEN(e->v.Compare.ops) > 0); + n = asdl_seq_LEN(e->v.Compare.ops) - 1; + if (n == 0) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0)); + ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, 0)); + } + else { + NEW_JUMP_TARGET_LABEL(c, cleanup); + for (i = 0; i < n; i++) { + VISIT(c, expr, + (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + ADDOP_I(c, loc, SWAP, 2); + ADDOP_I(c, loc, COPY, 2); + ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, i)); + ADDOP_I(c, loc, COPY, 1); + ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, cleanup); + ADDOP(c, loc, POP_TOP); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); + ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, n)); + NEW_JUMP_TARGET_LABEL(c, end); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + + USE_LABEL(c, cleanup); + ADDOP_I(c, loc, SWAP, 2); + ADDOP(c, loc, POP_TOP); + + USE_LABEL(c, end); + } + return SUCCESS; +} + +static PyTypeObject * +infer_type(expr_ty e) +{ + switch (e->kind) { + case Tuple_kind: + return &PyTuple_Type; + case List_kind: + case ListComp_kind: + return &PyList_Type; + case Dict_kind: + case DictComp_kind: + return &PyDict_Type; + case Set_kind: + case SetComp_kind: + return &PySet_Type; + case GeneratorExp_kind: + return &PyGen_Type; + case Lambda_kind: + return &PyFunction_Type; + case JoinedStr_kind: + case FormattedValue_kind: + return &PyUnicode_Type; + case Constant_kind: + return Py_TYPE(e->v.Constant.value); + default: + return NULL; + } +} + +static int +check_caller(struct compiler *c, expr_ty e) +{ + switch (e->kind) { + case Constant_kind: + case Tuple_kind: + case List_kind: + case ListComp_kind: + case Dict_kind: + case DictComp_kind: + case Set_kind: + case SetComp_kind: + case GeneratorExp_kind: + case JoinedStr_kind: + case FormattedValue_kind: { + location loc = LOC(e); + return compiler_warn(c, loc, "'%.200s' object is not callable; " + "perhaps you missed a comma?", + infer_type(e)->tp_name); + } + default: + return SUCCESS; + } +} + +static int +check_subscripter(struct compiler *c, expr_ty e) +{ + PyObject *v; + + switch (e->kind) { + case Constant_kind: + v = e->v.Constant.value; + if (!(v == Py_None || v == Py_Ellipsis || + PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) || + PyAnySet_Check(v))) + { + return SUCCESS; + } + /* fall through */ + case Set_kind: + case SetComp_kind: + case GeneratorExp_kind: + case Lambda_kind: { + location loc = LOC(e); + return compiler_warn(c, loc, "'%.200s' object is not subscriptable; " + "perhaps you missed a comma?", + infer_type(e)->tp_name); + } + default: + return SUCCESS; + } +} + +static int +check_index(struct compiler *c, expr_ty e, expr_ty s) +{ + PyObject *v; + + PyTypeObject *index_type = infer_type(s); + if (index_type == NULL + || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS) + || index_type == &PySlice_Type) { + return SUCCESS; + } + + switch (e->kind) { + case Constant_kind: + v = e->v.Constant.value; + if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) { + return SUCCESS; + } + /* fall through */ + case Tuple_kind: + case List_kind: + case ListComp_kind: + case JoinedStr_kind: + case FormattedValue_kind: { + location loc = LOC(e); + return compiler_warn(c, loc, "%.200s indices must be integers " + "or slices, not %.200s; " + "perhaps you missed a comma?", + infer_type(e)->tp_name, + index_type->tp_name); + } + default: + return SUCCESS; + } +} + +static int +is_import_originated(struct compiler *c, expr_ty e) +{ + /* Check whether the global scope has an import named + e, if it is a Name object. For not traversing all the + scope stack every time this function is called, it will + only check the global scope to determine whether something + is imported or not. */ + + if (e->kind != Name_kind) { + return 0; + } + + long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id); + return flags & DEF_IMPORT; +} + +static int +can_optimize_super_call(struct compiler *c, expr_ty attr) +{ + expr_ty e = attr->v.Attribute.value; + if (e->kind != Call_kind || + e->v.Call.func->kind != Name_kind || + !_PyUnicode_EqualToASCIIString(e->v.Call.func->v.Name.id, "super") || + _PyUnicode_EqualToASCIIString(attr->v.Attribute.attr, "__class__") || + asdl_seq_LEN(e->v.Call.keywords) != 0) { + return 0; + } + Py_ssize_t num_args = asdl_seq_LEN(e->v.Call.args); + + PyObject *super_name = e->v.Call.func->v.Name.id; + // detect statically-visible shadowing of 'super' name + int scope = _PyST_GetScope(c->u->u_ste, super_name); + if (scope != GLOBAL_IMPLICIT) { + return 0; + } + scope = _PyST_GetScope(c->c_st->st_top, super_name); + if (scope != 0) { + return 0; + } + + if (num_args == 2) { + for (Py_ssize_t i = 0; i < num_args; i++) { + expr_ty elt = asdl_seq_GET(e->v.Call.args, i); + if (elt->kind == Starred_kind) { + return 0; + } + } + // exactly two non-starred args; we can just load + // the provided args + return 1; + } + + if (num_args != 0) { + return 0; + } + // we need the following for zero-arg super(): + + // enclosing function should have at least one argument + if (c->u->u_metadata.u_argcount == 0 && + c->u->u_metadata.u_posonlyargcount == 0) { + return 0; + } + // __class__ cell should be available + if (get_ref_type(c, &_Py_ID(__class__)) == FREE) { + return 1; + } + return 0; +} + +static int +load_args_for_super(struct compiler *c, expr_ty e) { + location loc = LOC(e); + + // load super() global + PyObject *super_name = e->v.Call.func->v.Name.id; + RETURN_IF_ERROR(compiler_nameop(c, LOC(e->v.Call.func), super_name, Load)); + + if (asdl_seq_LEN(e->v.Call.args) == 2) { + VISIT(c, expr, asdl_seq_GET(e->v.Call.args, 0)); + VISIT(c, expr, asdl_seq_GET(e->v.Call.args, 1)); + return SUCCESS; + } + + // load __class__ cell + PyObject *name = &_Py_ID(__class__); + assert(get_ref_type(c, name) == FREE); + RETURN_IF_ERROR(compiler_nameop(c, loc, name, Load)); + + // load self (first argument) + Py_ssize_t i = 0; + PyObject *key, *value; + if (!PyDict_Next(c->u->u_metadata.u_varnames, &i, &key, &value)) { + return ERROR; + } + RETURN_IF_ERROR(compiler_nameop(c, loc, key, Load)); + + return SUCCESS; +} + +// If an attribute access spans multiple lines, update the current start +// location to point to the attribute name. +static location +update_start_location_to_match_attr(struct compiler *c, location loc, + expr_ty attr) +{ + assert(attr->kind == Attribute_kind); + if (loc.lineno != attr->end_lineno) { + loc.lineno = attr->end_lineno; + int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr); + if (len <= attr->end_col_offset) { + loc.col_offset = attr->end_col_offset - len; + } + else { + // GH-94694: Somebody's compiling weird ASTs. Just drop the columns: + loc.col_offset = -1; + loc.end_col_offset = -1; + } + // Make sure the end position still follows the start position, even for + // weird ASTs: + loc.end_lineno = Py_MAX(loc.lineno, loc.end_lineno); + if (loc.lineno == loc.end_lineno) { + loc.end_col_offset = Py_MAX(loc.col_offset, loc.end_col_offset); + } + } + return loc; +} + +// Return 1 if the method call was optimized, 0 if not, and -1 on error. +static int +maybe_optimize_method_call(struct compiler *c, expr_ty e) +{ + Py_ssize_t argsl, i, kwdsl; + expr_ty meth = e->v.Call.func; + asdl_expr_seq *args = e->v.Call.args; + asdl_keyword_seq *kwds = e->v.Call.keywords; + + /* Check that the call node is an attribute access */ + if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) { + return 0; + } + + /* Check that the base object is not something that is imported */ + if (is_import_originated(c, meth->v.Attribute.value)) { + return 0; + } + + /* Check that there aren't too many arguments */ + argsl = asdl_seq_LEN(args); + kwdsl = asdl_seq_LEN(kwds); + if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) { + return 0; + } + /* Check that there are no *varargs types of arguments. */ + for (i = 0; i < argsl; i++) { + expr_ty elt = asdl_seq_GET(args, i); + if (elt->kind == Starred_kind) { + return 0; + } + } + + for (i = 0; i < kwdsl; i++) { + keyword_ty kw = asdl_seq_GET(kwds, i); + if (kw->arg == NULL) { + return 0; + } + } + + /* Alright, we can optimize the code. */ + location loc = LOC(meth); + + if (can_optimize_super_call(c, meth)) { + RETURN_IF_ERROR(load_args_for_super(c, meth->v.Attribute.value)); + int opcode = asdl_seq_LEN(meth->v.Attribute.value->v.Call.args) ? + LOAD_SUPER_METHOD : LOAD_ZERO_SUPER_METHOD; + ADDOP_NAME(c, loc, opcode, meth->v.Attribute.attr, names); + loc = update_start_location_to_match_attr(c, loc, meth); + ADDOP(c, loc, NOP); + } else { + VISIT(c, expr, meth->v.Attribute.value); + loc = update_start_location_to_match_attr(c, loc, meth); + ADDOP_NAME(c, loc, LOAD_METHOD, meth->v.Attribute.attr, names); + } + + VISIT_SEQ(c, expr, e->v.Call.args); + + if (kwdsl) { + VISIT_SEQ(c, keyword, kwds); + RETURN_IF_ERROR( + compiler_call_simple_kw_helper(c, loc, kwds, kwdsl)); + } + loc = update_start_location_to_match_attr(c, LOC(e), meth); + ADDOP_I(c, loc, CALL, argsl + kwdsl); + return 1; +} + +static int +validate_keywords(struct compiler *c, asdl_keyword_seq *keywords) +{ + Py_ssize_t nkeywords = asdl_seq_LEN(keywords); + for (Py_ssize_t i = 0; i < nkeywords; i++) { + keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i)); + if (key->arg == NULL) { + continue; + } + location loc = LOC(key); + if (forbidden_name(c, loc, key->arg, Store)) { + return ERROR; + } + for (Py_ssize_t j = i + 1; j < nkeywords; j++) { + keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j)); + if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) { + compiler_error(c, LOC(other), "keyword argument repeated: %U", key->arg); + return ERROR; + } + } + } + return SUCCESS; +} + +static int +compiler_call(struct compiler *c, expr_ty e) +{ + RETURN_IF_ERROR(validate_keywords(c, e->v.Call.keywords)); + int ret = maybe_optimize_method_call(c, e); + if (ret < 0) { + return ERROR; + } + if (ret == 1) { + return SUCCESS; + } + RETURN_IF_ERROR(check_caller(c, e->v.Call.func)); + location loc = LOC(e->v.Call.func); + ADDOP(c, loc, PUSH_NULL); + VISIT(c, expr, e->v.Call.func); + loc = LOC(e); + return compiler_call_helper(c, loc, 0, + e->v.Call.args, + e->v.Call.keywords); +} + +static int +compiler_joined_str(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values); + if (value_count > STACK_USE_GUIDELINE) { + _Py_DECLARE_STR(empty, ""); + ADDOP_LOAD_CONST_NEW(c, loc, Py_NewRef(&_Py_STR(empty))); + ADDOP_NAME(c, loc, LOAD_METHOD, &_Py_ID(join), names); + ADDOP_I(c, loc, BUILD_LIST, 0); + for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) { + VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i)); + ADDOP_I(c, loc, LIST_APPEND, 1); + } + ADDOP_I(c, loc, CALL, 1); + } + else { + VISIT_SEQ(c, expr, e->v.JoinedStr.values); + if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) { + ADDOP_I(c, loc, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values)); + } + } + return SUCCESS; +} + +/* Used to implement f-strings. Format a single value. */ +static int +compiler_formatted_value(struct compiler *c, expr_ty e) +{ + /* Our oparg encodes 2 pieces of information: the conversion + character, and whether or not a format_spec was provided. + + Convert the conversion char to 3 bits: + : 000 0x0 FVC_NONE The default if nothing specified. + !s : 001 0x1 FVC_STR + !r : 010 0x2 FVC_REPR + !a : 011 0x3 FVC_ASCII + + next bit is whether or not we have a format spec: + yes : 100 0x4 + no : 000 0x0 + */ + + int conversion = e->v.FormattedValue.conversion; + int oparg; + + /* The expression to be formatted. */ + VISIT(c, expr, e->v.FormattedValue.value); + + switch (conversion) { + case 's': oparg = FVC_STR; break; + case 'r': oparg = FVC_REPR; break; + case 'a': oparg = FVC_ASCII; break; + case -1: oparg = FVC_NONE; break; + default: + PyErr_Format(PyExc_SystemError, + "Unrecognized conversion character %d", conversion); + return ERROR; + } + if (e->v.FormattedValue.format_spec) { + /* Evaluate the format spec, and update our opcode arg. */ + VISIT(c, expr, e->v.FormattedValue.format_spec); + oparg |= FVS_HAVE_SPEC; + } + + /* And push our opcode and oparg */ + location loc = LOC(e); + ADDOP_I(c, loc, FORMAT_VALUE, oparg); + + return SUCCESS; +} + +static int +compiler_subkwargs(struct compiler *c, location loc, + asdl_keyword_seq *keywords, + Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i, n = end - begin; + keyword_ty kw; + PyObject *keys, *key; + assert(n > 0); + int big = n*2 > STACK_USE_GUIDELINE; + if (n > 1 && !big) { + for (i = begin; i < end; i++) { + kw = asdl_seq_GET(keywords, i); + VISIT(c, expr, kw->value); + } + keys = PyTuple_New(n); + if (keys == NULL) { + return ERROR; + } + for (i = begin; i < end; i++) { + key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg; + PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key)); + } + ADDOP_LOAD_CONST_NEW(c, loc, keys); + ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n); + return SUCCESS; + } + if (big) { + ADDOP_I(c, NO_LOCATION, BUILD_MAP, 0); + } + for (i = begin; i < end; i++) { + kw = asdl_seq_GET(keywords, i); + ADDOP_LOAD_CONST(c, loc, kw->arg); + VISIT(c, expr, kw->value); + if (big) { + ADDOP_I(c, NO_LOCATION, MAP_ADD, 1); + } + } + if (!big) { + ADDOP_I(c, loc, BUILD_MAP, n); + } + return SUCCESS; +} + +/* Used by compiler_call_helper and maybe_optimize_method_call to emit + * KW_NAMES before CALL. + */ +static int +compiler_call_simple_kw_helper(struct compiler *c, location loc, + asdl_keyword_seq *keywords, Py_ssize_t nkwelts) +{ + PyObject *names; + names = PyTuple_New(nkwelts); + if (names == NULL) { + return ERROR; + } + for (int i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + PyTuple_SET_ITEM(names, i, Py_NewRef(kw->arg)); + } + Py_ssize_t arg = compiler_add_const(c->c_const_cache, c->u, names); + if (arg < 0) { + return ERROR; + } + Py_DECREF(names); + ADDOP_I(c, loc, KW_NAMES, arg); + return SUCCESS; +} + + +/* shared code between compiler_call and compiler_class */ +static int +compiler_call_helper(struct compiler *c, location loc, + int n, /* Args already pushed */ + asdl_expr_seq *args, + asdl_keyword_seq *keywords) +{ + Py_ssize_t i, nseen, nelts, nkwelts; + + RETURN_IF_ERROR(validate_keywords(c, keywords)); + + nelts = asdl_seq_LEN(args); + nkwelts = asdl_seq_LEN(keywords); + + if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) { + goto ex_call; + } + for (i = 0; i < nelts; i++) { + expr_ty elt = asdl_seq_GET(args, i); + if (elt->kind == Starred_kind) { + goto ex_call; + } + } + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + if (kw->arg == NULL) { + goto ex_call; + } + } + + /* No * or ** args, so can use faster calling sequence */ + for (i = 0; i < nelts; i++) { + expr_ty elt = asdl_seq_GET(args, i); + assert(elt->kind != Starred_kind); + VISIT(c, expr, elt); + } + if (nkwelts) { + VISIT_SEQ(c, keyword, keywords); + RETURN_IF_ERROR( + compiler_call_simple_kw_helper(c, loc, keywords, nkwelts)); + } + ADDOP_I(c, loc, CALL, n + nelts + nkwelts); + return SUCCESS; + +ex_call: + + /* Do positional arguments. */ + if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) { + VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value); + } + else { + RETURN_IF_ERROR(starunpack_helper(c, loc, args, n, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 1)); + } + /* Then keyword arguments */ + if (nkwelts) { + /* Has a new dict been pushed */ + int have_dict = 0; + + nseen = 0; /* the number of keyword arguments on the stack following */ + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + if (kw->arg == NULL) { + /* A keyword argument unpacking. */ + if (nseen) { + RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, i - nseen, i)); + if (have_dict) { + ADDOP_I(c, loc, DICT_MERGE, 1); + } + have_dict = 1; + nseen = 0; + } + if (!have_dict) { + ADDOP_I(c, loc, BUILD_MAP, 0); + have_dict = 1; + } + VISIT(c, expr, kw->value); + ADDOP_I(c, loc, DICT_MERGE, 1); + } + else { + nseen++; + } + } + if (nseen) { + /* Pack up any trailing keyword arguments. */ + RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, nkwelts - nseen, nkwelts)); + if (have_dict) { + ADDOP_I(c, loc, DICT_MERGE, 1); + } + have_dict = 1; + } + assert(have_dict); + } + ADDOP_I(c, loc, CALL_FUNCTION_EX, nkwelts > 0); + return SUCCESS; +} + + +/* List and set comprehensions and generator expressions work by creating a + nested function to perform the actual iteration. This means that the + iteration variables don't leak into the current scope. + The defined function is called immediately following its definition, with the + result of that call being the result of the expression. + The LC/SC version returns the populated container, while the GE version is + flagged in symtable.c as a generator, so it returns the generator object + when the function is called. + + Possible cleanups: + - iterate over the generator sequence instead of using recursion +*/ + + +static int +compiler_comprehension_generator(struct compiler *c, location loc, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type, + int iter_on_stack) +{ + comprehension_ty gen; + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + if (gen->is_async) { + return compiler_async_comprehension_generator( + c, loc, generators, gen_index, depth, elt, val, type, + iter_on_stack); + } else { + return compiler_sync_comprehension_generator( + c, loc, generators, gen_index, depth, elt, val, type, + iter_on_stack); + } +} + +static int +compiler_sync_comprehension_generator(struct compiler *c, location loc, + asdl_comprehension_seq *generators, + int gen_index, int depth, + expr_ty elt, expr_ty val, int type, + int iter_on_stack) +{ + /* generate code for the iterator, then each of the ifs, + and then write to the element */ + + NEW_JUMP_TARGET_LABEL(c, start); + NEW_JUMP_TARGET_LABEL(c, if_cleanup); + NEW_JUMP_TARGET_LABEL(c, anchor); + + comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators, + gen_index); + + if (!iter_on_stack) { + if (gen_index == 0) { + /* Receive outermost iter as an implicit argument */ + c->u->u_metadata.u_argcount = 1; + ADDOP_I(c, loc, LOAD_FAST, 0); + } + else { + /* Sub-iter - calculate on the fly */ + /* Fast path for the temporary variable assignment idiom: + for y in [f(x)] + */ + asdl_expr_seq *elts; + switch (gen->iter->kind) { + case List_kind: + elts = gen->iter->v.List.elts; + break; + case Tuple_kind: + elts = gen->iter->v.Tuple.elts; + break; + default: + elts = NULL; + } + if (asdl_seq_LEN(elts) == 1) { + expr_ty elt = asdl_seq_GET(elts, 0); + if (elt->kind != Starred_kind) { + VISIT(c, expr, elt); + start = NO_LABEL; + } + } + if (IS_LABEL(start)) { + VISIT(c, expr, gen->iter); + ADDOP(c, loc, GET_ITER); + } + } + } + if (IS_LABEL(start)) { + depth++; + USE_LABEL(c, start); + ADDOP_JUMP(c, loc, FOR_ITER, anchor); + } + VISIT(c, expr, gen->target); + + /* XXX this needs to be cleaned up...a lot! */ + Py_ssize_t n = asdl_seq_LEN(gen->ifs); + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); + RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0)); + } + + if (++gen_index < asdl_seq_LEN(generators)) { + RETURN_IF_ERROR( + compiler_comprehension_generator(c, loc, + generators, gen_index, depth, + elt, val, type, 0)); + } + + location elt_loc = LOC(elt); + + /* only append after the last for generator */ + if (gen_index >= asdl_seq_LEN(generators)) { + /* comprehension specific code */ + switch (type) { + case COMP_GENEXP: + VISIT(c, expr, elt); + ADDOP_YIELD(c, elt_loc); + ADDOP(c, elt_loc, POP_TOP); + break; + case COMP_LISTCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1); + break; + case COMP_SETCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, elt_loc, SET_ADD, depth + 1); + break; + case COMP_DICTCOMP: + /* With '{k: v}', k is evaluated before v, so we do + the same. */ + VISIT(c, expr, elt); + VISIT(c, expr, val); + elt_loc = LOCATION(elt->lineno, + val->end_lineno, + elt->col_offset, + val->end_col_offset); + ADDOP_I(c, elt_loc, MAP_ADD, depth + 1); + break; + default: + return ERROR; + } + } + + USE_LABEL(c, if_cleanup); + if (IS_LABEL(start)) { + ADDOP_JUMP(c, elt_loc, JUMP, start); + + USE_LABEL(c, anchor); + ADDOP(c, NO_LOCATION, END_FOR); + } + + return SUCCESS; +} + +static int +compiler_async_comprehension_generator(struct compiler *c, location loc, + asdl_comprehension_seq *generators, + int gen_index, int depth, + expr_ty elt, expr_ty val, int type, + int iter_on_stack) +{ + NEW_JUMP_TARGET_LABEL(c, start); + NEW_JUMP_TARGET_LABEL(c, except); + NEW_JUMP_TARGET_LABEL(c, if_cleanup); + + comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators, + gen_index); + + if (!iter_on_stack) { + if (gen_index == 0) { + /* Receive outermost iter as an implicit argument */ + c->u->u_metadata.u_argcount = 1; + ADDOP_I(c, loc, LOAD_FAST, 0); + } + else { + /* Sub-iter - calculate on the fly */ + VISIT(c, expr, gen->iter); + ADDOP(c, loc, GET_AITER); + } + } + + USE_LABEL(c, start); + /* Runtime will push a block here, so we need to account for that */ + RETURN_IF_ERROR( + compiler_push_fblock(c, loc, ASYNC_COMPREHENSION_GENERATOR, + start, NO_LABEL, NULL)); + + ADDOP_JUMP(c, loc, SETUP_FINALLY, except); + ADDOP(c, loc, GET_ANEXT); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + ADDOP(c, loc, POP_BLOCK); + VISIT(c, expr, gen->target); + + Py_ssize_t n = asdl_seq_LEN(gen->ifs); + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); + RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0)); + } + + depth++; + if (++gen_index < asdl_seq_LEN(generators)) { + RETURN_IF_ERROR( + compiler_comprehension_generator(c, loc, + generators, gen_index, depth, + elt, val, type, 0)); + } + + location elt_loc = LOC(elt); + /* only append after the last for generator */ + if (gen_index >= asdl_seq_LEN(generators)) { + /* comprehension specific code */ + switch (type) { + case COMP_GENEXP: + VISIT(c, expr, elt); + ADDOP_YIELD(c, elt_loc); + ADDOP(c, elt_loc, POP_TOP); + break; + case COMP_LISTCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1); + break; + case COMP_SETCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, elt_loc, SET_ADD, depth + 1); + break; + case COMP_DICTCOMP: + /* With '{k: v}', k is evaluated before v, so we do + the same. */ + VISIT(c, expr, elt); + VISIT(c, expr, val); + elt_loc = LOCATION(elt->lineno, + val->end_lineno, + elt->col_offset, + val->end_col_offset); + ADDOP_I(c, elt_loc, MAP_ADD, depth + 1); + break; + default: + return ERROR; + } + } + + USE_LABEL(c, if_cleanup); + ADDOP_JUMP(c, elt_loc, JUMP, start); + + compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start); + + USE_LABEL(c, except); + + ADDOP(c, loc, END_ASYNC_FOR); + + return SUCCESS; +} + +typedef struct { + PyObject *pushed_locals; + PyObject *temp_symbols; + PyObject *fast_hidden; + jump_target_label cleanup; + jump_target_label end; +} inlined_comprehension_state; + +static int +push_inlined_comprehension_state(struct compiler *c, location loc, + PySTEntryObject *entry, + inlined_comprehension_state *state) +{ + int in_class_block = (c->u->u_ste->ste_type == ClassBlock) && !c->u->u_in_inlined_comp; + c->u->u_in_inlined_comp++; + // iterate over names bound in the comprehension and ensure we isolate + // them from the outer scope as needed + PyObject *k, *v; + Py_ssize_t pos = 0; + while (PyDict_Next(entry->ste_symbols, &pos, &k, &v)) { + assert(PyLong_Check(v)); + long symbol = PyLong_AS_LONG(v); + // only values bound in the comprehension (DEF_LOCAL) need to be handled + // at all; DEF_LOCAL | DEF_NONLOCAL can occur in the case of an + // assignment expression to a nonlocal in the comprehension, these don't + // need handling here since they shouldn't be isolated + if ((symbol & DEF_LOCAL && !(symbol & DEF_NONLOCAL)) || in_class_block) { + if (!_PyST_IsFunctionLike(c->u->u_ste)) { + // non-function scope: override this name to use fast locals + PyObject *orig = PyDict_GetItem(c->u->u_metadata.u_fasthidden, k); + if (orig != Py_True) { + if (PyDict_SetItem(c->u->u_metadata.u_fasthidden, k, Py_True) < 0) { + return ERROR; + } + if (state->fast_hidden == NULL) { + state->fast_hidden = PySet_New(NULL); + if (state->fast_hidden == NULL) { + return ERROR; + } + } + if (PySet_Add(state->fast_hidden, k) < 0) { + return ERROR; + } + } + } + long scope = (symbol >> SCOPE_OFFSET) & SCOPE_MASK; + PyObject *outv = PyDict_GetItemWithError(c->u->u_ste->ste_symbols, k); + if (outv == NULL) { + outv = _PyLong_GetZero(); + } + assert(PyLong_Check(outv)); + long outsc = (PyLong_AS_LONG(outv) >> SCOPE_OFFSET) & SCOPE_MASK; + if (scope != outsc && !