aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/Python/compile.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/tools/python3/Python/compile.c')
-rw-r--r--contrib/tools/python3/Python/compile.c8144
1 files changed, 8144 insertions, 0 deletions
diff --git a/contrib/tools/python3/Python/compile.c b/contrib/tools/python3/Python/compile.c
new file mode 100644
index 0000000000..ddd7b5c795
--- /dev/null
+++ b/contrib/tools/python3/Python/compile.c
@@ -0,0 +1,8144 @@
+/*
+ * This file compiles an abstract syntax tree (AST) into Python bytecode.
+ *
+ * The primary entry point is _PyAST_Compile(), which returns a
+ * PyCodeObject. The compiler makes several passes to build the code
+ * object:
+ * 1. Checks for future statements. See future.c
+ * 2. Builds a symbol table. See symtable.c.
+ * 3. Generate an instruction sequence. See compiler_mod() in this file.
+ * 4. Generate a control flow graph and run optimizations on it. See flowgraph.c.
+ * 5. Assemble the basic blocks into final code. See optimize_and_assemble() in
+ * this file, and assembler.c.
+ *
+ * Note that compiler_mod() suggests module, but the module ast type
+ * (mod_ty) has cases for expressions and interactive statements.
+ *
+ * CAUTION: The VISIT_* macros abort the current function when they
+ * encounter a problem. So don't invoke them when there is memory
+ * which needs to be released. Code blocks are OK, as the compiler
+ * structure takes care of releasing those. Use the arena to manage
+ * objects.
+ */
+
+#include <stdbool.h>
+
+#include "Python.h"
+#include "pycore_ast.h" // _PyAST_GetDocString()
+#define NEED_OPCODE_TABLES
+#include "pycore_opcode_utils.h"
+#undef NEED_OPCODE_TABLES
+#include "pycore_flowgraph.h"
+#include "pycore_code.h" // _PyCode_New()
+#include "pycore_compile.h"
+#include "pycore_intrinsics.h"
+#include "pycore_long.h" // _PyLong_GetZero()
+#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
+#include "pycore_symtable.h" // PySTEntryObject, _PyFuture_FromAST()
+
+#include "opcode_metadata.h" // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed
+
+#define DEFAULT_CODE_SIZE 128
+#define DEFAULT_LNOTAB_SIZE 16
+#define DEFAULT_CNOTAB_SIZE 32
+
+#define COMP_GENEXP 0
+#define COMP_LISTCOMP 1
+#define COMP_SETCOMP 2
+#define COMP_DICTCOMP 3
+
+/* A soft limit for stack use, to avoid excessive
+ * memory use for large constants, etc.
+ *
+ * The value 30 is plucked out of thin air.
+ * Code that could use more stack than this is
+ * rare, so the exact value is unimportant.
+ */
+#define STACK_USE_GUIDELINE 30
+
+#undef SUCCESS
+#undef ERROR
+#define SUCCESS 0
+#define ERROR -1
+
+#define RETURN_IF_ERROR(X) \
+ if ((X) == -1) { \
+ return ERROR; \
+ }
+
+/* If we exceed this limit, it should
+ * be considered a compiler bug.
+ * Currently it should be impossible
+ * to exceed STACK_USE_GUIDELINE * 100,
+ * as 100 is the maximum parse depth.
+ * For performance reasons we will
+ * want to reduce this to a
+ * few hundred in the future.
+ *
+ * NOTE: Whatever MAX_ALLOWED_STACK_USE is
+ * set to, it should never restrict what Python
+ * we can write, just how we compile it.
+ */
+#define MAX_ALLOWED_STACK_USE (STACK_USE_GUIDELINE * 100)
+
+#define IS_TOP_LEVEL_AWAIT(C) ( \
+ ((C)->c_flags.cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \
+ && ((C)->u->u_ste->ste_type == ModuleBlock))
+
+typedef _PyCompilerSrcLocation location;
+typedef _PyCfgInstruction cfg_instr;
+typedef _PyCfgBasicblock basicblock;
+typedef _PyCfgBuilder cfg_builder;
+
+#define LOCATION(LNO, END_LNO, COL, END_COL) \
+ ((const _PyCompilerSrcLocation){(LNO), (END_LNO), (COL), (END_COL)})
+
+/* Return true if loc1 starts after loc2 ends. */
+static inline bool
+location_is_after(location loc1, location loc2) {
+ return (loc1.lineno > loc2.end_lineno) ||
+ ((loc1.lineno == loc2.end_lineno) &&
+ (loc1.col_offset > loc2.end_col_offset));
+}
+
+#define LOC(x) SRC_LOCATION_FROM_AST(x)
+
+typedef _PyCfgJumpTargetLabel jump_target_label;
+
+static jump_target_label NO_LABEL = {-1};
+
+#define SAME_LABEL(L1, L2) ((L1).id == (L2).id)
+#define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL)))
+
+#define NEW_JUMP_TARGET_LABEL(C, NAME) \
+ jump_target_label NAME = instr_sequence_new_label(INSTR_SEQUENCE(C)); \
+ if (!IS_LABEL(NAME)) { \
+ return ERROR; \
+ }
+
+#define USE_LABEL(C, LBL) \
+ RETURN_IF_ERROR(instr_sequence_use_label(INSTR_SEQUENCE(C), (LBL).id))
+
+
+/* fblockinfo tracks the current frame block.
+
+A frame block is used to handle loops, try/except, and try/finally.
+It's called a frame block to distinguish it from a basic block in the
+compiler IR.
+*/
+
+enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END,
+ WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER,
+ EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR };
+
+struct fblockinfo {
+ enum fblocktype fb_type;
+ jump_target_label fb_block;
+ /* (optional) type-specific exit or cleanup block */
+ jump_target_label fb_exit;
+ /* (optional) additional information required for unwinding */
+ void *fb_datum;
+};
+
+enum {
+ COMPILER_SCOPE_MODULE,
+ COMPILER_SCOPE_CLASS,
+ COMPILER_SCOPE_FUNCTION,
+ COMPILER_SCOPE_ASYNC_FUNCTION,
+ COMPILER_SCOPE_LAMBDA,
+ COMPILER_SCOPE_COMPREHENSION,
+ COMPILER_SCOPE_TYPEPARAMS,
+};
+
+
+int
+_PyCompile_InstrSize(int opcode, int oparg)
+{
+ assert(!IS_PSEUDO_OPCODE(opcode));
+ assert(HAS_ARG(opcode) || oparg == 0);
+ int extended_args = (0xFFFFFF < oparg) + (0xFFFF < oparg) + (0xFF < oparg);
+ int caches = _PyOpcode_Caches[opcode];
+ return extended_args + 1 + caches;
+}
+
+typedef _PyCompile_Instruction instruction;
+typedef _PyCompile_InstructionSequence instr_sequence;
+
+#define INITIAL_INSTR_SEQUENCE_SIZE 100
+#define INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE 10
+
+/*
+ * Resize the array if index is out of range.
+ *
+ * idx: the index we want to access
+ * arr: pointer to the array
+ * alloc: pointer to the capacity of the array
+ * default_alloc: initial number of items
+ * item_size: size of each item
+ *
+ */
+int
+_PyCompile_EnsureArrayLargeEnough(int idx, void **array, int *alloc,
+ int default_alloc, size_t item_size)
+{
+ void *arr = *array;
+ if (arr == NULL) {
+ int new_alloc = default_alloc;
+ if (idx >= new_alloc) {
+ new_alloc = idx + default_alloc;
+ }
+ arr = PyObject_Calloc(new_alloc, item_size);
+ if (arr == NULL) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ *alloc = new_alloc;
+ }
+ else if (idx >= *alloc) {
+ size_t oldsize = *alloc * item_size;
+ int new_alloc = *alloc << 1;
+ if (idx >= new_alloc) {
+ new_alloc = idx + default_alloc;
+ }
+ size_t newsize = new_alloc * item_size;
+
+ if (oldsize > (SIZE_MAX >> 1)) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+
+ assert(newsize > 0);
+ void *tmp = PyObject_Realloc(arr, newsize);
+ if (tmp == NULL) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ *alloc = new_alloc;
+ arr = tmp;
+ memset((char *)arr + oldsize, 0, newsize - oldsize);
+ }
+
+ *array = arr;
+ return SUCCESS;
+}
+
+static int
+instr_sequence_next_inst(instr_sequence *seq) {
+ assert(seq->s_instrs != NULL || seq->s_used == 0);
+
+ RETURN_IF_ERROR(
+ _PyCompile_EnsureArrayLargeEnough(seq->s_used + 1,
+ (void**)&seq->s_instrs,
+ &seq->s_allocated,
+ INITIAL_INSTR_SEQUENCE_SIZE,
+ sizeof(instruction)));
+ assert(seq->s_allocated >= 0);
+ assert(seq->s_used < seq->s_allocated);
+ return seq->s_used++;
+}
+
+static jump_target_label
+instr_sequence_new_label(instr_sequence *seq)
+{
+ jump_target_label lbl = {++seq->s_next_free_label};
+ return lbl;
+}
+
+static int
+instr_sequence_use_label(instr_sequence *seq, int lbl) {
+ int old_size = seq->s_labelmap_size;
+ RETURN_IF_ERROR(
+ _PyCompile_EnsureArrayLargeEnough(lbl,
+ (void**)&seq->s_labelmap,
+ &seq->s_labelmap_size,
+ INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE,
+ sizeof(int)));
+
+ for(int i = old_size; i < seq->s_labelmap_size; i++) {
+ seq->s_labelmap[i] = -111; /* something weird, for debugging */
+ }
+ seq->s_labelmap[lbl] = seq->s_used; /* label refers to the next instruction */
+ return SUCCESS;
+}
+
+static int
+instr_sequence_addop(instr_sequence *seq, int opcode, int oparg, location loc)
+{
+ assert(IS_WITHIN_OPCODE_RANGE(opcode));
+ assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0);
+ assert(0 <= oparg && oparg < (1 << 30));
+
+ int idx = instr_sequence_next_inst(seq);
+ RETURN_IF_ERROR(idx);
+ instruction *ci = &seq->s_instrs[idx];
+ ci->i_opcode = opcode;
+ ci->i_oparg = oparg;
+ ci->i_loc = loc;
+ return SUCCESS;
+}
+
+static int
+instr_sequence_insert_instruction(instr_sequence *seq, int pos,
+ int opcode, int oparg, location loc)
+{
+ assert(pos >= 0 && pos <= seq->s_used);
+ int last_idx = instr_sequence_next_inst(seq);
+ RETURN_IF_ERROR(last_idx);
+ for (int i=last_idx-1; i >= pos; i--) {
+ seq->s_instrs[i+1] = seq->s_instrs[i];
+ }
+ instruction *ci = &seq->s_instrs[pos];
+ ci->i_opcode = opcode;
+ ci->i_oparg = oparg;
+ ci->i_loc = loc;
+
+ /* fix the labels map */
+ for(int lbl=0; lbl < seq->s_labelmap_size; lbl++) {
+ if (seq->s_labelmap[lbl] >= pos) {
+ seq->s_labelmap[lbl]++;
+ }
+ }
+ return SUCCESS;
+}
+
+static void
+instr_sequence_fini(instr_sequence *seq) {
+ PyObject_Free(seq->s_labelmap);
+ seq->s_labelmap = NULL;
+
+ PyObject_Free(seq->s_instrs);
+ seq->s_instrs = NULL;
+}
+
+static int
+instr_sequence_to_cfg(instr_sequence *seq, cfg_builder *g) {
+ memset(g, 0, sizeof(cfg_builder));
+ RETURN_IF_ERROR(_PyCfgBuilder_Init(g));
+
+ /* There can be more than one label for the same offset. The
+ * offset2lbl maping selects one of them which we use consistently.
+ */
+
+ int *offset2lbl = PyMem_Malloc(seq->s_used * sizeof(int));
+ if (offset2lbl == NULL) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ for (int i = 0; i < seq->s_used; i++) {
+ offset2lbl[i] = -1;
+ }
+ for (int lbl=0; lbl < seq->s_labelmap_size; lbl++) {
+ int offset = seq->s_labelmap[lbl];
+ if (offset >= 0) {
+ assert(offset < seq->s_used);
+ offset2lbl[offset] = lbl;
+ }
+ }
+
+ for (int i = 0; i < seq->s_used; i++) {
+ int lbl = offset2lbl[i];
+ if (lbl >= 0) {
+ assert (lbl < seq->s_labelmap_size);
+ jump_target_label lbl_ = {lbl};
+ if (_PyCfgBuilder_UseLabel(g, lbl_) < 0) {
+ goto error;
+ }
+ }
+ instruction *instr = &seq->s_instrs[i];
+ int opcode = instr->i_opcode;
+ int oparg = instr->i_oparg;
+ if (HAS_TARGET(opcode)) {
+ int offset = seq->s_labelmap[oparg];
+ assert(offset >= 0 && offset < seq->s_used);
+ int lbl = offset2lbl[offset];
+ assert(lbl >= 0 && lbl < seq->s_labelmap_size);
+ oparg = lbl;
+ }
+ if (_PyCfgBuilder_Addop(g, opcode, oparg, instr->i_loc) < 0) {
+ goto error;
+ }
+ }
+ PyMem_Free(offset2lbl);
+
+ int nblocks = 0;
+ for (basicblock *b = g->g_block_list; b != NULL; b = b->b_list) {
+ nblocks++;
+ }
+ if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ return SUCCESS;
+error:
+ PyMem_Free(offset2lbl);
+ return ERROR;
+}
+
+
+/* The following items change on entry and exit of code blocks.
+ They must be saved and restored when returning to a block.
+*/
+struct compiler_unit {
+ PySTEntryObject *u_ste;
+
+ int u_scope_type;
+
+ PyObject *u_private; /* for private name mangling */
+
+ instr_sequence u_instr_sequence; /* codegen output */
+
+ int u_nfblocks;
+ int u_in_inlined_comp;
+
+ struct fblockinfo u_fblock[CO_MAXBLOCKS];
+
+ _PyCompile_CodeUnitMetadata u_metadata;
+};
+
+/* This struct captures the global state of a compilation.
+
+The u pointer points to the current compilation unit, while units
+for enclosing blocks are stored in c_stack. The u and c_stack are
+managed by compiler_enter_scope() and compiler_exit_scope().
+
+Note that we don't track recursion levels during compilation - the
+task of detecting and rejecting excessive levels of nesting is
+handled by the symbol analysis pass.
+
+*/
+
+struct compiler {
+ PyObject *c_filename;
+ struct symtable *c_st;
+ PyFutureFeatures c_future; /* module's __future__ */
+ PyCompilerFlags c_flags;
+
+ int c_optimize; /* optimization level */
+ int c_interactive; /* true if in interactive mode */
+ int c_nestlevel;
+ PyObject *c_const_cache; /* Python dict holding all constants,
+ including names tuple */
+ struct compiler_unit *u; /* compiler state for current block */
+ PyObject *c_stack; /* Python list holding compiler_unit ptrs */
+ PyArena *c_arena; /* pointer to memory allocation arena */
+};
+
+#define INSTR_SEQUENCE(C) (&((C)->u->u_instr_sequence))
+
+
+typedef struct {
+ // A list of strings corresponding to name captures. It is used to track:
+ // - Repeated name assignments in the same pattern.
+ // - Different name assignments in alternatives.
+ // - The order of name assignments in alternatives.
+ PyObject *stores;
+ // If 0, any name captures against our subject will raise.
+ int allow_irrefutable;
+ // An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop
+ // i items off of the stack. The end result looks like this (with each block
+ // falling through to the next):
+ // fail_pop[4]: POP_TOP
+ // fail_pop[3]: POP_TOP
+ // fail_pop[2]: POP_TOP
+ // fail_pop[1]: POP_TOP
+ // fail_pop[0]: NOP
+ jump_target_label *fail_pop;
+ // The current length of fail_pop.
+ Py_ssize_t fail_pop_size;
+ // The number of items on top of the stack that need to *stay* on top of the
+ // stack. Variable captures go beneath these. All of them will be popped on
+ // failure.