(scope == CELL && outsc == FREE)) { + // If a name has different scope inside than outside the + // comprehension, we need to temporarily handle it with the + // right scope while compiling the comprehension. (If it's free + // in outer scope and cell in inner scope, we can't treat it as + // both cell and free in the same function, but treating it as + // free throughout is fine; it's *_DEREF either way.) + + if (state->temp_symbols == NULL) { + state->temp_symbols = PyDict_New(); + if (state->temp_symbols == NULL) { + return ERROR; + } + } + // update the symbol to the in-comprehension version and save + // the outer version; we'll restore it after running the + // comprehension + Py_INCREF(outv); + if (PyDict_SetItem(c->u->u_ste->ste_symbols, k, v) < 0) { + Py_DECREF(outv); + return ERROR; + } + if (PyDict_SetItem(state->temp_symbols, k, outv) < 0) { + Py_DECREF(outv); + return ERROR; + } + Py_DECREF(outv); + } + // local names bound in comprehension must be isolated from + // outer scope; push existing value (which may be NULL if + // not defined) on stack + if (state->pushed_locals == NULL) { + state->pushed_locals = PyList_New(0); + if (state->pushed_locals == NULL) { + return ERROR; + } + } + // in the case of a cell, this will actually push the cell + // itself to the stack, then we'll create a new one for the + // comprehension and restore the original one after + ADDOP_NAME(c, loc, LOAD_FAST_AND_CLEAR, k, varnames); + if (scope == CELL) { + if (outsc == FREE) { + ADDOP_NAME(c, loc, MAKE_CELL, k, freevars); + } else { + ADDOP_NAME(c, loc, MAKE_CELL, k, cellvars); + } + } + if (PyList_Append(state->pushed_locals, k) < 0) { + return ERROR; + } + } + } + if (state->pushed_locals) { + // Outermost iterable expression was already evaluated and is on the + // stack, we need to swap it back to TOS. This also rotates the order of + // `pushed_locals` on the stack, but this will be reversed when we swap + // out the comprehension result in pop_inlined_comprehension_state + ADDOP_I(c, loc, SWAP, PyList_GET_SIZE(state->pushed_locals) + 1); + + // Add our own cleanup handler to restore comprehension locals in case + // of exception, so they have the correct values inside an exception + // handler or finally block. + NEW_JUMP_TARGET_LABEL(c, cleanup); + state->cleanup = cleanup; + NEW_JUMP_TARGET_LABEL(c, end); + state->end = end; + + // no need to push an fblock for this "virtual" try/finally; there can't + // be return/continue/break inside a comprehension + ADDOP_JUMP(c, loc, SETUP_FINALLY, cleanup); + } + + return SUCCESS; +} + +static int +restore_inlined_comprehension_locals(struct compiler *c, location loc, + inlined_comprehension_state state) +{ + PyObject *k; + // pop names we pushed to stack earlier + Py_ssize_t npops = PyList_GET_SIZE(state.pushed_locals); + // Preserve the comprehension result (or exception) as TOS. This + // reverses the SWAP we did in push_inlined_comprehension_state to get + // the outermost iterable to TOS, so we can still just iterate + // pushed_locals in simple reverse order + ADDOP_I(c, loc, SWAP, npops + 1); + for (Py_ssize_t i = npops - 1; i >= 0; --i) { + k = PyList_GetItem(state.pushed_locals, i); + if (k == NULL) { + return ERROR; + } + ADDOP_NAME(c, loc, STORE_FAST_MAYBE_NULL, k, varnames); + } + return SUCCESS; +} + +static int +pop_inlined_comprehension_state(struct compiler *c, location loc, + inlined_comprehension_state state) +{ + c->u->u_in_inlined_comp--; + PyObject *k, *v; + Py_ssize_t pos = 0; + if (state.temp_symbols) { + while (PyDict_Next(state.temp_symbols, &pos, &k, &v)) { + if (PyDict_SetItem(c->u->u_ste->ste_symbols, k, v)) { + return ERROR; + } + } + Py_CLEAR(state.temp_symbols); + } + if (state.pushed_locals) { + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP_JUMP(c, NO_LOCATION, JUMP, state.end); + + // cleanup from an exception inside the comprehension + USE_LABEL(c, state.cleanup); + // discard incomplete comprehension result (beneath exc on stack) + ADDOP_I(c, NO_LOCATION, SWAP, 2); + ADDOP(c, NO_LOCATION, POP_TOP); + if (restore_inlined_comprehension_locals(c, loc, state) < 0) { + return ERROR; + } + ADDOP_I(c, NO_LOCATION, RERAISE, 0); + + USE_LABEL(c, state.end); + if (restore_inlined_comprehension_locals(c, loc, state) < 0) { + return ERROR; + } + Py_CLEAR(state.pushed_locals); + } + if (state.fast_hidden) { + while (PySet_Size(state.fast_hidden) > 0) { + PyObject *k = PySet_Pop(state.fast_hidden); + if (k == NULL) { + return ERROR; + } + // we set to False instead of clearing, so we can track which names + // were temporarily fast-locals and should use CO_FAST_HIDDEN + if (PyDict_SetItem(c->u->u_metadata.u_fasthidden, k, Py_False)) { + Py_DECREF(k); + return ERROR; + } + Py_DECREF(k); + } + Py_CLEAR(state.fast_hidden); + } + return SUCCESS; +} + +static inline int +compiler_comprehension_iter(struct compiler *c, location loc, + comprehension_ty comp) +{ + VISIT(c, expr, comp->iter); + if (comp->is_async) { + ADDOP(c, loc, GET_AITER); + } + else { + ADDOP(c, loc, GET_ITER); + } + return SUCCESS; +} + +static int +compiler_comprehension(struct compiler *c, expr_ty e, int type, + identifier name, asdl_comprehension_seq *generators, expr_ty elt, + expr_ty val) +{ + PyCodeObject *co = NULL; + inlined_comprehension_state inline_state = {NULL, NULL, NULL, NO_LABEL, NO_LABEL}; + comprehension_ty outermost; + int scope_type = c->u->u_scope_type; + int is_top_level_await = IS_TOP_LEVEL_AWAIT(c); + PySTEntryObject *entry = PySymtable_Lookup(c->c_st, (void *)e); + if (entry == NULL) { + goto error; + } + int is_inlined = entry->ste_comp_inlined; + int is_async_generator = entry->ste_coroutine; + + location loc = LOC(e); + + outermost = (comprehension_ty) asdl_seq_GET(generators, 0); + if (is_inlined) { + if (compiler_comprehension_iter(c, loc, outermost)) { + goto error; + } + if (push_inlined_comprehension_state(c, loc, entry, &inline_state)) { + goto error; + } + } + else { + if (compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION, + (void *)e, e->lineno) < 0) + { + goto error; + } + } + Py_CLEAR(entry); + + if (is_async_generator && type != COMP_GENEXP && + scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && + scope_type != COMPILER_SCOPE_COMPREHENSION && + !is_top_level_await) + { + compiler_error(c, loc, "asynchronous comprehension outside of " + "an asynchronous function"); + goto error_in_scope; + } + + if (type != COMP_GENEXP) { + int op; + switch (type) { + case COMP_LISTCOMP: + op = BUILD_LIST; + break; + case COMP_SETCOMP: + op = BUILD_SET; + break; + case COMP_DICTCOMP: + op = BUILD_MAP; + break; + default: + PyErr_Format(PyExc_SystemError, + "unknown comprehension type %d", type); + goto error_in_scope; + } + + ADDOP_I(c, loc, op, 0); + if (is_inlined) { + ADDOP_I(c, loc, SWAP, 2); + } + } + + if (compiler_comprehension_generator(c, loc, generators, 0, 0, + elt, val, type, is_inlined) < 0) { + goto error_in_scope; + } + + if (is_inlined) { + if (pop_inlined_comprehension_state(c, loc, inline_state)) { + goto error; + } + return SUCCESS; + } + + if (type != COMP_GENEXP) { + ADDOP(c, LOC(e), RETURN_VALUE); + } + if (type == COMP_GENEXP) { + if (wrap_in_stopiteration_handler(c) < 0) { + goto error_in_scope; + } + } + + co = optimize_and_assemble(c, 1); + compiler_exit_scope(c); + if (is_top_level_await && is_async_generator){ + c->u->u_ste->ste_coroutine = 1; + } + if (co == NULL) { + goto error; + } + + loc = LOC(e); + if (compiler_make_closure(c, loc, co, 0) < 0) { + goto error; + } + Py_CLEAR(co); + + if (compiler_comprehension_iter(c, loc, outermost)) { + goto error; + } + + ADDOP_I(c, loc, CALL, 0); + + if (is_async_generator && type != COMP_GENEXP) { + ADDOP_I(c, loc, GET_AWAITABLE, 0); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + } + + return SUCCESS; +error_in_scope: + if (!is_inlined) { + compiler_exit_scope(c); + } +error: + Py_XDECREF(co); + Py_XDECREF(entry); + Py_XDECREF(inline_state.pushed_locals); + Py_XDECREF(inline_state.temp_symbols); + Py_XDECREF(inline_state.fast_hidden); + return ERROR; +} + +static int +compiler_genexp(struct compiler *c, expr_ty e) +{ + assert(e->kind == GeneratorExp_kind); + _Py_DECLARE_STR(anon_genexpr, "<genexpr>"); + return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr), + e->v.GeneratorExp.generators, + e->v.GeneratorExp.elt, NULL); +} + +static int +compiler_listcomp(struct compiler *c, expr_ty e) +{ + assert(e->kind == ListComp_kind); + _Py_DECLARE_STR(anon_listcomp, "<listcomp>"); + return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp), + e->v.ListComp.generators, + e->v.ListComp.elt, NULL); +} + +static int +compiler_setcomp(struct compiler *c, expr_ty e) +{ + assert(e->kind == SetComp_kind); + _Py_DECLARE_STR(anon_setcomp, "<setcomp>"); + return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp), + e->v.SetComp.generators, + e->v.SetComp.elt, NULL); +} + + +static int +compiler_dictcomp(struct compiler *c, expr_ty e) +{ + assert(e->kind == DictComp_kind); + _Py_DECLARE_STR(anon_dictcomp, "<dictcomp>"); + return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp), + e->v.DictComp.generators, + e->v.DictComp.key, e->v.DictComp.value); +} + + +static int +compiler_visit_keyword(struct compiler *c, keyword_ty k) +{ + VISIT(c, expr, k->value); + return SUCCESS; +} + + +static int +compiler_with_except_finish(struct compiler *c, jump_target_label cleanup) { + NEW_JUMP_TARGET_LABEL(c, suppress); + ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_TRUE, suppress); + ADDOP_I(c, NO_LOCATION, RERAISE, 2); + + USE_LABEL(c, suppress); + ADDOP(c, NO_LOCATION, POP_TOP); /* exc_value */ + ADDOP(c, NO_LOCATION, POP_BLOCK); + ADDOP(c, NO_LOCATION, POP_EXCEPT); + ADDOP(c, NO_LOCATION, POP_TOP); + ADDOP(c, NO_LOCATION, POP_TOP); + NEW_JUMP_TARGET_LABEL(c, exit); + ADDOP_JUMP(c, NO_LOCATION, JUMP, exit); + + USE_LABEL(c, cleanup); + POP_EXCEPT_AND_RERAISE(c, NO_LOCATION); + + USE_LABEL(c, exit); + return SUCCESS; +} + +/* + Implements the async with statement. + + The semantics outlined in that PEP are as follows: + + async with EXPR as VAR: + BLOCK + + It is implemented roughly as: + + context = EXPR + exit = context.__aexit__ # not calling it + value = await context.__aenter__() + try: + VAR = value # if VAR present in the syntax + BLOCK + finally: + if an exception was raised: + exc = copy of (exception, instance, traceback) + else: + exc = (None, None, None) + if not (await exit(*exc)): + raise + */ +static int +compiler_async_with(struct compiler *c, stmt_ty s, int pos) +{ + location loc = LOC(s); + withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos); + + assert(s->kind == AsyncWith_kind); + if (IS_TOP_LEVEL_AWAIT(c)){ + c->u->u_ste->ste_coroutine = 1; + } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){ + return compiler_error(c, loc, "'async with' outside async function"); + } + + NEW_JUMP_TARGET_LABEL(c, block); + NEW_JUMP_TARGET_LABEL(c, final); + NEW_JUMP_TARGET_LABEL(c, exit); + NEW_JUMP_TARGET_LABEL(c, cleanup); + + /* Evaluate EXPR */ + VISIT(c, expr, item->context_expr); + + ADDOP(c, loc, BEFORE_ASYNC_WITH); + ADDOP_I(c, loc, GET_AWAITABLE, 1); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + + ADDOP_JUMP(c, loc, SETUP_WITH, final); + + /* SETUP_WITH pushes a finally block. */ + USE_LABEL(c, block); + RETURN_IF_ERROR(compiler_push_fblock(c, loc, ASYNC_WITH, block, final, s)); + + if (item->optional_vars) { + VISIT(c, expr, item->optional_vars); + } + else { + /* Discard result from context.__aenter__() */ + ADDOP(c, loc, POP_TOP); + } + + pos++; + if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) { + /* BLOCK code */ + VISIT_SEQ(c, stmt, s->v.AsyncWith.body) + } + else { + RETURN_IF_ERROR(compiler_async_with(c, s, pos)); + } + + compiler_pop_fblock(c, ASYNC_WITH, block); + + ADDOP(c, loc, POP_BLOCK); + /* End of body; start the cleanup */ + + /* For successful outcome: + * call __exit__(None, None, None) + */ + RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc)); + ADDOP_I(c, loc, GET_AWAITABLE, 2); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + + ADDOP(c, loc, POP_TOP); + + ADDOP_JUMP(c, loc, JUMP, exit); + + /* For exceptional outcome: */ + USE_LABEL(c, final); + + ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup); + ADDOP(c, loc, PUSH_EXC_INFO); + ADDOP(c, loc, WITH_EXCEPT_START); + ADDOP_I(c, loc, GET_AWAITABLE, 2); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup)); + + USE_LABEL(c, exit); + return SUCCESS; +} + + +/* + Implements the with statement from PEP 343. + with EXPR as VAR: + BLOCK + is implemented as: + <code for EXPR> + SETUP_WITH E + <code to store to VAR> or POP_TOP + <code for BLOCK> + LOAD_CONST (None, None, None) + CALL_FUNCTION_EX 0 + JUMP EXIT + E: WITH_EXCEPT_START (calls EXPR.