+ Py_ssize_t on_top;
+} pattern_context;
+
+static int codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc);
+
+static void compiler_free(struct compiler *);
+static int compiler_error(struct compiler *, location loc, const char *, ...);
+static int compiler_warn(struct compiler *, location loc, const char *, ...);
+static int compiler_nameop(struct compiler *, location, identifier, expr_context_ty);
+
+static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
+static int compiler_visit_stmt(struct compiler *, stmt_ty);
+static int compiler_visit_keyword(struct compiler *, keyword_ty);
+static int compiler_visit_expr(struct compiler *, expr_ty);
+static int compiler_augassign(struct compiler *, stmt_ty);
+static int compiler_annassign(struct compiler *, stmt_ty);
+static int compiler_subscript(struct compiler *, expr_ty);
+static int compiler_slice(struct compiler *, expr_ty);
+
+static bool are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t);
+
+
+static int compiler_with(struct compiler *, stmt_ty, int);
+static int compiler_async_with(struct compiler *, stmt_ty, int);
+static int compiler_async_for(struct compiler *, stmt_ty);
+static int compiler_call_simple_kw_helper(struct compiler *c,
+ location loc,
+ asdl_keyword_seq *keywords,
+ Py_ssize_t nkwelts);
+static int compiler_call_helper(struct compiler *c, location loc,
+ int n, asdl_expr_seq *args,
+ asdl_keyword_seq *keywords);
+static int compiler_try_except(struct compiler *, stmt_ty);
+static int compiler_try_star_except(struct compiler *, stmt_ty);
+static int compiler_set_qualname(struct compiler *);
+
+static int compiler_sync_comprehension_generator(
+ struct compiler *c, location loc,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type,
+ int iter_on_stack);
+
+static int compiler_async_comprehension_generator(
+ struct compiler *c, location loc,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type,
+ int iter_on_stack);
+
+static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *);
+static int compiler_match(struct compiler *, stmt_ty);
+static int compiler_pattern_subpattern(struct compiler *,
+ pattern_ty, pattern_context *);
+
+static PyCodeObject *optimize_and_assemble(struct compiler *, int addNone);
+
+#define CAPSULE_NAME "compile.c compiler unit"
+
+
+static int
+compiler_setup(struct compiler *c, mod_ty mod, PyObject *filename,
+ PyCompilerFlags *flags, int optimize, PyArena *arena)
+{
+ PyCompilerFlags local_flags = _PyCompilerFlags_INIT;
+
+ c->c_const_cache = PyDict_New();
+ if (!c->c_const_cache) {
+ return ERROR;
+ }
+
+ c->c_stack = PyList_New(0);
+ if (!c->c_stack) {
+ return ERROR;
+ }
+
+ c->c_filename = Py_NewRef(filename);
+ c->c_arena = arena;
+ if (!_PyFuture_FromAST(mod, filename, &c->c_future)) {
+ return ERROR;
+ }
+ if (!flags) {
+ flags = &local_flags;
+ }
+ int merged = c->c_future.ff_features | flags->cf_flags;
+ c->c_future.ff_features = merged;
+ flags->cf_flags = merged;
+ c->c_flags = *flags;
+ c->c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize;
+ c->c_nestlevel = 0;
+
+ _PyASTOptimizeState state;
+ state.optimize = c->c_optimize;
+ state.ff_features = merged;
+
+ if (!_PyAST_Optimize(mod, arena, &state)) {
+ return ERROR;
+ }
+ c->c_st = _PySymtable_Build(mod, filename, &c->c_future);
+ if (c->c_st == NULL) {
+ if (!PyErr_Occurred()) {
+ PyErr_SetString(PyExc_SystemError, "no symtable");
+ }
+ return ERROR;
+ }
+ return SUCCESS;
+}
+
+static struct compiler*
+new_compiler(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags,
+ int optimize, PyArena *arena)
+{
+ struct compiler *c = PyMem_Calloc(1, sizeof(struct compiler));
+ if (c == NULL) {
+ return NULL;
+ }
+ if (compiler_setup(c, mod, filename, pflags, optimize, arena) < 0) {
+ compiler_free(c);
+ return NULL;
+ }
+ return c;
+}
+
+PyCodeObject *
+_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags,
+ int optimize, PyArena *arena)
+{
+ assert(!PyErr_Occurred());
+ struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena);
+ if (c == NULL) {
+ return NULL;
+ }
+
+ PyCodeObject *co = compiler_mod(c, mod);
+ compiler_free(c);
+ assert(co || PyErr_Occurred());
+ return co;
+}
+
+static void
+compiler_free(struct compiler *c)
+{
+ if (c->c_st)
+ _PySymtable_Free(c->c_st);
+ Py_XDECREF(c->c_filename);
+ Py_XDECREF(c->c_const_cache);
+ Py_XDECREF(c->c_stack);
+ PyMem_Free(c);
+}
+
+static PyObject *
+list2dict(PyObject *list)
+{
+ Py_ssize_t i, n;
+ PyObject *v, *k;
+ PyObject *dict = PyDict_New();
+ if (!dict) return NULL;
+
+ n = PyList_Size(list);
+ for (i = 0; i < n; i++) {
+ v = PyLong_FromSsize_t(i);
+ if (!v) {
+ Py_DECREF(dict);
+ return NULL;
+ }
+ k = PyList_GET_ITEM(list, i);
+ if (PyDict_SetItem(dict, k, v) < 0) {
+ Py_DECREF(v);
+ Py_DECREF(dict);
+ return NULL;
+ }
+ Py_DECREF(v);
+ }
+ return dict;
+}
+
+/* Return new dict containing names from src that match scope(s).
+
+src is a symbol table dictionary. If the scope of a name matches
+either scope_type or flag is set, insert it into the new dict. The
+values are integers, starting at offset and increasing by one for
+each key.
+*/
+
+static PyObject *
+dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
+{
+ Py_ssize_t i = offset, scope, num_keys, key_i;
+ PyObject *k, *v, *dest = PyDict_New();
+ PyObject *sorted_keys;
+
+ assert(offset >= 0);
+ if (dest == NULL)
+ return NULL;
+
+ /* Sort the keys so that we have a deterministic order on the indexes
+ saved in the returned dictionary. These indexes are used as indexes
+ into the free and cell var storage. Therefore if they aren't
+ deterministic, then the generated bytecode is not deterministic.
+ */
+ sorted_keys = PyDict_Keys(src);
+ if (sorted_keys == NULL)
+ return NULL;
+ if (PyList_Sort(sorted_keys) != 0) {
+ Py_DECREF(sorted_keys);
+ return NULL;
+ }
+ num_keys = PyList_GET_SIZE(sorted_keys);
+
+ for (key_i = 0; key_i < num_keys; key_i++) {
+ /* XXX this should probably be a macro in symtable.h */
+ long vi;
+ k = PyList_GET_ITEM(sorted_keys, key_i);
+ v = PyDict_GetItemWithError(src, k);
+ assert(v && PyLong_Check(v));
+ vi = PyLong_AS_LONG(v);
+ scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;
+
+ if (scope == scope_type || vi & flag) {
+ PyObject *item = PyLong_FromSsize_t(i);
+ if (item == NULL) {
+ Py_DECREF(sorted_keys);
+ Py_DECREF(dest);
+ return NULL;
+ }
+ i++;
+ if (PyDict_SetItem(dest, k, item) < 0) {
+ Py_DECREF(sorted_keys);
+ Py_DECREF(item);
+ Py_DECREF(dest);
+ return NULL;
+ }
+ Py_DECREF(item);
+ }
+ }
+ Py_DECREF(sorted_keys);
+ return dest;
+}
+
+static void
+compiler_unit_free(struct compiler_unit *u)
+{
+ instr_sequence_fini(&u->u_instr_sequence);
+ Py_CLEAR(u->u_ste);
+ Py_CLEAR(u->u_metadata.u_name);
+ Py_CLEAR(u->u_metadata.u_qualname);
+ Py_CLEAR(u->u_metadata.u_consts);
+ Py_CLEAR(u->u_metadata.u_names);
+ Py_CLEAR(u->u_metadata.u_varnames);
+ Py_CLEAR(u->u_metadata.u_freevars);
+ Py_CLEAR(u->u_metadata.u_cellvars);
+ Py_CLEAR(u->u_metadata.u_fasthidden);
+ Py_CLEAR(u->u_private);
+ PyObject_Free(u);
+}
+
+static int
+compiler_set_qualname(struct compiler *c)
+{
+ Py_ssize_t stack_size;
+ struct compiler_unit *u = c->u;
+ PyObject *name, *base;
+
+ base = NULL;
+ stack_size = PyList_GET_SIZE(c->c_stack);
+ assert(stack_size >= 1);
+ if (stack_size > 1) {
+ int scope, force_global = 0;
+ struct compiler_unit *parent;
+ PyObject *mangled, *capsule;
+
+ capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
+ parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(parent);
+ if (parent->u_scope_type == COMPILER_SCOPE_TYPEPARAMS) {
+ /* The parent is a type parameter scope, so we need to
+ look at the grandparent. */
+ if (stack_size == 2) {
+ // If we're immediately within the module, we can skip
+ // the rest and just set the qualname to be the same as name.
+ u->u_metadata.u_qualname = Py_NewRef(u->u_metadata.u_name);
+ return SUCCESS;
+ }
+ capsule = PyList_GET_ITEM(c->c_stack, stack_size - 2);
+ parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(parent);
+ }
+
+ if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
+ || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
+ || u->u_scope_type == COMPILER_SCOPE_CLASS) {
+ assert(u->u_metadata.u_name);
+ mangled = _Py_Mangle(parent->u_private, u->u_metadata.u_name);
+ if (!mangled) {
+ return ERROR;
+ }
+
+ scope = _PyST_GetScope(parent->u_ste, mangled);
+ Py_DECREF(mangled);
+ assert(scope != GLOBAL_IMPLICIT);
+ if (scope == GLOBAL_EXPLICIT)
+ force_global = 1;
+ }
+
+ if (!force_global) {
+ if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
+ || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
+ || parent->u_scope_type == COMPILER_SCOPE_LAMBDA)
+ {
+ _Py_DECLARE_STR(dot_locals, ".<locals>");
+ base = PyUnicode_Concat(parent->u_metadata.u_qualname,
+ &_Py_STR(dot_locals));
+ if (base == NULL) {
+ return ERROR;
+ }
+ }
+ else {
+ base = Py_NewRef(parent->u_metadata.u_qualname);
+ }
+ }
+ }
+
+ if (base != NULL) {
+ _Py_DECLARE_STR(dot, ".");
+ name = PyUnicode_Concat(base, &_Py_STR(dot));
+ Py_DECREF(base);
+ if (name == NULL) {
+ return ERROR;
+ }
+ PyUnicode_Append(&name, u->u_metadata.u_name);
+ if (name == NULL) {
+ return ERROR;
+ }
+ }
+ else {
+ name = Py_NewRef(u->u_metadata.u_name);
+ }
+ u->u_metadata.u_qualname = name;
+
+ return SUCCESS;
+}
+
+/* Return the stack effect of opcode with argument oparg.
+
+ Some opcodes have different stack effect when jump to the target and
+ when not jump. The 'jump' parameter specifies the case:
+
+ * 0 -- when not jump
+ * 1 -- when jump
+ * -1 -- maximal
+ */
+static int
+stack_effect(int opcode, int oparg, int jump)
+{
+ if (0 <= opcode && opcode <= MAX_REAL_OPCODE) {
+ if (_PyOpcode_Deopt[opcode] != opcode) {
+ // Specialized instructions are not supported.
+ return PY_INVALID_STACK_EFFECT;
+ }
+ int popped, pushed;
+ if (jump > 0) {
+ popped = _PyOpcode_num_popped(opcode, oparg, true);
+ pushed = _PyOpcode_num_pushed(opcode, oparg, true);
+ }
+ else {
+ popped = _PyOpcode_num_popped(opcode, oparg, false);
+ pushed = _PyOpcode_num_pushed(opcode, oparg, false);
+ }
+ if (popped < 0 || pushed < 0) {
+ return PY_INVALID_STACK_EFFECT;
+ }
+ if (jump >= 0) {
+ return pushed - popped;
+ }
+ if (jump < 0) {
+ // Compute max(pushed - popped, alt_pushed - alt_popped)
+ int alt_popped = _PyOpcode_num_popped(opcode, oparg, true);
+ int alt_pushed = _PyOpcode_num_pushed(opcode, oparg, true);
+ if (alt_popped < 0 || alt_pushed < 0) {
+ return PY_INVALID_STACK_EFFECT;
+ }
+ int diff = pushed - popped;
+ int alt_diff = alt_pushed - alt_popped;
+ if (alt_diff > diff) {
+ return alt_diff;
+ }
+ return diff;
+ }
+ }
+
+ // Pseudo ops
+ switch (opcode) {
+ case POP_BLOCK:
+ case JUMP:
+ case JUMP_NO_INTERRUPT:
+ return 0;
+
+ /* Exception handling pseudo-instructions */
+ case SETUP_FINALLY:
+ /* 0 in the normal flow.
+ * Restore the stack position and push 1 value before jumping to
+ * the handler if an exception be raised. */
+ return jump ? 1 : 0;
+ case SETUP_CLEANUP:
+ /* As SETUP_FINALLY, but pushes lasti as well */
+ return jump ? 2 : 0;
+ case SETUP_WITH:
+ /* 0 in the normal flow.
+ * Restore the stack position to the position before the result
+ * of __(a)enter__ and push 2 values before jumping to the handler
+ * if an exception be raised. */
+ return jump ? 1 : 0;
+
+ case STORE_FAST_MAYBE_NULL:
+ return -1;
+ case LOAD_METHOD:
+ return 1;
+ case LOAD_SUPER_METHOD:
+ case LOAD_ZERO_SUPER_METHOD:
+ case LOAD_ZERO_SUPER_ATTR:
+ return -1;
+ default:
+ return PY_INVALID_STACK_EFFECT;
+ }
+
+ return PY_INVALID_STACK_EFFECT; /* not reachable */
+}
+
+int
+PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
+{
+ return stack_effect(opcode, oparg, jump);
+}
+
+int
+PyCompile_OpcodeStackEffect(int opcode, int oparg)
+{
+ return stack_effect(opcode, oparg, -1);
+}
+
+static int
+codegen_addop_noarg(instr_sequence *seq, int opcode, location loc)
+{
+ assert(!HAS_ARG(opcode));
+ assert(!IS_ASSEMBLER_OPCODE(opcode));
+ return instr_sequence_addop(seq, opcode, 0, loc);
+}
+
+static Py_ssize_t
+dict_add_o(PyObject *dict, PyObject *o)
+{
+ PyObject *v;
+ Py_ssize_t arg;
+
+ v = PyDict_GetItemWithError(dict, o);
+ if (!v) {
+ if (PyErr_Occurred()) {
+ return ERROR;
+ }
+ arg = PyDict_GET_SIZE(dict);
+ v = PyLong_FromSsize_t(arg);
+ if (!v) {
+ return ERROR;
+ }
+ if (PyDict_SetItem(dict, o, v) < 0) {
+ Py_DECREF(v);
+ return ERROR;
+ }
+ Py_DECREF(v);
+ }
+ else
+ arg = PyLong_AsLong(v);
+ return arg;
+}
+
+// Merge const *o* recursively and return constant key object.
+static PyObject*
+merge_consts_recursive(PyObject *const_cache, PyObject *o)
+{
+ assert(PyDict_CheckExact(const_cache));
+ // None and Ellipsis are singleton, and key is the singleton.
+ // No need to merge object and key.
+ if (o == Py_None || o == Py_Ellipsis) {
+ return Py_NewRef(o);
+ }
+
+ PyObject *key = _PyCode_ConstantKey(o);
+ if (key == NULL) {
+ return NULL;
+ }
+
+ // t is borrowed reference
+ PyObject *t = PyDict_SetDefault(const_cache, key, key);
+ if (t != key) {
+ // o is registered in const_cache. Just use it.
+ Py_XINCREF(t);
+ Py_DECREF(key);
+ return t;
+ }
+
+ // We registered o in const_cache.
+ // When o is a tuple or frozenset, we want to merge its
+ // items too.
+ if (PyTuple_CheckExact(o)) {
+ Py_ssize_t len = PyTuple_GET_SIZE(o);
+ for (Py_ssize_t i = 0; i < len; i++) {
+ PyObject *item = PyTuple_GET_ITEM(o, i);
+ PyObject *u = merge_consts_recursive(const_cache, item);
+ if (u == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+
+ // See _PyCode_ConstantKey()
+ PyObject *v; // borrowed
+ if (PyTuple_CheckExact(u)) {
+ v = PyTuple_GET_ITEM(u, 1);
+ }
+ else {
+ v = u;
+ }
+ if (v != item) {
+ PyTuple_SET_ITEM(o, i, Py_NewRef(v));
+ Py_DECREF(item);
+ }
+
+ Py_DECREF(u);
+ }
+ }
+ else if (PyFrozenSet_CheckExact(o)) {
+ // *key* is tuple. And its first item is frozenset of
+ // constant keys.
+ // See _PyCode_ConstantKey() for detail.
+ assert(PyTuple_CheckExact(key));
+ assert(PyTuple_GET_SIZE(key) == 2);
+
+ Py_ssize_t len = PySet_GET_SIZE(o);
+ if (len == 0) { // empty frozenset should not be re-created.
+ return key;
+ }
+ PyObject *tuple = PyTuple_New(len);
+ if (tuple == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+ Py_ssize_t i = 0, pos = 0;
+ PyObject *item;
+ Py_hash_t hash;
+ while (_PySet_NextEntry(o, &pos, &item, &hash)) {
+ PyObject *k = merge_consts_recursive(const_cache, item);
+ if (k == NULL) {
+ Py_DECREF(tuple);
+ Py_DECREF(key);
+ return NULL;
+ }
+ PyObject *u;
+ if (PyTuple_CheckExact(k)) {
+ u = Py_NewRef(PyTuple_GET_ITEM(k, 1));
+ Py_DECREF(k);
+ }
+ else {
+ u = k;
+ }
+ PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u.
+ i++;
+ }
+
+ // Instead of rewriting o, we create new frozenset and embed in the
+ // key tuple. Caller should get merged frozenset from the key tuple.