__exit__) + POP_JUMP_IF_TRUE T: + RERAISE + T: POP_TOP (remove exception from stack) + POP_EXCEPT + POP_TOP + EXIT: + */ + +static int +compiler_with(struct compiler *c, stmt_ty s, int pos) +{ + withitem_ty item = asdl_seq_GET(s->v.With.items, pos); + + assert(s->kind == With_kind); + + NEW_JUMP_TARGET_LABEL(c, block); + NEW_JUMP_TARGET_LABEL(c, final); + NEW_JUMP_TARGET_LABEL(c, exit); + NEW_JUMP_TARGET_LABEL(c, cleanup); + + /* Evaluate EXPR */ + VISIT(c, expr, item->context_expr); + /* Will push bound __exit__ */ + location loc = LOC(s); + ADDOP(c, loc, BEFORE_WITH); + ADDOP_JUMP(c, loc, SETUP_WITH, final); + + /* SETUP_WITH pushes a finally block. */ + USE_LABEL(c, block); + RETURN_IF_ERROR(compiler_push_fblock(c, loc, WITH, block, final, s)); + + if (item->optional_vars) { + VISIT(c, expr, item->optional_vars); + } + else { + /* Discard result from context.__enter__() */ + ADDOP(c, loc, POP_TOP); + } + + pos++; + if (pos == asdl_seq_LEN(s->v.With.items)) { + /* BLOCK code */ + VISIT_SEQ(c, stmt, s->v.With.body) + } + else { + RETURN_IF_ERROR(compiler_with(c, s, pos)); + } + + ADDOP(c, NO_LOCATION, POP_BLOCK); + compiler_pop_fblock(c, WITH, block); + + /* End of body; start the cleanup. */ + + /* For successful outcome: + * call __exit__(None, None, None) + */ + loc = LOC(s); + RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc)); + ADDOP(c, loc, POP_TOP); + ADDOP_JUMP(c, loc, JUMP, exit); + + /* For exceptional outcome: */ + USE_LABEL(c, final); + + ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup); + ADDOP(c, loc, PUSH_EXC_INFO); + ADDOP(c, loc, WITH_EXCEPT_START); + RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup)); + + USE_LABEL(c, exit); + return SUCCESS; +} + +static int +compiler_visit_expr1(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + switch (e->kind) { + case NamedExpr_kind: + VISIT(c, expr, e->v.NamedExpr.value); + ADDOP_I(c, loc, COPY, 1); + VISIT(c, expr, e->v.NamedExpr.target); + break; + case BoolOp_kind: + return compiler_boolop(c, e); + case BinOp_kind: + VISIT(c, expr, e->v.BinOp.left); + VISIT(c, expr, e->v.BinOp.right); + ADDOP_BINARY(c, loc, e->v.BinOp.op); + break; + case UnaryOp_kind: + VISIT(c, expr, e->v.UnaryOp.operand); + if (e->v.UnaryOp.op == UAdd) { + ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_UNARY_POSITIVE); + } + else { + ADDOP(c, loc, unaryop(e->v.UnaryOp.op)); + } + break; + case Lambda_kind: + return compiler_lambda(c, e); + case IfExp_kind: + return compiler_ifexp(c, e); + case Dict_kind: + return compiler_dict(c, e); + case Set_kind: + return compiler_set(c, e); + case GeneratorExp_kind: + return compiler_genexp(c, e); + case ListComp_kind: + return compiler_listcomp(c, e); + case SetComp_kind: + return compiler_setcomp(c, e); + case DictComp_kind: + return compiler_dictcomp(c, e); + case Yield_kind: + if (!_PyST_IsFunctionLike(c->u->u_ste)) { + return compiler_error(c, loc, "'yield' outside function"); + } + if (e->v.Yield.value) { + VISIT(c, expr, e->v.Yield.value); + } + else { + ADDOP_LOAD_CONST(c, loc, Py_None); + } + ADDOP_YIELD(c, loc); + break; + case YieldFrom_kind: + if (!_PyST_IsFunctionLike(c->u->u_ste)) { + return compiler_error(c, loc, "'yield' outside function"); + } + if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) { + return compiler_error(c, loc, "'yield from' inside async function"); + } + VISIT(c, expr, e->v.YieldFrom.value); + ADDOP(c, loc, GET_YIELD_FROM_ITER); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 0); + break; + case Await_kind: + if (!IS_TOP_LEVEL_AWAIT(c)){ + if (!_PyST_IsFunctionLike(c->u->u_ste)) { + return compiler_error(c, loc, "'await' outside function"); + } + + if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && + c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION) { + return compiler_error(c, loc, "'await' outside async function"); + } + } + + VISIT(c, expr, e->v.Await.value); + ADDOP_I(c, loc, GET_AWAITABLE, 0); + ADDOP_LOAD_CONST(c, loc, Py_None); + ADD_YIELD_FROM(c, loc, 1); + break; + case Compare_kind: + return compiler_compare(c, e); + case Call_kind: + return compiler_call(c, e); + case Constant_kind: + ADDOP_LOAD_CONST(c, loc, e->v.Constant.value); + break; + case JoinedStr_kind: + return compiler_joined_str(c, e); + case FormattedValue_kind: + return compiler_formatted_value(c, e); + /* The following exprs can be assignment targets. */ + case Attribute_kind: + if (e->v.Attribute.ctx == Load && can_optimize_super_call(c, e)) { + RETURN_IF_ERROR(load_args_for_super(c, e->v.Attribute.value)); + int opcode = asdl_seq_LEN(e->v.Attribute.value->v.Call.args) ? + LOAD_SUPER_ATTR : LOAD_ZERO_SUPER_ATTR; + ADDOP_NAME(c, loc, opcode, e->v.Attribute.attr, names); + loc = update_start_location_to_match_attr(c, loc, e); + ADDOP(c, loc, NOP); + return SUCCESS; + } + VISIT(c, expr, e->v.Attribute.value); + loc = LOC(e); + loc = update_start_location_to_match_attr(c, loc, e); + switch (e->v.Attribute.ctx) { + case Load: + ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names); + break; + case Store: + if (forbidden_name(c, loc, e->v.Attribute.attr, e->v.Attribute.ctx)) { + return ERROR; + } + ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names); + break; + case Del: + ADDOP_NAME(c, loc, DELETE_ATTR, e->v.Attribute.attr, names); + break; + } + break; + case Subscript_kind: + return compiler_subscript(c, e); + case Starred_kind: + switch (e->v.Starred.ctx) { + case Store: + /* In all legitimate cases, the Starred node was already replaced + * by compiler_list/compiler_tuple. XXX: is that okay? */ + return compiler_error(c, loc, + "starred assignment target must be in a list or tuple"); + default: + return compiler_error(c, loc, + "can't use starred expression here"); + } + break; + case Slice_kind: + { + int n = compiler_slice(c, e); + RETURN_IF_ERROR(n); + ADDOP_I(c, loc, BUILD_SLICE, n); + break; + } + case Name_kind: + return compiler_nameop(c, loc, e->v.Name.id, e->v.Name.ctx); + /* child nodes of List and Tuple will have expr_context set */ + case List_kind: + return compiler_list(c, e); + case Tuple_kind: + return compiler_tuple(c, e); + } + return SUCCESS; +} + +static int +compiler_visit_expr(struct compiler *c, expr_ty e) +{ + int res = compiler_visit_expr1(c, e); + return res; +} + +static bool +is_two_element_slice(expr_ty s) +{ + return s->kind == Slice_kind && + s->v.Slice.step == NULL; +} + +static int +compiler_augassign(struct compiler *c, stmt_ty s) +{ + assert(s->kind == AugAssign_kind); + expr_ty e = s->v.AugAssign.target; + + location loc = LOC(e); + + switch (e->kind) { + case Attribute_kind: + VISIT(c, expr, e->v.Attribute.value); + ADDOP_I(c, loc, COPY, 1); + loc = update_start_location_to_match_attr(c, loc, e); + ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names); + break; + case Subscript_kind: + VISIT(c, expr, e->v.Subscript.value); + if (is_two_element_slice(e->v.Subscript.slice)) { + RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice)); + ADDOP_I(c, loc, COPY, 3); + ADDOP_I(c, loc, COPY, 3); + ADDOP_I(c, loc, COPY, 3); + ADDOP(c, loc, BINARY_SLICE); + } + else { + VISIT(c, expr, e->v.Subscript.slice); + ADDOP_I(c, loc, COPY, 2); + ADDOP_I(c, loc, COPY, 2); + ADDOP(c, loc, BINARY_SUBSCR); + } + break; + case Name_kind: + RETURN_IF_ERROR(compiler_nameop(c, loc, e->v.Name.id, Load)); + break; + default: + PyErr_Format(PyExc_SystemError, + "invalid node type (%d) for augmented assignment", + e->kind); + return ERROR; + } + + loc = LOC(s); + + VISIT(c, expr, s->v.AugAssign.value); + ADDOP_INPLACE(c, loc, s->v.AugAssign.op); + + loc = LOC(e); + + switch (e->kind) { + case Attribute_kind: + loc = update_start_location_to_match_attr(c, loc, e); + ADDOP_I(c, loc, SWAP, 2); + ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names); + break; + case Subscript_kind: + if (is_two_element_slice(e->v.Subscript.slice)) { + ADDOP_I(c, loc, SWAP, 4); + ADDOP_I(c, loc, SWAP, 3); + ADDOP_I(c, loc, SWAP, 2); + ADDOP(c, loc, STORE_SLICE); + } + else { + ADDOP_I(c, loc, SWAP, 3); + ADDOP_I(c, loc, SWAP, 2); + ADDOP(c, loc, STORE_SUBSCR); + } + break; + case Name_kind: + return compiler_nameop(c, loc, e->v.Name.id, Store); + default: + Py_UNREACHABLE(); + } + return SUCCESS; +} + +static int +check_ann_expr(struct compiler *c, expr_ty e) +{ + VISIT(c, expr, e); + ADDOP(c, LOC(e), POP_TOP); + return SUCCESS; +} + +static int +check_annotation(struct compiler *c, stmt_ty s) +{ + /* Annotations of complex targets does not produce anything + under annotations future */ + if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) { + return SUCCESS; + } + + /* Annotations are only evaluated in a module or class. */ + if (c->u->u_scope_type == COMPILER_SCOPE_MODULE || + c->u->u_scope_type == COMPILER_SCOPE_CLASS) { + return check_ann_expr(c, s->v.AnnAssign.annotation); + } + return SUCCESS; +} + +static int +check_ann_subscr(struct compiler *c, expr_ty e) +{ + /* We check that everything in a subscript is defined at runtime. */ + switch (e->kind) { + case Slice_kind: + if (e->v.Slice.lower && check_ann_expr(c, e->v.Slice.lower) < 0) { + return ERROR; + } + if (e->v.Slice.upper && check_ann_expr(c, e->v.Slice.upper) < 0) { + return ERROR; + } + if (e->v.Slice.step && check_ann_expr(c, e->v.Slice.step) < 0) { + return ERROR; + } + return SUCCESS; + case Tuple_kind: { + /* extended slice */ + asdl_expr_seq *elts = e->v.Tuple.elts; + Py_ssize_t i, n = asdl_seq_LEN(elts); + for (i = 0; i < n; i++) { + RETURN_IF_ERROR(check_ann_subscr(c, asdl_seq_GET(elts, i))); + } + return SUCCESS; + } + default: + return check_ann_expr(c, e); + } +} + +static int +compiler_annassign(struct compiler *c, stmt_ty s) +{ + location loc = LOC(s); + expr_ty targ = s->v.AnnAssign.target; + PyObject* mangled; + + assert(s->kind == AnnAssign_kind); + + /* We perform the actual assignment first. */ + if (s->v.AnnAssign.value) { + VISIT(c, expr, s->v.AnnAssign.value); + VISIT(c, expr, targ); + } + switch (targ->kind) { + case Name_kind: + if (forbidden_name(c, loc, targ->v.Name.id, Store)) { + return ERROR; + } + /* If we have a simple name in a module or class, store annotation. */ + if (s->v.AnnAssign.simple && + (c->u->u_scope_type == COMPILER_SCOPE_MODULE || + c->u->u_scope_type == COMPILER_SCOPE_CLASS)) { + if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) { + VISIT(c, annexpr, s->v.AnnAssign.annotation) + } + else { + VISIT(c, expr, s->v.AnnAssign.annotation); + } + ADDOP_NAME(c, loc, LOAD_NAME, &_Py_ID(__annotations__), names); + mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id); + ADDOP_LOAD_CONST_NEW(c, loc, mangled); + ADDOP(c, loc, STORE_SUBSCR); + } + break; + case Attribute_kind: + if (forbidden_name(c, loc, targ->v.Attribute.attr, Store)) { + return ERROR; + } + if (!s->v.AnnAssign.value && + check_ann_expr(c, targ->v.Attribute.value) < 0) { + return ERROR; + } + break; + case Subscript_kind: + if (!s->v.AnnAssign.value && + (check_ann_expr(c, targ->v.Subscript.value) < 0 || + check_ann_subscr(c, targ->v.Subscript.slice) < 0)) { + return ERROR; + } + break; + default: + PyErr_Format(PyExc_SystemError, + "invalid node type (%d) for annotated assignment", + targ->kind); + return ERROR; + } + /* Annotation is evaluated last. */ + if (!s->v.AnnAssign.simple && check_annotation(c, s) < 0) { + return ERROR; + } + return SUCCESS; +} + +/* Raises a SyntaxError and returns 0. + If something goes wrong, a different exception may be raised. +*/ + +static int +compiler_error(struct compiler *c, location loc, + const char *format, ...) +{ + va_list vargs; + va_start(vargs, format); + PyObject *msg = PyUnicode_FromFormatV(format, vargs); + va_end(vargs); + if (msg == NULL) { + return ERROR; + } + PyObject *loc_obj = PyErr_ProgramTextObject(c->c_filename, loc.lineno); + if (loc_obj == NULL) { + loc_obj = Py_NewRef(Py_None); + } + PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename, + loc.lineno, loc.col_offset + 1, loc_obj, + loc.end_lineno, loc.end_col_offset + 1); + Py_DECREF(msg); + if (args == NULL) { + goto exit; + } + PyErr_SetObject(PyExc_SyntaxError, args); + exit: + Py_DECREF(loc_obj); + Py_XDECREF(args); + return ERROR; +} + +/* Emits a SyntaxWarning and returns 1 on success. + If a SyntaxWarning raised as error, replaces it with a SyntaxError + and returns 0. +*/ +static int +compiler_warn(struct compiler *c, location loc, + const char *format, ...) +{ + va_list vargs; + va_start(vargs, format); + PyObject *msg = PyUnicode_FromFormatV(format, vargs); + va_end(vargs); + if (msg == NULL) { + return ERROR; + } + if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename, + loc.lineno, NULL, NULL) < 0) + { + if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) { + /* Replace the SyntaxWarning exception with a SyntaxError + to get a more accurate error report */ + PyErr_Clear(); + assert(PyUnicode_AsUTF8(msg) != NULL); + compiler_error(c, loc, PyUnicode_AsUTF8(msg)); + } + Py_DECREF(msg); + return ERROR; + } + Py_DECREF(msg); + return SUCCESS; +} + +static int +compiler_subscript(struct compiler *c, expr_ty e) +{ + location loc = LOC(e); + expr_context_ty ctx = e->v.Subscript.ctx; + int op = 0; + + if (ctx == Load) { + RETURN_IF_ERROR(check_subscripter(c, e->v.Subscript.value)); + RETURN_IF_ERROR(check_index(c, e->v.Subscript.value, e->v.Subscript.slice)); + } + + VISIT(c, expr, e->v.Subscript.value); + if (is_two_element_slice(e->v.Subscript.slice) && ctx != Del) { + RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice)); + if (ctx == Load) { + ADDOP(c, loc, BINARY_SLICE); + } + else { + assert(ctx == Store); + ADDOP(c, loc, STORE_SLICE); + } + } + else { + VISIT(c, expr, e->v.Subscript.slice); + switch (ctx) { + case Load: op = BINARY_SUBSCR; break; + case Store: op = STORE_SUBSCR; break; + case Del: op = DELETE_SUBSCR; break; + } + assert(op); + ADDOP(c, loc, op); + } + return SUCCESS; +} + +/* Returns the number of the values emitted, + * thus are needed to build the slice, or -1 if there is an error. */ +static int +compiler_slice(struct compiler *c, expr_ty s) +{ + int n = 2; + assert(s->kind == Slice_kind); + + /* only handles the cases where BUILD_SLICE is emitted */ + if (s->v.Slice.lower) { + VISIT(c, expr, s->v.Slice.lower); + } + else { + ADDOP_LOAD_CONST(c, LOC(s), Py_None); + } + + if (s->v.Slice.upper) { + VISIT(c, expr, s->v.Slice.upper); + } + else { + ADDOP_LOAD_CONST(c, LOC(s), Py_None); + } + + if (s->v.Slice.step) { + n++; + VISIT(c, expr, s->v.Slice.step); + } + return n; +} + + +// PEP 634: Structural Pattern Matching + +// To keep things simple, all compiler_pattern_* and pattern_helper_* routines +// follow the convention of consuming TOS (the subject for the given pattern) +// and calling jump_to_fail_pop on failure (no match). + +// When calling into these routines, it's important that pc->on_top be kept +// updated to reflect the current number of items that we are using on the top +// of the stack: they will be popped on failure, and any name captures will be +// stored *underneath* them on success. This lets us defer all names stores +// until the *entire* pattern matches. + +#define WILDCARD_CHECK(N) \ + ((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name) + +#define WILDCARD_STAR_CHECK(N) \ + ((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name) + +// Limit permitted subexpressions, even if the parser & AST validator let them through +#define MATCH_VALUE_EXPR(N) \ + ((N)->kind == Constant_kind || (N)->kind == Attribute_kind) + +// Allocate or resize pc->fail_pop to allow for n items to be popped on failure. +static int +ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n) +{ + Py_ssize_t size = n + 1; + if (size <= pc->fail_pop_size) { + return SUCCESS; + } + Py_ssize_t needed = sizeof(jump_target_label) * size; + jump_target_label *resized = PyObject_Realloc(pc->fail_pop, needed); + if (resized == NULL) { + PyErr_NoMemory(); + return ERROR; + } + pc->fail_pop = resized; + while (pc->fail_pop_size < size) { + NEW_JUMP_TARGET_LABEL(c, new_block); + pc->fail_pop[pc->fail_pop_size++] = new_block; + } + return SUCCESS; +} + +// Use op to jump to the correct fail_pop block. +static int +jump_to_fail_pop(struct compiler *c, location loc, + pattern_context *pc, int op) +{ + // Pop any items on the top of the stack, plus any objects we were going to + // capture on success: + Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores); + RETURN_IF_ERROR(ensure_fail_pop(c, pc, pops)); + ADDOP_JUMP(c, loc, op, pc->fail_pop[pops]); + return SUCCESS; +} + +// Build all of the fail_pop blocks and reset fail_pop. +static int +emit_and_reset_fail_pop(struct compiler *c, location loc, + pattern_context *pc) +{ + if (!pc->fail_pop_size) { + assert(pc->fail_pop == NULL); + return SUCCESS; + } + while (--pc->fail_pop_size) { + USE_LABEL(c, pc->fail_pop[pc->fail_pop_size]); + if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, loc) < 0) { + pc->fail_pop_size = 0; + PyObject_Free(pc->fail_pop); + pc->fail_pop = NULL; + return ERROR; + } + } + USE_LABEL(c, pc->fail_pop[0]); + PyObject_Free(pc->fail_pop); + pc->fail_pop = NULL; + return SUCCESS; +} + +static int +compiler_error_duplicate_store(struct compiler *c, location loc, identifier n) +{ + return compiler_error(c, loc, + "multiple assignments to name %R in pattern", n); +} + +// Duplicate the effect of 3.10's ROT_* instructions using SWAPs. +static int +pattern_helper_rotate(struct compiler *c, location loc, Py_ssize_t count) +{ + while (1 < count) { + ADDOP_I(c, loc, SWAP, count--); + } + return SUCCESS; +} + +static int +pattern_helper_store_name(struct compiler *c, location loc, + identifier n, pattern_context *pc) +{ + if (n == NULL) { + ADDOP(c, loc, POP_TOP); + return SUCCESS; + } + if (forbidden_name(c, loc, n, Store)) { + return ERROR; + } + // Can't assign to the same name twice: + int duplicate = PySequence_Contains(pc->stores, n); + RETURN_IF_ERROR(duplicate); + if (duplicate) { + return compiler_error_duplicate_store(c, loc, n); + } + // Rotate this object underneath any items we need to preserve: + Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1; + RETURN_IF_ERROR(pattern_helper_rotate(c, loc, rotations)); + RETURN_IF_ERROR(PyList_Append(pc->stores, n)); + return SUCCESS; +} + + +static int +pattern_unpack_helper(struct compiler *c, location loc, + asdl_pattern_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + int seen_star = 0; + for (Py_ssize_t i = 0; i < n; i++) { + pattern_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == MatchStar_kind && !seen_star) { + if ((i >= (1 << 8)) || + (n-i-1 >= (INT_MAX >> 8))) { + return compiler_error(c, loc, + "too many expressions in " + "star-unpacking sequence pattern"); + } + ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8))); + seen_star = 1; + } + else if (elt->kind == MatchStar_kind) { + return compiler_error(c, loc, + "multiple starred expressions in sequence pattern"); + } + } + if (!seen_star) { + ADDOP_I(c, loc, UNPACK_SEQUENCE, n); + } + return SUCCESS; +} + +static int +pattern_helper_sequence_unpack(struct compiler *c, location loc, + asdl_pattern_seq *patterns, Py_ssize_t star, + pattern_context *pc) +{ + RETURN_IF_ERROR(pattern_unpack_helper(c, loc, patterns)); + Py_ssize_t size = asdl_seq_LEN(patterns); + // We've now got a bunch of new subjects on the stack. They need to remain + // there after each subpattern match: + pc->on_top += size; + for (Py_ssize_t i = 0; i < size; i++) { + // One less item to keep track of each time we loop through: + pc->on_top--; + pattern_ty pattern = asdl_seq_GET(patterns, i); + RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc)); + } + return SUCCESS; +} + +// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of +// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a +// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc. +static int +pattern_helper_sequence_subscr(struct compiler *c, location loc, + asdl_pattern_seq *patterns, Py_ssize_t star, + pattern_context *pc) +{ + // We need to keep the subject around for extracting elements: + pc->on_top++; + Py_ssize_t size = asdl_seq_LEN(patterns); + for (Py_ssize_t i = 0; i < size; i++) { + pattern_ty pattern = asdl_seq_GET(patterns, i); + if (WILDCARD_CHECK(pattern)) { + continue; + } + if (i == star) { + assert(WILDCARD_STAR_CHECK(pattern)); + continue; + } + ADDOP_I(c, loc, COPY, 1); + if (i < star) { + ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(i)); + } + else { + // The subject may not support negative indexing! Compute a + // nonnegative index: + ADDOP(c, loc, GET_LEN); + ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(size - i)); + ADDOP_BINARY(c, loc, Sub); + } + ADDOP(c, loc, BINARY_SUBSCR); + RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc)); + } + // Pop the subject, we're done with it: + pc->on_top--; + ADDOP(c, loc, POP_TOP); + return SUCCESS; +} + +// Like compiler_pattern, but turn off checks for irrefutability. +static int +compiler_pattern_subpattern(struct compiler *c, + pattern_ty p, pattern_context *pc) +{ + int allow_irrefutable = pc->allow_irrefutable; + pc->allow_irrefutable = 1; + RETURN_IF_ERROR(compiler_pattern(c, p, pc)); + pc->allow_irrefutable = allow_irrefutable; + return SUCCESS; +} + +static int +compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchAs_kind); + if (p->v.MatchAs.pattern == NULL) { + // An irrefutable match: + if (!pc->allow_irrefutable) { + if (p->v.MatchAs.name) { + const char *e = "name capture %R makes remaining patterns unreachable"; + return compiler_error(c, LOC(p), e, p->v.MatchAs.name); + } + const char *e = "wildcard makes remaining patterns unreachable"; + return compiler_error(c, LOC(p), e); + } + return pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc); + } + // Need to make a copy for (possibly) storing later: + pc->on_top++; + ADDOP_I(c, LOC(p), COPY, 1); + RETURN_IF_ERROR(compiler_pattern(c, p->v.MatchAs.pattern, pc)); + // Success! Store it: + pc->on_top--; + RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc)); + return SUCCESS; +} + +static int +compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchStar_kind); + RETURN_IF_ERROR( + pattern_helper_store_name(c, LOC(p), p->v.MatchStar.name, pc)); + return SUCCESS; +} + +static int +validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns) +{ + // Any errors will point to the pattern rather than the arg name as the + // parser is only supplying identifiers rather than Name or keyword nodes + Py_ssize_t nattrs = asdl_seq_LEN(attrs); + for (Py_ssize_t i = 0; i < nattrs; i++) { + identifier attr = ((identifier)asdl_seq_GET(attrs, i)); + location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i)); + if (forbidden_name(c, loc, attr, Store)) { + return ERROR; + } + for (Py_ssize_t j = i + 1; j < nattrs; j++) { + identifier other = ((identifier)asdl_seq_GET(attrs, j)); + if (!PyUnicode_Compare(attr, other)) { + location loc = LOC((pattern_ty) asdl_seq_GET(patterns, j)); + compiler_error(c, loc, "attribute name repeated in class pattern: %U", attr); + return ERROR; + } + } + } + return SUCCESS; +} + +static int +compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchClass_kind); + asdl_pattern_seq *patterns = p->v.MatchClass.patterns; + asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs; + asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns; + Py_ssize_t nargs = asdl_seq_LEN(patterns); + Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs); + Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns); + if (nattrs != nkwd_patterns) { + // AST validator shouldn't let this happen, but if it does, + // just fail, don't crash out of the interpreter + const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern"; + return compiler_error(c, LOC(p), e, nattrs, nkwd_patterns); + } + if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) { + const char *e = "too many sub-patterns in class pattern %R"; + return compiler_error(c, LOC(p), e, p->v.MatchClass.cls); + } + if (nattrs) { + RETURN_IF_ERROR(validate_kwd_attrs(c, kwd_attrs, kwd_patterns)); + } + VISIT(c, expr, p->v.MatchClass.cls); + PyObject *attr_names = PyTuple_New(nattrs); + if (attr_names == NULL) { + return ERROR; + } + Py_ssize_t i; + for (i = 0; i < nattrs; i++) { + PyObject *name = asdl_seq_GET(kwd_attrs, i); + PyTuple_SET_ITEM(attr_names, i, Py_NewRef(name)); + } + ADDOP_LOAD_CONST_NEW(c, LOC(p), attr_names); + ADDOP_I(c, LOC(p), MATCH_CLASS, nargs); + ADDOP_I(c, LOC(p), COPY, 1); + ADDOP_LOAD_CONST(c, LOC(p), Py_None); + ADDOP_I(c, LOC(p), IS_OP, 1); + // TOS is now a tuple of (nargs + nattrs) attributes (or None): + pc->on_top++; + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, nargs + nattrs); + pc->on_top += nargs + nattrs - 1; + for (i = 0; i < nargs + nattrs; i++) { + pc->on_top--; + pattern_ty pattern; + if (i < nargs) { + // Positional: + pattern = asdl_seq_GET(patterns, i); + } + else { + // Keyword: + pattern = asdl_seq_GET(kwd_patterns, i - nargs); + } + if (WILDCARD_CHECK(pattern)) { + ADDOP(c, LOC(p), POP_TOP); + continue; + } + RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc)); + } + // Success! Pop the tuple of attributes: + return SUCCESS; +} + +static int +compiler_pattern_mapping(struct compiler *c, pattern_ty p, + pattern_context *pc) +{ + assert(p->kind == MatchMapping_kind); + asdl_expr_seq *keys = p->v.MatchMapping.keys; + asdl_pattern_seq *patterns = p->v.MatchMapping.patterns; + Py_ssize_t size = asdl_seq_LEN(keys); + Py_ssize_t npatterns = asdl_seq_LEN(patterns); + if (size != npatterns) { + // AST validator shouldn't let this happen, but if it does, + // just fail, don't crash out of the interpreter + const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern"; + return compiler_error(c, LOC(p), e, size, npatterns); + } + // We have a double-star target if "rest" is set + PyObject *star_target = p->v.MatchMapping.rest; + // We need to keep the subject on top during the mapping and length checks: + pc->on_top++; + ADDOP(c, LOC(p), MATCH_MAPPING); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + if (!size && !star_target) { + // If the pattern is just "{}", we're done! Pop the subject: + pc->on_top--; + ADDOP(c, LOC(p), POP_TOP); + return SUCCESS; + } + if (size) { + // If the pattern has any keys in it, perform a length check: + ADDOP(c, LOC(p), GET_LEN); + ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size)); + ADDOP_COMPARE(c, LOC(p), GtE); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + } + if (INT_MAX < size - 1) { + return compiler_error(c, LOC(p), "too many sub-patterns in mapping pattern"); + } + // Collect all of the keys into a tuple for MATCH_KEYS and + // **rest. They can either be dotted names or literals: + + // Maintaining a set of Constant_kind kind keys allows us to raise a + // SyntaxError in the case of duplicates. + PyObject *seen = PySet_New(NULL); + if (seen == NULL) { + return ERROR; + } + + // NOTE: goto error on failure in the loop below to avoid leaking `seen` + for (Py_ssize_t i = 0; i < size; i++) { + expr_ty key = asdl_seq_GET(keys, i); + if (key == NULL) { + const char *e = "can't use NULL keys in MatchMapping " + "(set 'rest' parameter instead)"; + location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i)); + compiler_error(c, loc, e); + goto error; + } + + if (key->kind == Constant_kind) { + int in_seen = PySet_Contains(seen, key->v.Constant.value); + if (in_seen < 0) { + goto error; + } + if (in_seen) { + const char *e = "mapping pattern checks duplicate key (%R)"; + compiler_error(c, LOC(p), e, key->v.Constant.value); + goto error; + } + if (PySet_Add(seen, key->v.Constant.value)) { + goto error; + } + } + + else if (key->kind != Attribute_kind) { + const char *e = "mapping pattern keys may only match literals and attribute lookups"; + compiler_error(c, LOC(p), e); + goto error; + } + if (compiler_visit_expr(c, key) < 0) { + goto error; + } + } + + // all keys have been checked; there are no duplicates + Py_DECREF(seen); + + ADDOP_I(c, LOC(p), BUILD_TUPLE, size); + ADDOP(c, LOC(p), MATCH_KEYS); + // There's now a tuple of keys and a tuple of values on top of the subject: + pc->on_top += 2; + ADDOP_I(c, LOC(p), COPY, 1); + ADDOP_LOAD_CONST(c, LOC(p), Py_None); + ADDOP_I(c, LOC(p), IS_OP, 1); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + // So far so good. Use that tuple of values on the stack to match + // sub-patterns against: + ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size); + pc->on_top += size - 1; + for (Py_ssize_t i = 0; i < size; i++) { + pc->on_top--; + pattern_ty pattern = asdl_seq_GET(patterns, i); + RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc)); + } + // If we get this far, it's a match! Whatever happens next should consume + // the tuple of keys and the subject: + pc->on_top -= 2; + if (star_target) { + // If we have a starred name, bind a dict of remaining items to it (this may + // seem a bit inefficient, but keys is rarely big enough to actually impact + // runtime): + // rest = dict(TOS1) + // for key in TOS: + // del rest[key] + ADDOP_I(c, LOC(p), BUILD_MAP, 0); // [subject, keys, empty] + ADDOP_I(c, LOC(p), SWAP, 3); // [empty, keys, subject] + ADDOP_I(c, LOC(p), DICT_UPDATE, 2); // [copy, keys] + ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size); // [copy, keys...] + while (size) { + ADDOP_I(c, LOC(p), COPY, 1 + size--); // [copy, keys..., copy] + ADDOP_I(c, LOC(p), SWAP, 2); // [copy, keys..., copy, key] + ADDOP(c, LOC(p), DELETE_SUBSCR); // [copy, keys...] + } + RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), star_target, pc)); + } + else { + ADDOP(c, LOC(p), POP_TOP); // Tuple of keys. + ADDOP(c, LOC(p), POP_TOP); // Subject. + } + return SUCCESS; + +error: + Py_DECREF(seen); + return ERROR; +} + +static int +compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchOr_kind); + NEW_JUMP_TARGET_LABEL(c, end); + Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns); + assert(size > 1); + // We're going to be messing with pc. Keep the original info handy: + pattern_context old_pc = *pc; + Py_INCREF(pc->stores); + // control is the list of names bound by the first alternative. It is used + // for checking different name bindings in alternatives, and for correcting + // the order in which extracted elements are placed on the stack. + PyObject *control = NULL; + // NOTE: We can't use returning macros anymore! goto error on error. + for (Py_ssize_t i = 0; i < size; i++) { + pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i); + PyObject *pc_stores = PyList_New(0); + if (pc_stores == NULL) { + goto error; + } + Py_SETREF(pc->stores, pc_stores); + // An irrefutable sub-pattern must be last, if it is allowed at all: + pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable; + pc->fail_pop = NULL; + pc->fail_pop_size = 0; + pc->on_top = 0; + if (codegen_addop_i(INSTR_SEQUENCE(c), COPY, 1, LOC(alt)) < 0 || + compiler_pattern(c, alt, pc) < 0) { + goto error; + } + // Success! + Py_ssize_t nstores = PyList_GET_SIZE(pc->stores); + if (!i) { + // This is the first alternative, so save its stores as a "control" + // for the others (they can't bind a different set of names, and + // might need to be reordered): + assert(control == NULL); + control = Py_NewRef(pc->stores); + } + else if (nstores != PyList_GET_SIZE(control)) { + goto diff; + } + else if (nstores) { + // There were captures. Check to see if we differ from control: + Py_ssize_t icontrol = nstores; + while (icontrol--) { + PyObject *name = PyList_GET_ITEM(control, icontrol); + Py_ssize_t istores = PySequence_Index(pc->stores, name); + if (istores < 0) { + PyErr_Clear(); + goto diff; + } + if (icontrol != istores) { + // Reorder the names on the stack to match the order of the + // names in control. There's probably a better way of doing + // this; the current solution is potentially very + // inefficient when each alternative subpattern binds lots + // of names in different orders. It's fine for reasonable + // cases, though, and the peephole optimizer will ensure + // that the final code is as efficient as possible. + assert(istores < icontrol); + Py_ssize_t rotations = istores + 1; + // Perform the same rotation on pc->stores: + PyObject *rotated = PyList_GetSlice(pc->stores, 0, + rotations); + if (rotated == NULL || + PyList_SetSlice(pc->stores, 0, rotations, NULL) || + PyList_SetSlice(pc->stores, icontrol - istores, + icontrol - istores, rotated)) + { + Py_XDECREF(rotated); + goto error; + } + Py_DECREF(rotated); + // That just did: + // rotated = pc_stores[:rotations] + // del pc_stores[:rotations] + // pc_stores[icontrol-istores:icontrol-istores] = rotated + // Do the same thing to the stack, using several + // rotations: + while (rotations--) { + if (pattern_helper_rotate(c, LOC(alt), icontrol + 1) < 0) { + goto error; + } + } + } + } + } + assert(control); + if (codegen_addop_j(INSTR_SEQUENCE(c), LOC(alt), JUMP, end) < 0 || + emit_and_reset_fail_pop(c, LOC(alt), pc) < 0) + { + goto error; + } + } + Py_DECREF(pc->stores); + *pc = old_pc; + Py_INCREF(pc->stores); + // Need to NULL this for the PyObject_Free call in the error block. + old_pc.fail_pop = NULL; + // No match. Pop the remaining copy of the subject and fail: + if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, LOC(p)) < 0 || + jump_to_fail_pop(c, LOC(p), pc, JUMP) < 0) { + goto error; + } + + USE_LABEL(c, end); + Py_ssize_t nstores = PyList_GET_SIZE(control); + // There's a bunch of stuff on the stack between where the new stores + // are and where they need to be: + // - The other stores. + // - A copy of the subject. + // - Anything else that may be on top of the stack. + // - Any previous stores we've already stashed away on the stack. + Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores); + for (Py_ssize_t i = 0; i < nstores; i++) { + // Rotate this capture to its proper place on the stack: + if (pattern_helper_rotate(c, LOC(p), nrots) < 0) { + goto error; + } + // Update the list of previous stores with this new name, checking for + // duplicates: + PyObject *name = PyList_GET_ITEM(control, i); + int dupe = PySequence_Contains(pc->stores, name); + if (dupe < 0) { + goto error; + } + if (dupe) { + compiler_error_duplicate_store(c, LOC(p), name); + goto error; + } + if (PyList_Append(pc->stores, name)) { + goto error; + } + } + Py_DECREF(old_pc.stores); + Py_DECREF(control); + // NOTE: Returning macros are safe again. + // Pop the copy of the subject: + ADDOP(c, LOC(p), POP_TOP); + return SUCCESS; +diff: + compiler_error(c, LOC(p), "alternative patterns bind different names"); +error: + PyObject_Free(old_pc.fail_pop); + Py_DECREF(old_pc.stores); + Py_XDECREF(control); + return ERROR; +} + + +static int +compiler_pattern_sequence(struct compiler *c, pattern_ty p, + pattern_context *pc) +{ + assert(p->kind == MatchSequence_kind); + asdl_pattern_seq *patterns = p->v.MatchSequence.patterns; + Py_ssize_t size = asdl_seq_LEN(patterns); + Py_ssize_t star = -1; + int only_wildcard = 1; + int star_wildcard = 0; + // Find a starred name, if it exists. There may be at most one: + for (Py_ssize_t i = 0; i < size; i++) { + pattern_ty pattern = asdl_seq_GET(patterns, i); + if (pattern->kind == MatchStar_kind) { + if (star >= 0) { + const char *e = "multiple starred names in sequence pattern"; + return compiler_error(c, LOC(p), e); + } + star_wildcard = WILDCARD_STAR_CHECK(pattern); + only_wildcard &= star_wildcard; + star = i; + continue; + } + only_wildcard &= WILDCARD_CHECK(pattern); + } + // We need to keep the subject on top during the sequence and length checks: + pc->on_top++; + ADDOP(c, LOC(p), MATCH_SEQUENCE); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + if (star < 0) { + // No star: len(subject) == size + ADDOP(c, LOC(p), GET_LEN); + ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size)); + ADDOP_COMPARE(c, LOC(p), Eq); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + } + else if (size > 1) { + // Star: len(subject) >= size - 1 + ADDOP(c, LOC(p), GET_LEN); + ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size - 1)); + ADDOP_COMPARE(c, LOC(p), GtE); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + } + // Whatever comes next should consume the subject: + pc->on_top--; + if (only_wildcard) { + // Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc. + ADDOP(c, LOC(p), POP_TOP); + } + else if (star_wildcard) { + RETURN_IF_ERROR(pattern_helper_sequence_subscr(c, LOC(p), patterns, star, pc)); + } + else { + RETURN_IF_ERROR(pattern_helper_sequence_unpack(c, LOC(p), patterns, star, pc)); + } + return SUCCESS; +} + +static int +compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchValue_kind); + expr_ty