+ PyObject *new = PyFrozenSet_New(tuple);
+ Py_DECREF(tuple);
+ if (new == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+ assert(PyTuple_GET_ITEM(key, 1) == o);
+ Py_DECREF(o);
+ PyTuple_SET_ITEM(key, 1, new);
+ }
+
+ return key;
+}
+
+static Py_ssize_t
+compiler_add_const(PyObject *const_cache, struct compiler_unit *u, PyObject *o)
+{
+ assert(PyDict_CheckExact(const_cache));
+ PyObject *key = merge_consts_recursive(const_cache, o);
+ if (key == NULL) {
+ return ERROR;
+ }
+
+ Py_ssize_t arg = dict_add_o(u->u_metadata.u_consts, key);
+ Py_DECREF(key);
+ return arg;
+}
+
+static int
+compiler_addop_load_const(PyObject *const_cache, struct compiler_unit *u, location loc, PyObject *o)
+{
+ Py_ssize_t arg = compiler_add_const(const_cache, u, o);
+ if (arg < 0) {
+ return ERROR;
+ }
+ return codegen_addop_i(&u->u_instr_sequence, LOAD_CONST, arg, loc);
+}
+
+static int
+compiler_addop_o(struct compiler_unit *u, location loc,
+ int opcode, PyObject *dict, PyObject *o)
+{
+ Py_ssize_t arg = dict_add_o(dict, o);
+ if (arg < 0) {
+ return ERROR;
+ }
+ return codegen_addop_i(&u->u_instr_sequence, opcode, arg, loc);
+}
+
+static int
+compiler_addop_name(struct compiler_unit *u, location loc,
+ int opcode, PyObject *dict, PyObject *o)
+{
+ PyObject *mangled = _Py_Mangle(u->u_private, o);
+ if (!mangled) {
+ return ERROR;
+ }
+ Py_ssize_t arg = dict_add_o(dict, mangled);
+ Py_DECREF(mangled);
+ if (arg < 0) {
+ return ERROR;
+ }
+ if (opcode == LOAD_ATTR) {
+ arg <<= 1;
+ }
+ if (opcode == LOAD_METHOD) {
+ opcode = LOAD_ATTR;
+ arg <<= 1;
+ arg |= 1;
+ }
+ if (opcode == LOAD_SUPER_ATTR) {
+ arg <<= 2;
+ arg |= 2;
+ }
+ if (opcode == LOAD_SUPER_METHOD) {
+ opcode = LOAD_SUPER_ATTR;
+ arg <<= 2;
+ arg |= 3;
+ }
+ if (opcode == LOAD_ZERO_SUPER_ATTR) {
+ opcode = LOAD_SUPER_ATTR;
+ arg <<= 2;
+ }
+ if (opcode == LOAD_ZERO_SUPER_METHOD) {
+ opcode = LOAD_SUPER_ATTR;
+ arg <<= 2;
+ arg |= 1;
+ }
+ return codegen_addop_i(&u->u_instr_sequence, opcode, arg, loc);
+}
+
+/* Add an opcode with an integer argument */
+static int
+codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc)
+{
+ /* oparg value is unsigned, but a signed C int is usually used to store
+ it in the C code (like Python/ceval.c).
+
+ Limit to 32-bit signed C int (rather than INT_MAX) for portability.
+
+ The argument of a concrete bytecode instruction is limited to 8-bit.
+ EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
+
+ int oparg_ = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
+ assert(!IS_ASSEMBLER_OPCODE(opcode));
+ return instr_sequence_addop(seq, opcode, oparg_, loc);
+}
+
+static int
+codegen_addop_j(instr_sequence *seq, location loc,
+ int opcode, jump_target_label target)
+{
+ assert(IS_LABEL(target));
+ assert(IS_JUMP_OPCODE(opcode) || IS_BLOCK_PUSH_OPCODE(opcode));
+ assert(!IS_ASSEMBLER_OPCODE(opcode));
+ return instr_sequence_addop(seq, opcode, target.id, loc);
+}
+
+#define RETURN_IF_ERROR_IN_SCOPE(C, CALL) { \
+ if ((CALL) < 0) { \
+ compiler_exit_scope((C)); \
+ return ERROR; \
+ } \
+}
+
+#define ADDOP(C, LOC, OP) \
+ RETURN_IF_ERROR(codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC)))
+
+#define ADDOP_IN_SCOPE(C, LOC, OP) RETURN_IF_ERROR_IN_SCOPE((C), codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC)))
+
+#define ADDOP_LOAD_CONST(C, LOC, O) \
+ RETURN_IF_ERROR(compiler_addop_load_const((C)->c_const_cache, (C)->u, (LOC), (O)))
+
+/* Same as ADDOP_LOAD_CONST, but steals a reference. */
+#define ADDOP_LOAD_CONST_NEW(C, LOC, O) { \
+ PyObject *__new_const = (O); \
+ if (__new_const == NULL) { \
+ return ERROR; \
+ } \
+ if (compiler_addop_load_const((C)->c_const_cache, (C)->u, (LOC), __new_const) < 0) { \
+ Py_DECREF(__new_const); \
+ return ERROR; \
+ } \
+ Py_DECREF(__new_const); \
+}
+
+#define ADDOP_N(C, LOC, OP, O, TYPE) { \
+ assert(!HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \
+ if (compiler_addop_o((C)->u, (LOC), (OP), (C)->u->u_metadata.u_ ## TYPE, (O)) < 0) { \
+ Py_DECREF((O)); \
+ return ERROR; \
+ } \
+ Py_DECREF((O)); \
+}
+
+#define ADDOP_NAME(C, LOC, OP, O, TYPE) \
+ RETURN_IF_ERROR(compiler_addop_name((C)->u, (LOC), (OP), (C)->u->u_metadata.u_ ## TYPE, (O)))
+
+#define ADDOP_I(C, LOC, OP, O) \
+ RETURN_IF_ERROR(codegen_addop_i(INSTR_SEQUENCE(C), (OP), (O), (LOC)))
+
+#define ADDOP_JUMP(C, LOC, OP, O) \
+ RETURN_IF_ERROR(codegen_addop_j(INSTR_SEQUENCE(C), (LOC), (OP), (O)))
+
+#define ADDOP_COMPARE(C, LOC, CMP) \
+ RETURN_IF_ERROR(compiler_addcompare((C), (LOC), (cmpop_ty)(CMP)))
+
+#define ADDOP_BINARY(C, LOC, BINOP) \
+ RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), false))
+
+#define ADDOP_INPLACE(C, LOC, BINOP) \
+ RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), true))
+
+#define ADD_YIELD_FROM(C, LOC, await) \
+ RETURN_IF_ERROR(compiler_add_yield_from((C), (LOC), (await)))
+
+#define POP_EXCEPT_AND_RERAISE(C, LOC) \
+ RETURN_IF_ERROR(compiler_pop_except_and_reraise((C), (LOC)))
+
+#define ADDOP_YIELD(C, LOC) \
+ RETURN_IF_ERROR(addop_yield((C), (LOC)))
+
+/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use
+ the ASDL name to synthesize the name of the C type and the visit function.
+*/
+
+#define VISIT(C, TYPE, V) \
+ RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), (V)));
+
+#define VISIT_IN_SCOPE(C, TYPE, V) \
+ RETURN_IF_ERROR_IN_SCOPE((C), compiler_visit_ ## TYPE((C), (V)))
+
+#define VISIT_SEQ(C, TYPE, SEQ) { \
+ int _i; \
+ asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
+ for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
+ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
+ RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), elt)); \
+ } \
+}
+
+#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
+ int _i; \
+ asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
+ for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
+ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
+ if (compiler_visit_ ## TYPE((C), elt) < 0) { \
+ compiler_exit_scope(C); \
+ return ERROR; \
+ } \
+ } \
+}
+
+
+static int
+compiler_enter_scope(struct compiler *c, identifier name,
+ int scope_type, void *key, int lineno)
+{
+ location loc = LOCATION(lineno, lineno, 0, 0);
+
+ struct compiler_unit *u;
+
+ u = (struct compiler_unit *)PyObject_Calloc(1, sizeof(
+ struct compiler_unit));
+ if (!u) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ u->u_scope_type = scope_type;
+ u->u_metadata.u_argcount = 0;
+ u->u_metadata.u_posonlyargcount = 0;
+ u->u_metadata.u_kwonlyargcount = 0;
+ u->u_ste = PySymtable_Lookup(c->c_st, key);
+ if (!u->u_ste) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ u->u_metadata.u_name = Py_NewRef(name);
+ u->u_metadata.u_varnames = list2dict(u->u_ste->ste_varnames);
+ if (!u->u_metadata.u_varnames) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ u->u_metadata.u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, DEF_COMP_CELL, 0);