value = p->v.MatchValue.value; + if (!MATCH_VALUE_EXPR(value)) { + const char *e = "patterns may only match literals and attribute lookups"; + return compiler_error(c, LOC(p), e); + } + VISIT(c, expr, value); + ADDOP_COMPARE(c, LOC(p), Eq); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + return SUCCESS; +} + +static int +compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchSingleton_kind); + ADDOP_LOAD_CONST(c, LOC(p), p->v.MatchSingleton.value); + ADDOP_COMPARE(c, LOC(p), Is); + RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE)); + return SUCCESS; +} + +static int +compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + switch (p->kind) { + case MatchValue_kind: + return compiler_pattern_value(c, p, pc); + case MatchSingleton_kind: + return compiler_pattern_singleton(c, p, pc); + case MatchSequence_kind: + return compiler_pattern_sequence(c, p, pc); + case MatchMapping_kind: + return compiler_pattern_mapping(c, p, pc); + case MatchClass_kind: + return compiler_pattern_class(c, p, pc); + case MatchStar_kind: + return compiler_pattern_star(c, p, pc); + case MatchAs_kind: + return compiler_pattern_as(c, p, pc); + case MatchOr_kind: + return compiler_pattern_or(c, p, pc); + } + // AST validator shouldn't let this happen, but if it does, + // just fail, don't crash out of the interpreter + const char *e = "invalid match pattern node in AST (kind=%d)"; + return compiler_error(c, LOC(p), e, p->kind); +} + +static int +compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc) +{ + VISIT(c, expr, s->v.Match.subject); + NEW_JUMP_TARGET_LABEL(c, end); + Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases); + assert(cases > 0); + match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1); + int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases; + for (Py_ssize_t i = 0; i < cases - has_default; i++) { + m = asdl_seq_GET(s->v.Match.cases, i); + // Only copy the subject if we're *not* on the last case: + if (i != cases - has_default - 1) { + ADDOP_I(c, LOC(m->pattern), COPY, 1); + } + pc->stores = PyList_New(0); + if (pc->stores == NULL) { + return ERROR; + } + // Irrefutable cases must be either guarded, last, or both: + pc->allow_irrefutable = m->guard != NULL || i == cases - 1; + pc->fail_pop = NULL; + pc->fail_pop_size = 0; + pc->on_top = 0; + // NOTE: Can't use returning macros here (they'll leak pc->stores)! + if (compiler_pattern(c, m->pattern, pc) < 0) { + Py_DECREF(pc->stores); + return ERROR; + } + assert(!pc->on_top); + // It's a match! Store all of the captured names (they're on the stack). + Py_ssize_t nstores = PyList_GET_SIZE(pc->stores); + for (Py_ssize_t n = 0; n < nstores; n++) { + PyObject *name = PyList_GET_ITEM(pc->stores, n); + if (compiler_nameop(c, LOC(m->pattern), name, Store) < 0) { + Py_DECREF(pc->stores); + return ERROR; + } + } + Py_DECREF(pc->stores); + // NOTE: Returning macros are safe again. + if (m->guard) { + RETURN_IF_ERROR(ensure_fail_pop(c, pc, 0)); + RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, pc->fail_pop[0], 0)); + } + // Success! Pop the subject off, we're done with it: + if (i != cases - has_default - 1) { + ADDOP(c, LOC(m->pattern), POP_TOP); + } + VISIT_SEQ(c, stmt, m->body); + ADDOP_JUMP(c, NO_LOCATION, JUMP, end); + // If the pattern fails to match, we want the line number of the + // cleanup to be associated with the failed pattern, not the last line + // of the body + RETURN_IF_ERROR(emit_and_reset_fail_pop(c, LOC(m->pattern), pc)); + } + if (has_default) { + // A trailing "case _" is common, and lets us save a bit of redundant + // pushing and popping in the loop above: + m = asdl_seq_GET(s->v.Match.cases, cases - 1); + if (cases == 1) { + // No matches. Done with the subject: + ADDOP(c, LOC(m->pattern), POP_TOP); + } + else { + // Show line coverage for default case (it doesn't create bytecode) + ADDOP(c, LOC(m->pattern), NOP); + } + if (m->guard) { + RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, end, 0)); + } + VISIT_SEQ(c, stmt, m->body); + } + USE_LABEL(c, end); + return SUCCESS; +} + +static int +compiler_match(struct compiler *c, stmt_ty s) +{ + pattern_context pc; + pc.fail_pop = NULL; + int result = compiler_match_inner(c, s, &pc); + PyObject_Free(pc.fail_pop); + return result; +} + +#undef WILDCARD_CHECK +#undef WILDCARD_STAR_CHECK + +static PyObject * +consts_dict_keys_inorder(PyObject *dict) +{ + PyObject *consts, *k, *v; + Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); + + consts = PyList_New(size); /* PyCode_Optimize() requires a list */ + if (consts == NULL) + return NULL; + while (PyDict_Next(dict, &pos, &k, &v)) { + i = PyLong_AS_LONG(v); + /* The keys of the dictionary can be tuples wrapping a constant. + * (see dict_add_o and _PyCode_ConstantKey). In that case + * the object we want is always second. */ + if (PyTuple_CheckExact(k)) { + k = PyTuple_GET_ITEM(k, 1); + } + assert(i < size); + assert(i >= 0); + PyList_SET_ITEM(consts, i, Py_NewRef(k)); + } + return consts; +} + +static int +compute_code_flags(struct compiler *c) +{ + PySTEntryObject *ste = c->u->u_ste; + int flags = 0; + if (_PyST_IsFunctionLike(c->u->u_ste)) { + flags |= CO_NEWLOCALS | CO_OPTIMIZED; + if (ste->ste_nested) + flags |= CO_NESTED; + if (ste->ste_generator && !ste->ste_coroutine) + flags |= CO_GENERATOR; + if (!ste->ste_generator && ste->ste_coroutine) + flags |= CO_COROUTINE; + if (ste->ste_generator && ste->ste_coroutine) + flags |= CO_ASYNC_GENERATOR; + if (ste->ste_varargs) + flags |= CO_VARARGS; + if (ste->ste_varkeywords) + flags |= CO_VARKEYWORDS; + } + + /* (Only) inherit compilerflags in PyCF_MASK */ + flags |= (c->c_flags.cf_flags & PyCF_MASK); + + if ((IS_TOP_LEVEL_AWAIT(c)) && + ste->ste_coroutine && + !ste->ste_generator) { + flags |= CO_COROUTINE; + } + + return flags; +} + +// Merge *obj* with constant cache. +// Unlike merge_consts_recursive(), this function doesn't work recursively. +int +_PyCompile_ConstCacheMergeOne(PyObject *const_cache, PyObject **obj) +{ + assert(PyDict_CheckExact(const_cache)); + PyObject *key = _PyCode_ConstantKey(*obj); + if (key == NULL) { + return ERROR; + } + + // t is borrowed reference + PyObject *t = PyDict_SetDefault(const_cache, key, key); + Py_DECREF(key); + if (t == NULL) { + return ERROR; + } + if (t == key) { // obj is new constant. + return SUCCESS; + } + + if (PyTuple_CheckExact(t)) { + // t is still borrowed reference + t = PyTuple_GET_ITEM(t, 1); + } + + Py_SETREF(*obj, Py_NewRef(t)); + return SUCCESS; +} + + +static int * +build_cellfixedoffsets(_PyCompile_CodeUnitMetadata *umd) +{ + int nlocals = (int)PyDict_GET_SIZE(umd->u_varnames); + int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars); + int nfreevars = (int)PyDict_GET_SIZE(umd->u_freevars); + + int noffsets = ncellvars + nfreevars; + int *fixed = PyMem_New(int, noffsets); + if (fixed == NULL) { + PyErr_NoMemory(); + return NULL; + } + for (int i = 0; i < noffsets; i++) { + fixed[i] = nlocals + i; + } + + PyObject *varname, *cellindex; + Py_ssize_t pos = 0; + while (PyDict_Next(umd->u_cellvars, &pos, &varname, &cellindex)) { + PyObject *varindex = PyDict_GetItem(umd->u_varnames, varname); + if (varindex != NULL) { + assert(PyLong_AS_LONG(cellindex) < INT_MAX); + assert(PyLong_AS_LONG(varindex) < INT_MAX); + int oldindex = (int)PyLong_AS_LONG(cellindex); + int argoffset = (int)PyLong_AS_LONG(varindex); + fixed[oldindex] = argoffset; + } + } + + return fixed; +} + +static int +insert_prefix_instructions(_PyCompile_CodeUnitMetadata *umd, basicblock *entryblock, + int *fixed, int nfreevars, int code_flags) +{ + assert(umd->u_firstlineno > 0); + + /* Add the generator prefix instructions. */ + if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) { + cfg_instr make_gen = { + .i_opcode = RETURN_GENERATOR, + .i_oparg = 0, + .i_loc = LOCATION(umd->u_firstlineno, umd->u_firstlineno, -1, -1), + .i_target = NULL, + }; + RETURN_IF_ERROR(_PyBasicblock_InsertInstruction(entryblock, 0, &make_gen)); + cfg_instr pop_top = { + .i_opcode = POP_TOP, + .i_oparg = 0, + .i_loc = NO_LOCATION, + .i_target = NULL, + }; + RETURN_IF_ERROR(_PyBasicblock_InsertInstruction(entryblock, 1, &pop_top)); + } + + /* Set up cells for any variable that escapes, to be put in a closure. */ + const int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars); + if (ncellvars) { + // umd->u_cellvars has the cells out of order so we sort them + // before adding the MAKE_CELL instructions. Note that we + // adjust for arg cells, which come first. + const int nvars = ncellvars + (int)PyDict_GET_SIZE(umd->u_varnames); + int *sorted = PyMem_RawCalloc(nvars, sizeof(int)); + if (sorted == NULL) { + PyErr_NoMemory(); + return ERROR; + } + for (int i = 0; i < ncellvars; i++) { + sorted[fixed[i]] = i + 1; + } + for (int i = 0, ncellsused = 0; ncellsused < ncellvars; i++) { + int oldindex = sorted[i] - 1; + if (oldindex == -1) { + continue; + } + cfg_instr make_cell = { + .i_opcode = MAKE_CELL, + // This will get fixed in offset_derefs(). + .i_oparg = oldindex, + .i_loc = NO_LOCATION, + .i_target = NULL, + }; + if (_PyBasicblock_InsertInstruction(entryblock, ncellsused, &make_cell) < 0) { + PyMem_RawFree(sorted); + return ERROR; + } + ncellsused += 1; + } + PyMem_RawFree(sorted); + } + + if (nfreevars) { + cfg_instr copy_frees = { + .i_opcode = COPY_FREE_VARS, + .i_oparg = nfreevars, + .i_loc = NO_LOCATION, + .i_target = NULL, + }; + RETURN_IF_ERROR(_PyBasicblock_InsertInstruction(entryblock, 0, ©_frees)); + } + + return SUCCESS; +} + +static int +fix_cell_offsets(_PyCompile_CodeUnitMetadata *umd, basicblock *entryblock, int *fixedmap) +{ + int nlocals = (int)PyDict_GET_SIZE(umd->u_varnames); + int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars); + int nfreevars = (int)PyDict_GET_SIZE(umd->u_freevars); + int noffsets = ncellvars + nfreevars; + + // First deal with duplicates (arg cells). + int numdropped = 0; + for (int i = 0; i < noffsets ; i++) { + if (fixedmap[i] == i + nlocals) { + fixedmap[i] -= numdropped; + } + else { + // It was a duplicate (cell/arg). + numdropped += 1; + } + } + + // Then update offsets, either relative to locals or by cell2arg. + for (basicblock *b = entryblock; b != NULL; b = b->b_next) { + for (int i = 0; i < b->b_iused; i++) { + cfg_instr *inst = &b->b_instr[i]; + // This is called before extended args are generated. + assert(inst->i_opcode != EXTENDED_ARG); + int oldoffset = inst->i_oparg; + switch(inst->i_opcode) { + case MAKE_CELL: + case LOAD_CLOSURE: + case LOAD_DEREF: + case STORE_DEREF: + case DELETE_DEREF: + case LOAD_FROM_DICT_OR_DEREF: + assert(oldoffset >= 0); + assert(oldoffset < noffsets); + assert(fixedmap[oldoffset] >= 0); + inst->i_oparg = fixedmap[oldoffset]; + } + } + } + + return numdropped; +} + + +static int +prepare_localsplus(_PyCompile_CodeUnitMetadata *umd, cfg_builder *g, int code_flags) +{ + assert(PyDict_GET_SIZE(umd->u_varnames) < INT_MAX); + assert(PyDict_GET_SIZE(umd->u_cellvars) < INT_MAX); + assert(PyDict_GET_SIZE(umd->u_freevars) < INT_MAX); + int nlocals = (int)PyDict_GET_SIZE(umd->u_varnames); + int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars); + int nfreevars = (int)PyDict_GET_SIZE(umd->u_freevars); + assert(INT_MAX - nlocals - ncellvars > 0); + assert(INT_MAX - nlocals - ncellvars - nfreevars > 0); + int nlocalsplus = nlocals + ncellvars + nfreevars; + int* cellfixedoffsets = build_cellfixedoffsets(umd); + if (cellfixedoffsets == NULL) { + return ERROR; + } + + + // This must be called before fix_cell_offsets(). + if (insert_prefix_instructions(umd, g->g_entryblock, cellfixedoffsets, nfreevars, code_flags)) { + PyMem_Free(cellfixedoffsets); + return ERROR; + } + + int numdropped = fix_cell_offsets(umd, g->g_entryblock, cellfixedoffsets); + PyMem_Free(cellfixedoffsets); // At this point we're done with it. + cellfixedoffsets = NULL; + if (numdropped < 0) { + return ERROR; + } + + nlocalsplus -= numdropped; + return nlocalsplus; +} + +static int +add_return_at_end(struct compiler *c, int addNone) +{ + /* Make sure every instruction stream that falls off the end returns None. + * This also ensures that no jump target offsets are out of bounds. + */ + if (addNone) { + ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None); + } + ADDOP(c, NO_LOCATION, RETURN_VALUE); + return SUCCESS; +} + +static int