+ if (!u->u_metadata.u_cellvars) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ if (u->u_ste->ste_needs_class_closure) {
+ /* Cook up an implicit __class__ cell. */
+ Py_ssize_t res;
+ assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
+ res = dict_add_o(u->u_metadata.u_cellvars, &_Py_ID(__class__));
+ if (res < 0) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ }
+ if (u->u_ste->ste_needs_classdict) {
+ /* Cook up an implicit __classdict__ cell. */
+ Py_ssize_t res;
+ assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
+ res = dict_add_o(u->u_metadata.u_cellvars, &_Py_ID(__classdict__));
+ if (res < 0) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ }
+
+ u->u_metadata.u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
+ PyDict_GET_SIZE(u->u_metadata.u_cellvars));
+ if (!u->u_metadata.u_freevars) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+
+ u->u_metadata.u_fasthidden = PyDict_New();
+ if (!u->u_metadata.u_fasthidden) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+
+ u->u_nfblocks = 0;
+ u->u_in_inlined_comp = 0;
+ u->u_metadata.u_firstlineno = lineno;
+ u->u_metadata.u_consts = PyDict_New();
+ if (!u->u_metadata.u_consts) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ u->u_metadata.u_names = PyDict_New();
+ if (!u->u_metadata.u_names) {
+ compiler_unit_free(u);
+ return ERROR;
+ }
+
+ u->u_private = NULL;
+
+ /* Push the old compiler_unit on the stack. */
+ if (c->u) {
+ PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
+ if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
+ Py_XDECREF(capsule);
+ compiler_unit_free(u);
+ return ERROR;
+ }
+ Py_DECREF(capsule);
+ u->u_private = Py_XNewRef(c->u->u_private);
+ }
+ c->u = u;
+
+ c->c_nestlevel++;
+
+ if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
+ loc.lineno = 0;
+ }
+ else {
+ RETURN_IF_ERROR(compiler_set_qualname(c));
+ }
+ ADDOP_I(c, loc, RESUME, 0);
+
+ if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
+ loc.lineno = -1;
+ }
+ return SUCCESS;
+}
+
+static void
+compiler_exit_scope(struct compiler *c)
+{
+ // Don't call PySequence_DelItem() with an exception raised
+ PyObject *exc = PyErr_GetRaisedException();
+
+ c->c_nestlevel--;
+ compiler_unit_free(c->u);
+ /* Restore c->u to the parent unit. */
+ Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1;
+ if (n >= 0) {
+ PyObject *capsule = PyList_GET_ITEM(c->c_stack, n);
+ c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(c->u);
+ /* we are deleting from a list so this really shouldn't fail */
+ if (PySequence_DelItem(c->c_stack, n) < 0) {
+ _PyErr_WriteUnraisableMsg("on removing the last compiler "
+ "stack item", NULL);
+ }
+ }
+ else {
+ c->u = NULL;
+ }
+
+ PyErr_SetRaisedException(exc);
+}
+
+/* Search if variable annotations are present statically in a block. */
+
+static bool
+find_ann(asdl_stmt_seq *stmts)
+{
+ int i, j, res = 0;
+ stmt_ty st;
+
+ for (i = 0; i < asdl_seq_LEN(stmts); i++) {
+ st = (stmt_ty)asdl_seq_GET(stmts, i);
+ switch (st->kind) {
+ case AnnAssign_kind:
+ return true;
+ case For_kind:
+ res = find_ann(st->v.For.body) ||
+ find_ann(st->v.For.orelse);
+ break;
+ case AsyncFor_kind:
+ res = find_ann(st->v.AsyncFor.body) ||
+ find_ann(st->v.AsyncFor.orelse);
+ break;
+ case While_kind:
+ res = find_ann(st->v.While.body) ||
+ find_ann(st->v.While.orelse);
+ break;
+ case If_kind:
+ res = find_ann(st->v.If.body) ||
+ find_ann(st->v.If.orelse);
+ break;
+ case With_kind:
+ res = find_ann(st->v.With.body);
+ break;
+ case AsyncWith_kind:
+ res = find_ann(st->v.AsyncWith.body);
+ break;
+ case Try_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ st->v.Try.handlers, j);
+ if (find_ann(handler->v.ExceptHandler.body)) {
+ return true;
+ }
+ }
+ res = find_ann(st->v.Try.body) ||
+ find_ann(st->v.Try.finalbody) ||
+ find_ann(st->v.Try.orelse);
+ break;
+ case TryStar_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ st->v.TryStar.handlers, j);
+ if (find_ann(handler->v.ExceptHandler.body)) {
+ return true;
+ }
+ }
+ res = find_ann(st->v.TryStar.body) ||
+ find_ann(st->v.TryStar.finalbody) ||
+ find_ann(st->v.TryStar.orelse);
+ break;
+ case Match_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.Match.cases); j++) {
+ match_case_ty match_case = (match_case_ty)asdl_seq_GET(
+ st->v.Match.cases, j);
+ if (find_ann(match_case->body)) {
+ return true;
+ }
+ }
+ break;
+ default:
+ res = false;
+ break;
+ }
+ if (res) {
+ break;
+ }
+ }
+ return res;
+}
+
+/*
+ * Frame block handling functions
+ */
+
+static int
+compiler_push_fblock(struct compiler *c, location loc,
+ enum fblocktype t, jump_target_label block_label,
+ jump_target_label exit, void *datum)
+{
+ struct fblockinfo *f;
+ if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
+ return compiler_error(c, loc, "too many statically nested blocks");
+ }
+ f = &c->u->u_fblock[c->u->u_nfblocks++];
+ f->fb_type = t;
+ f->fb_block = block_label;
+ f->fb_exit = exit;
+ f->fb_datum = datum;
+ return SUCCESS;
+}
+
+static void
+compiler_pop_fblock(struct compiler *c, enum fblocktype t, jump_target_label block_label)
+{
+ struct compiler_unit *u = c->u;
+ assert(u->u_nfblocks > 0);
+ u->u_nfblocks--;
+ assert(u->u_fblock[u->u_nfblocks].fb_type == t);
+ assert(SAME_LABEL(u->u_fblock[u->u_nfblocks].fb_block, block_label));
+}
+
+static int
+compiler_call_exit_with_nones(struct compiler *c, location loc)
+{
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADDOP_I(c, loc, CALL, 2);
+ return SUCCESS;
+}
+
+static int
+compiler_add_yield_from(struct compiler *c, location loc, int await)
+{
+ NEW_JUMP_TARGET_LABEL(c, send);
+ NEW_JUMP_TARGET_LABEL(c, fail);
+ NEW_JUMP_TARGET_LABEL(c, exit);
+
+ USE_LABEL(c, send);
+ ADDOP_JUMP(c, loc, SEND, exit);
+ // Set up a virtual try/except to handle when StopIteration is raised during
+ // a close or throw call. The only way YIELD_VALUE raises if they do!
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, fail);
+ ADDOP_I(c, loc, YIELD_VALUE, 0);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP_I(c, loc, RESUME, await ? 3 : 2);
+ ADDOP_JUMP(c, loc, JUMP_NO_INTERRUPT, send);
+
+ USE_LABEL(c, fail);
+ ADDOP(c, loc, CLEANUP_THROW);
+
+ USE_LABEL(c, exit);
+ ADDOP(c, loc, END_SEND);
+ return SUCCESS;
+}
+
+static int
+compiler_pop_except_and_reraise(struct compiler *c, location loc)
+{
+ /* Stack contents
+ * [exc_info, lasti, exc] COPY 3
+ * [exc_info, lasti, exc, exc_info] POP_EXCEPT
+ * [exc_info, lasti, exc] RERAISE 1
+ * (exception_unwind clears the stack)
+ */
+
+ ADDOP_I(c, loc, COPY, 3);
+ ADDOP(c, loc, POP_EXCEPT);
+ ADDOP_I(c, loc, RERAISE, 1);
+ return SUCCESS;
+}
+
+/* Unwind a frame block. If preserve_tos is true, the TOS before
+ * popping the blocks will be restored afterwards, unless another
+ * return, break or continue is found. In which case, the TOS will
+ * be popped.
+ */
+static int
+compiler_unwind_fblock(struct compiler *c, location *ploc,
+ struct fblockinfo *info, int preserve_tos)
+{
+ switch (info->fb_type) {
+ case WHILE_LOOP:
+ case EXCEPTION_HANDLER:
+ case EXCEPTION_GROUP_HANDLER:
+ case ASYNC_COMPREHENSION_GENERATOR:
+ return SUCCESS;
+
+ case FOR_LOOP:
+ /* Pop the iterator */
+ if (preserve_tos) {
+ ADDOP_I(c, *ploc, SWAP, 2);
+ }
+ ADDOP(c, *ploc, POP_TOP);
+ return SUCCESS;
+
+ case TRY_EXCEPT:
+ ADDOP(c, *ploc, POP_BLOCK);
+ return SUCCESS;
+
+ case FINALLY_TRY:
+ /* This POP_BLOCK gets the line number of the unwinding statement */
+ ADDOP(c, *ploc, POP_BLOCK);
+ if (preserve_tos) {
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, *ploc, POP_VALUE, NO_LABEL, NO_LABEL, NULL));
+ }
+ /* Emit the finally block */
+ VISIT_SEQ(c, stmt, info->fb_datum);
+ if (preserve_tos) {
+ compiler_pop_fblock(c, POP_VALUE, NO_LABEL);
+ }
+ /* The finally block should appear to execute after the
+ * statement causing the unwinding, so make the unwinding
+ * instruction artificial */
+ *ploc = NO_LOCATION;
+ return SUCCESS;
+
+ case FINALLY_END:
+ if (preserve_tos) {
+ ADDOP_I(c, *ploc, SWAP, 2);
+ }
+ ADDOP(c, *ploc, POP_TOP); /* exc_value */
+ if (preserve_tos) {
+ ADDOP_I(c, *ploc, SWAP, 2);
+ }
+ ADDOP(c, *ploc, POP_BLOCK);
+ ADDOP(c, *ploc, POP_EXCEPT);
+ return SUCCESS;
+
+ case WITH:
+ case ASYNC_WITH:
+ *ploc = LOC((stmt_ty)info->fb_datum);
+ ADDOP(c, *ploc, POP_BLOCK);
+ if (preserve_tos) {
+ ADDOP_I(c, *ploc, SWAP, 2);
+ }
+ RETURN_IF_ERROR(compiler_call_exit_with_nones(c, *ploc));
+ if (info->fb_type == ASYNC_WITH) {
+ ADDOP_I(c, *ploc, GET_AWAITABLE, 2);
+ ADDOP_LOAD_CONST(c, *ploc, Py_None);
+ ADD_YIELD_FROM(c, *ploc, 1);
+ }
+ ADDOP(c, *ploc, POP_TOP);
+ /* The exit block should appear to execute after the
+ * statement causing the unwinding, so make the unwinding
+ * instruction artificial */
+ *ploc = NO_LOCATION;
+ return SUCCESS;
+
+ case HANDLER_CLEANUP: {
+ if (info->fb_datum) {
+ ADDOP(c, *ploc, POP_BLOCK);
+ }
+ if (preserve_tos) {
+ ADDOP_I(c, *ploc, SWAP, 2);
+ }
+ ADDOP(c, *ploc, POP_BLOCK);
+ ADDOP(c, *ploc, POP_EXCEPT);
+ if (info->fb_datum) {
+ ADDOP_LOAD_CONST(c, *ploc, Py_None);
+ RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Store));
+ RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Del));
+ }
+ return SUCCESS;
+ }
+ case POP_VALUE: {
+ if (preserve_tos) {
+ ADDOP_I(c, *ploc, SWAP, 2);
+ }
+ ADDOP(c, *ploc, POP_TOP);
+ return SUCCESS;
+ }
+ }
+ Py_UNREACHABLE();
+}
+
+/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
+static int
+compiler_unwind_fblock_stack(struct compiler *c, location *ploc,
+ int preserve_tos, struct fblockinfo **loop)
+{
+ if (c->u->u_nfblocks == 0) {
+ return SUCCESS;
+ }
+ struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
+ if (top->fb_type == EXCEPTION_GROUP_HANDLER) {
+ return compiler_error(
+ c, *ploc, "'break', 'continue' and 'return' cannot appear in an except* block");
+ }
+ if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
+ *loop = top;
+ return SUCCESS;
+ }
+ struct fblockinfo copy = *top;
+ c->u->u_nfblocks--;
+ RETURN_IF_ERROR(compiler_unwind_fblock(c, ploc, &copy, preserve_tos));
+ RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, ploc, preserve_tos, loop));
+ c->u->u_fblock[c->u->u_nfblocks] = copy;
+ c->u->u_nfblocks++;
+ return SUCCESS;
+}
+
+/* Compile a sequence of statements, checking for a docstring
+ and for annotations. */
+
+static int
+compiler_body(struct compiler *c, location loc, asdl_stmt_seq *stmts)
+{
+ int i = 0;
+ stmt_ty st;
+ PyObject *docstring;
+
+ /* Set current line number to the line number of first statement.
+ This way line number for SETUP_ANNOTATIONS will always
+ coincide with the line number of first "real" statement in module.
+ If body is empty, then lineno will be set later in optimize_and_assemble. */
+ if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) {
+ st = (stmt_ty)asdl_seq_GET(stmts, 0);
+ loc = LOC(st);
+ }
+ /* Every annotated class and module should have __annotations__. */
+ if (find_ann(stmts)) {
+ ADDOP(c, loc, SETUP_ANNOTATIONS);
+ }
+ if (!asdl_seq_LEN(stmts)) {
+ return SUCCESS;
+ }
+ /* if not -OO mode, set docstring */
+ if (c->c_optimize < 2) {
+ docstring = _PyAST_GetDocString(stmts);
+ if (docstring) {
+ i = 1;
+ st = (stmt_ty)asdl_seq_GET(stmts, 0);
+ assert(st->kind == Expr_kind);
+ VISIT(c, expr, st->v.Expr.value);
+ RETURN_IF_ERROR(compiler_nameop(c, NO_LOCATION, &_Py_ID(__doc__), Store));
+ }
+ }
+ for (; i < asdl_seq_LEN(stmts); i++) {
+ VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_codegen(struct compiler *c, mod_ty mod)
+{
+ _Py_DECLARE_STR(anon_module, "<module>");
+ RETURN_IF_ERROR(
+ compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE,
+ mod, 1));
+
+ location loc = LOCATION(1, 1, 0, 0);
+ switch (mod->kind) {
+ case Module_kind:
+ if (compiler_body(c, loc, mod->v.Module.body) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ break;
+ case Interactive_kind:
+ if (find_ann(mod->v.Interactive.body)) {
+ ADDOP(c, loc, SETUP_ANNOTATIONS);
+ }
+ c->c_interactive = 1;
+ VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body);
+ break;
+ case Expression_kind:
+ VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "module kind %d should not be possible",
+ mod->kind);
+ return ERROR;
+ }
+ return SUCCESS;
+}
+
+static PyCodeObject *
+compiler_mod(struct compiler *c, mod_ty mod)
+{
+ int addNone = mod->kind != Expression_kind;
+ if (compiler_codegen(c, mod) < 0) {
+ return NULL;
+ }
+ PyCodeObject *co = optimize_and_assemble(c, addNone);
+ compiler_exit_scope(c);
+ return co;
+}
+
+/* The test for LOCAL must come before the test for FREE in order to
+ handle classes where name is both local and free. The local var is
+ a method and the free var is a free var referenced within a method.
+*/
+
+static int
+get_ref_type(struct compiler *c, PyObject *name)
+{
+ int scope;
+ if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
+ (_PyUnicode_EqualToASCIIString(name, "__class__") ||
+ _PyUnicode_EqualToASCIIString(name, "__classdict__"))) {
+ return CELL;
+ }
+ scope = _PyST_GetScope(c->u->u_ste, name);
+ if (scope == 0) {
+ PyErr_Format(PyExc_SystemError,
+ "_PyST_GetScope(name=%R) failed: "
+ "unknown scope in unit %S (%R); "
+ "symbols: %R; locals: %R; globals: %R",
+ name,
+ c->u->u_metadata.u_name, c->u->u_ste->ste_id,
+ c->u->u_ste->ste_symbols, c->u->u_metadata.u_varnames, c->u->u_metadata.u_names);
+ return ERROR;
+ }
+ return scope;
+}
+
+static int
+compiler_lookup_arg(PyObject *dict, PyObject *name)
+{
+ PyObject *v = PyDict_GetItemWithError(dict, name);
+ if (v == NULL) {
+ return ERROR;
+ }
+ return PyLong_AS_LONG(v);
+}
+
+static int
+compiler_make_closure(struct compiler *c, location loc,
+ PyCodeObject *co, Py_ssize_t flags)
+{
+ if (co->co_nfreevars) {
+ int i = PyCode_GetFirstFree(co);
+ for (; i < co->co_nlocalsplus; ++i) {
+ /* Bypass com_addop_varname because it will generate
+ LOAD_DEREF but LOAD_CLOSURE is needed.
+ */
+ PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i);
+
+ /* Special case: If a class contains a method with a
+ free variable that has the same name as a method,
+ the name will be considered free *and* local in the
+ class. It should be handled by the closure, as
+ well as by the normal name lookup logic.
+ */
+ int reftype = get_ref_type(c, name);
+ if (reftype == -1) {
+ return ERROR;
+ }
+ int arg;
+ if (reftype == CELL) {
+ arg = compiler_lookup_arg(c->u->u_metadata.u_cellvars, name);
+ }
+ else {
+ arg = compiler_lookup_arg(c->u->u_metadata.u_freevars, name);
+ }
+ if (arg == -1) {
+ PyObject *freevars = _PyCode_GetFreevars(co);
+ if (freevars == NULL) {
+ PyErr_Clear();
+ }
+ PyErr_Format(PyExc_SystemError,
+ "compiler_lookup_arg(name=%R) with reftype=%d failed in %S; "
+ "freevars of code %S: %R",
+ name,
+ reftype,
+ c->u->u_metadata.u_name,
+ co->co_name,
+ freevars);
+ Py_DECREF(freevars);
+ return ERROR;
+ }
+ ADDOP_I(c, loc, LOAD_CLOSURE, arg);
+ }
+ flags |= 0x08;
+ ADDOP_I(c, loc, BUILD_TUPLE, co->co_nfreevars);
+ }
+ ADDOP_LOAD_CONST(c, loc, (PyObject*)co);
+ ADDOP_I(c, loc, MAKE_FUNCTION, flags);
+ return SUCCESS;
+}
+
+static int
+compiler_decorators(struct compiler *c, asdl_expr_seq* decos)
+{
+ if (!decos) {
+ return SUCCESS;
+ }
+
+ for (Py_ssize_t i = 0; i < asdl_seq_LEN(decos); i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos)
+{
+ if (!decos) {
+ return SUCCESS;
+ }
+
+ for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) {
+ location loc = LOC((expr_ty)asdl_seq_GET(decos, i));
+ ADDOP_I(c, loc, CALL, 0);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_visit_kwonlydefaults(struct compiler *c, location loc,
+ asdl_arg_seq *kwonlyargs, asdl_expr_seq *kw_defaults)
+{
+ /* Push a dict of keyword-only default values.