cfg_to_instr_sequence(cfg_builder *g, instr_sequence *seq); + +static PyCodeObject * +optimize_and_assemble_code_unit(struct compiler_unit *u, PyObject *const_cache, + int code_flags, PyObject *filename) +{ + instr_sequence optimized_instrs; + memset(&optimized_instrs, 0, sizeof(instr_sequence)); + + PyCodeObject *co = NULL; + PyObject *consts = consts_dict_keys_inorder(u->u_metadata.u_consts); + if (consts == NULL) { + goto error; + } + cfg_builder g; + if (instr_sequence_to_cfg(&u->u_instr_sequence, &g) < 0) { + goto error; + } + int nparams = (int)PyList_GET_SIZE(u->u_ste->ste_varnames); + int nlocals = (int)PyDict_GET_SIZE(u->u_metadata.u_varnames); + assert(u->u_metadata.u_firstlineno); + if (_PyCfg_OptimizeCodeUnit(&g, consts, const_cache, code_flags, nlocals, + nparams, u->u_metadata.u_firstlineno) < 0) { + goto error; + } + + /** Assembly **/ + int nlocalsplus = prepare_localsplus(&u->u_metadata, &g, code_flags); + if (nlocalsplus < 0) { + goto error; + } + + int maxdepth = _PyCfg_Stackdepth(g.g_entryblock, code_flags); + if (maxdepth < 0) { + goto error; + } + + _PyCfg_ConvertPseudoOps(g.g_entryblock); + + /* Order of basic blocks must have been determined by now */ + + if (_PyCfg_ResolveJumps(&g) < 0) { + goto error; + } + + /* Can't modify the bytecode after computing jump offsets. */ + + if (cfg_to_instr_sequence(&g, &optimized_instrs) < 0) { + goto error; + } + + co = _PyAssemble_MakeCodeObject(&u->u_metadata, const_cache, consts, + maxdepth, &optimized_instrs, nlocalsplus, + code_flags, filename); + +error: + Py_XDECREF(consts); + instr_sequence_fini(&optimized_instrs); + _PyCfgBuilder_Fini(&g); + return co; +} + +static PyCodeObject * +optimize_and_assemble(struct compiler *c, int addNone) +{ + struct compiler_unit *u = c->u; + PyObject *const_cache = c->c_const_cache; + PyObject *filename = c->c_filename; + + int code_flags = compute_code_flags(c); + if (code_flags < 0) { + return NULL; + } + + if (add_return_at_end(c, addNone) < 0) { + return NULL; + } + + return optimize_and_assemble_code_unit(u, const_cache, code_flags, filename); +} + +static int +cfg_to_instr_sequence(cfg_builder *g, instr_sequence *seq) +{ + int lbl = 0; + for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { + b->b_label = (jump_target_label){lbl}; + lbl += b->b_iused; + } + for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { + RETURN_IF_ERROR(instr_sequence_use_label(seq, b->b_label.id)); + for (int i = 0; i < b->b_iused; i++) { + cfg_instr *instr = &b->b_instr[i]; + RETURN_IF_ERROR( + instr_sequence_addop(seq, instr->i_opcode, instr->i_oparg, instr->i_loc)); + + _PyCompile_ExceptHandlerInfo *hi = &seq->s_instrs[seq->s_used-1].i_except_handler_info; + if (instr->i_except != NULL) { + hi->h_offset = instr->i_except->b_offset; + hi->h_startdepth = instr->i_except->b_startdepth; + hi->h_preserve_lasti = instr->i_except->b_preserve_lasti; + } + else { + hi->h_offset = -1; + } + } + } + return SUCCESS; +} + + +/* Access to compiler optimizations for unit tests. + * + * _PyCompile_CodeGen takes and AST, applies code-gen and + * returns the unoptimized CFG as an instruction list. + * + * _PyCompile_OptimizeCfg takes an instruction list, constructs + * a CFG, optimizes it and converts back to an instruction list. + * + * An instruction list is a PyList where each item is either + * a tuple describing a single instruction: + * (opcode, oparg, lineno, end_lineno, col, end_col), or + * a jump target label marking the beginning of a basic block. + */ + +static int +instructions_to_instr_sequence(PyObject *instructions, instr_sequence *seq) +{ + assert(PyList_Check(instructions)); + + Py_ssize_t num_insts = PyList_GET_SIZE(instructions); + bool *is_target = PyMem_Calloc(num_insts, sizeof(bool)); + if (is_target == NULL) { + return ERROR; + } + for (Py_ssize_t i = 0; i < num_insts; i++) { + PyObject *item = PyList_GET_ITEM(instructions, i); + if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) { + PyErr_SetString(PyExc_ValueError, "expected a 6-tuple"); + goto error; + } + int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0)); + if (PyErr_Occurred()) { + goto error; + } + if (HAS_TARGET(opcode)) { + int oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1)); + if (PyErr_Occurred()) { + goto error; + } + if (oparg < 0 || oparg >= num_insts) { + PyErr_SetString(PyExc_ValueError, "label out of range"); + goto error; + } + is_target[oparg] = true; + } + } + + for (int i = 0; i < num_insts; i++) { + if (is_target[i]) { + if (instr_sequence_use_label(seq, i) < 0) { + goto error; + } + } + PyObject *item = PyList_GET_ITEM(instructions, i); + if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) { + PyErr_SetString(PyExc_ValueError, "expected a 6-tuple"); + goto error; + } + int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0)); + if (PyErr_Occurred()) { + goto error; + } + int oparg; + if (HAS_ARG(opcode)) { + oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1)); + if (PyErr_Occurred()) { + goto error; + } + } + else { + oparg = 0; + } + location loc; + loc.lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 2)); + if (PyErr_Occurred()) { + goto error; + } + loc.end_lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 3)); + if (PyErr_Occurred()) { + goto error; + } + loc.col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 4)); + if (PyErr_Occurred()) { + goto error; + } + loc.end_col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 5)); + if (PyErr_Occurred()) { + goto error; + } + if (instr_sequence_addop(seq, opcode, oparg, loc) < 0) { + goto error; + } + } + PyMem_Free(is_target); + return SUCCESS; +error: + PyMem_Free(is_target); + return ERROR; +} + +static int +instructions_to_cfg(PyObject *instructions, cfg_builder *g) +{ + instr_sequence seq; + memset(&seq, 0, sizeof(instr_sequence)); + + if (instructions_to_instr_sequence(instructions, &seq) < 0) { + goto error; + } + if (instr_sequence_to_cfg(&seq, g) < 0) { + goto error; + } + instr_sequence_fini(&seq); + return SUCCESS; +error: + instr_sequence_fini(&seq); + return ERROR; +} + +static PyObject * +instr_sequence_to_instructions(instr_sequence *seq) +{ + PyObject *instructions = PyList_New(0); + if (instructions == NULL) { + return NULL; + } + for (int i = 0; i < seq->s_used; i++) { + instruction *instr = &seq->s_instrs[i]; + location loc = instr->i_loc; + int arg = HAS_TARGET(instr->i_opcode) ? + seq->s_labelmap[instr->i_oparg] : instr->i_oparg; + + PyObject *inst_tuple = Py_BuildValue( + "(iiiiii)", instr->i_opcode, arg, + loc.lineno, loc.end_lineno, + loc.col_offset, loc.end_col_offset); + if (inst_tuple == NULL) { + goto error; + } + + int res = PyList_Append(instructions, inst_tuple); + Py_DECREF(inst_tuple); + if (res != 0) { + goto error; + } + } + return instructions; +error: + Py_XDECREF(instructions); + return NULL; +} + +static PyObject * +cfg_to_instructions(cfg_builder *g) +{ + PyObject *instructions = PyList_New(0); + if (instructions == NULL) { + return NULL; + } + int lbl = 0; + for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { + b->b_label = (jump_target_label){lbl}; + lbl += b->b_iused; + } + for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { + for (int i = 0; i < b->b_iused; i++) { + cfg_instr *instr = &b->b_instr[i]; + location loc = instr->i_loc; + int arg = HAS_TARGET(instr->i_opcode) ? + instr->i_target->b_label.id : instr->i_oparg; + + PyObject *inst_tuple = Py_BuildValue( + "(iiiiii)", instr->i_opcode, arg, + loc.lineno, loc.end_lineno, + loc.col_offset, loc.end_col_offset); + if (inst_tuple == NULL) { + goto error; + } + + if (PyList_Append(instructions, inst_tuple) != 0) { + Py_DECREF(inst_tuple); + goto error; + } + Py_DECREF(inst_tuple); + } + } + + return instructions; +error: + Py_DECREF(instructions); + return NULL; +} + +PyObject * +_PyCompile_CodeGen(PyObject *ast, PyObject *filename, PyCompilerFlags *pflags, + int optimize, int compile_mode) +{ + PyObject *res = NULL; + PyObject *metadata = NULL; + + if (!PyAST_Check(ast)) { + PyErr_SetString(PyExc_TypeError, "expected an AST"); + return NULL; + } + + PyArena *arena = _PyArena_New(); + if (arena == NULL) { + return NULL; + } + + mod_ty mod = PyAST_obj2mod(ast, arena, compile_mode); + if (mod == NULL || !_PyAST_Validate(mod)) { + _PyArena_Free(arena); + return NULL; + } + + struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena); + if (c == NULL) { + _PyArena_Free(arena); + return NULL; + } + + if (compiler_codegen(c, mod) < 0) { + goto finally; + } + + _PyCompile_CodeUnitMetadata *umd = &c->u->u_metadata; + metadata = PyDict_New(); + if (metadata == NULL) { + goto finally; + } +#define SET_MATADATA_ITEM(key, value) \ + if (value != NULL) { \ + if (PyDict_SetItemString(metadata, key, value) < 0) goto finally; \ + } + + SET_MATADATA_ITEM("name", umd->u_name); + SET_MATADATA_ITEM("qualname", umd->u_qualname); + SET_MATADATA_ITEM("consts", umd->u_consts); + SET_MATADATA_ITEM("names", umd->u_names); + SET_MATADATA_ITEM("varnames", umd->u_varnames); + SET_MATADATA_ITEM("cellvars", umd->u_cellvars); + SET_MATADATA_ITEM("freevars", umd->u_freevars); +#undef SET_MATADATA_ITEM + +#define SET_MATADATA_INT(key, value) do { \ + PyObject *v = PyLong_FromLong((long)value); \ + if (v == NULL) goto finally; \ + int res = PyDict_SetItemString(metadata, key, v); \ + Py_XDECREF(v); \ + if (res < 0) goto finally; \ + } while (0); + + SET_MATADATA_INT("argcount", umd->u_argcount); + SET_MATADATA_INT("posonlyargcount", umd->u_posonlyargcount); + SET_MATADATA_INT("kwonlyargcount", umd->u_kwonlyargcount); +#undef SET_MATADATA_INT + + int addNone = mod->kind != Expression_kind; + if (add_return_at_end(c, addNone) < 0) { + goto finally; + } + + PyObject *insts = instr_sequence_to_instructions(INSTR_SEQUENCE(c)); + if (insts == NULL) { + goto finally; + } + res = PyTuple_Pack(2, insts, metadata); + Py_DECREF(insts); + +finally: + Py_XDECREF(metadata); + compiler_exit_scope(c); + compiler_free(c); + _PyArena_Free(arena); + return res; +} + +PyObject * +_PyCompile_OptimizeCfg(PyObject *instructions, PyObject *consts, int nlocals) +{ + PyObject *res = NULL; + PyObject *const_cache = PyDict_New(); + if (const_cache == NULL) { + return NULL; + } + + cfg_builder g; + if (instructions_to_cfg(instructions, &g) < 0) { + goto error; + } + int code_flags = 0, nparams = 0, firstlineno = 1; + if (_PyCfg_OptimizeCodeUnit(&g, consts, const_cache, code_flags, nlocals, + nparams, firstlineno) < 0) { + goto error; + } + res = cfg_to_instructions(&g); +error: + Py_DECREF(const_cache); + _PyCfgBuilder_Fini(&g); + return res; +} + +int _PyCfg_JumpLabelsToTargets(basicblock *entryblock); + +PyCodeObject * +_PyCompile_Assemble(_PyCompile_CodeUnitMetadata *umd, PyObject *filename, + PyObject *instructions) +{ + PyCodeObject *co = NULL; + instr_sequence optimized_instrs; + memset(&optimized_instrs, 0, sizeof(instr_sequence)); + + PyObject *const_cache = PyDict_New(); + if (const_cache == NULL) { + return NULL; + } + + cfg_builder g; + if (instructions_to_cfg(instructions, &g) < 0) { + goto error; + } + + if (_PyCfg_JumpLabelsToTargets(g.g_entryblock) < 0) { + goto error; + } + + int code_flags = 0; + int nlocalsplus = prepare_localsplus(umd, &g, code_flags); + if (nlocalsplus < 0) { + goto error; + } + + int maxdepth = _PyCfg_Stackdepth(g.g_entryblock, code_flags); + if (maxdepth < 0) { + goto error; + } + + _PyCfg_ConvertPseudoOps(g.g_entryblock); + + /* Order of basic blocks must have been determined by now */ + + if (_PyCfg_ResolveJumps(&g) < 0) { + goto error; + } + + /* Can't modify the bytecode after computing jump offsets. */ + + if (cfg_to_instr_sequence(&g, &optimized_instrs) < 0) { + goto error; + } + + PyObject *consts = consts_dict_keys_inorder(umd->u_consts); + if (consts == NULL) { + goto error; + } + co = _PyAssemble_MakeCodeObject(umd, const_cache, + consts, maxdepth, &optimized_instrs, + nlocalsplus, code_flags, filename); + Py_DECREF(consts); + +error: + Py_DECREF(const_cache); + _PyCfgBuilder_Fini(&g); + instr_sequence_fini(&optimized_instrs); + return co; +} + + +/* Retained for API compatibility. + * Optimization is now done in _PyCfg_OptimizeCodeUnit */ + +PyObject * +PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts), + PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj)) +{ + return Py_NewRef(code); +} |