+
+ Return -1 on error, 0 if no dict pushed, 1 if a dict is pushed.
+ */
+ int i;
+ PyObject *keys = NULL;
+
+ for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
+ arg_ty arg = asdl_seq_GET(kwonlyargs, i);
+ expr_ty default_ = asdl_seq_GET(kw_defaults, i);
+ if (default_) {
+ PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
+ if (!mangled) {
+ goto error;
+ }
+ if (keys == NULL) {
+ keys = PyList_New(1);
+ if (keys == NULL) {
+ Py_DECREF(mangled);
+ return ERROR;
+ }
+ PyList_SET_ITEM(keys, 0, mangled);
+ }
+ else {
+ int res = PyList_Append(keys, mangled);
+ Py_DECREF(mangled);
+ if (res == -1) {
+ goto error;
+ }
+ }
+ if (compiler_visit_expr(c, default_) < 0) {
+ goto error;
+ }
+ }
+ }
+ if (keys != NULL) {
+ Py_ssize_t default_count = PyList_GET_SIZE(keys);
+ PyObject *keys_tuple = PyList_AsTuple(keys);
+ Py_DECREF(keys);
+ ADDOP_LOAD_CONST_NEW(c, loc, keys_tuple);
+ ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, default_count);
+ assert(default_count > 0);
+ return 1;
+ }
+ else {
+ return 0;
+ }
+
+error:
+ Py_XDECREF(keys);
+ return ERROR;
+}
+
+static int
+compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
+{
+ location loc = LOC(annotation);
+ ADDOP_LOAD_CONST_NEW(c, loc, _PyAST_ExprAsUnicode(annotation));
+ return SUCCESS;
+}
+
+static int
+compiler_visit_argannotation(struct compiler *c, identifier id,
+ expr_ty annotation, Py_ssize_t *annotations_len, location loc)
+{
+ if (!annotation) {
+ return SUCCESS;
+ }
+ PyObject *mangled = _Py_Mangle(c->u->u_private, id);
+ if (!mangled) {
+ return ERROR;
+ }
+ ADDOP_LOAD_CONST(c, loc, mangled);
+ Py_DECREF(mangled);
+
+ if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
+ VISIT(c, annexpr, annotation);
+ }
+ else {
+ if (annotation->kind == Starred_kind) {
+ // *args: *Ts (where Ts is a TypeVarTuple).
+ // Do [annotation_value] = [*Ts].
+ // (Note that in theory we could end up here even for an argument
+ // other than *args, but in practice the grammar doesn't allow it.)
+ VISIT(c, expr, annotation->v.Starred.value);
+ ADDOP_I(c, loc, UNPACK_SEQUENCE, (Py_ssize_t) 1);
+ }
+ else {
+ VISIT(c, expr, annotation);
+ }
+ }
+ *annotations_len += 2;
+ return SUCCESS;
+}
+
+static int
+compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args,
+ Py_ssize_t *annotations_len, location loc)
+{
+ int i;
+ for (i = 0; i < asdl_seq_LEN(args); i++) {
+ arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
+ RETURN_IF_ERROR(
+ compiler_visit_argannotation(
+ c,
+ arg->arg,
+ arg->annotation,
+ annotations_len,
+ loc));
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_visit_annotations(struct compiler *c, location loc,
+ arguments_ty args, expr_ty returns)
+{
+ /* Push arg annotation names and values.
+ The expressions are evaluated out-of-order wrt the source code.
+
+ Return -1 on error, 0 if no annotations pushed, 1 if a annotations is pushed.
+ */
+ Py_ssize_t annotations_len = 0;
+
+ RETURN_IF_ERROR(
+ compiler_visit_argannotations(c, args->args, &annotations_len, loc));
+
+ RETURN_IF_ERROR(
+ compiler_visit_argannotations(c, args->posonlyargs, &annotations_len, loc));
+
+ if (args->vararg && args->vararg->annotation) {
+ RETURN_IF_ERROR(
+ compiler_visit_argannotation(c, args->vararg->arg,
+ args->vararg->annotation, &annotations_len, loc));
+ }
+
+ RETURN_IF_ERROR(
+ compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len, loc));
+
+ if (args->kwarg && args->kwarg->annotation) {
+ RETURN_IF_ERROR(
+ compiler_visit_argannotation(c, args->kwarg->arg,
+ args->kwarg->annotation, &annotations_len, loc));
+ }
+
+ RETURN_IF_ERROR(
+ compiler_visit_argannotation(c, &_Py_ID(return), returns, &annotations_len, loc));
+
+ if (annotations_len) {
+ ADDOP_I(c, loc, BUILD_TUPLE, annotations_len);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int
+compiler_visit_defaults(struct compiler *c, arguments_ty args,
+ location loc)
+{
+ VISIT_SEQ(c, expr, args->defaults);
+ ADDOP_I(c, loc, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
+ return SUCCESS;
+}
+
+static Py_ssize_t
+compiler_default_arguments(struct compiler *c, location loc,
+ arguments_ty args)
+{
+ Py_ssize_t funcflags = 0;
+ if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
+ RETURN_IF_ERROR(compiler_visit_defaults(c, args, loc));
+ funcflags |= 0x01;
+ }
+ if (args->kwonlyargs) {
+ int res = compiler_visit_kwonlydefaults(c, loc,
+ args->kwonlyargs,
+ args->kw_defaults);
+ RETURN_IF_ERROR(res);
+ if (res > 0) {
+ funcflags |= 0x02;
+ }
+ }
+ return funcflags;
+}
+
+static bool
+forbidden_name(struct compiler *c, location loc, identifier name,
+ expr_context_ty ctx)
+{
+ if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
+ compiler_error(c, loc, "cannot assign to __debug__");
+ return true;
+ }
+ if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
+ compiler_error(c, loc, "cannot delete __debug__");
+ return true;
+ }
+ return false;
+}
+
+static int
+compiler_check_debug_one_arg(struct compiler *c, arg_ty arg)
+{
+ if (arg != NULL) {
+ if (forbidden_name(c, LOC(arg), arg->arg, Store)) {
+ return ERROR;
+ }
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args)
+{
+ if (args != NULL) {
+ for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) {
+ RETURN_IF_ERROR(
+ compiler_check_debug_one_arg(c, asdl_seq_GET(args, i)));
+ }
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_check_debug_args(struct compiler *c, arguments_ty args)
+{
+ RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->posonlyargs));
+ RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->args));
+ RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->vararg));
+ RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->kwonlyargs));
+ RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->kwarg));
+ return SUCCESS;
+}
+
+static int
+wrap_in_stopiteration_handler(struct compiler *c)
+{
+ NEW_JUMP_TARGET_LABEL(c, handler);
+
+ /* Insert SETUP_CLEANUP at start */
+ RETURN_IF_ERROR(
+ instr_sequence_insert_instruction(
+ INSTR_SEQUENCE(c), 0,
+ SETUP_CLEANUP, handler.id, NO_LOCATION));
+
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ ADDOP(c, NO_LOCATION, RETURN_VALUE);
+ USE_LABEL(c, handler);
+ ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_1, INTRINSIC_STOPITERATION_ERROR);
+ ADDOP_I(c, NO_LOCATION, RERAISE, 1);
+ return SUCCESS;
+}
+
+static int
+compiler_type_params(struct compiler *c, asdl_type_param_seq *type_params)
+{
+ if (!type_params) {
+ return SUCCESS;
+ }
+ Py_ssize_t n = asdl_seq_LEN(type_params);
+
+ for (Py_ssize_t i = 0; i < n; i++) {
+ type_param_ty typeparam = asdl_seq_GET(type_params, i);
+ location loc = LOC(typeparam);
+ switch(typeparam->kind) {
+ case TypeVar_kind:
+ ADDOP_LOAD_CONST(c, loc, typeparam->v.TypeVar.name);
+ if (typeparam->v.TypeVar.bound) {
+ expr_ty bound = typeparam->v.TypeVar.bound;
+ if (compiler_enter_scope(c, typeparam->v.TypeVar.name, COMPILER_SCOPE_TYPEPARAMS,
+ (void *)typeparam, bound->lineno) == -1) {
+ return ERROR;
+ }
+ VISIT_IN_SCOPE(c, expr, bound);
+ ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
+ PyCodeObject *co = optimize_and_assemble(c, 1);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+
+ int intrinsic = bound->kind == Tuple_kind
+ ? INTRINSIC_TYPEVAR_WITH_CONSTRAINTS
+ : INTRINSIC_TYPEVAR_WITH_BOUND;
+ ADDOP_I(c, loc, CALL_INTRINSIC_2, intrinsic);
+ }
+ else {
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEVAR);
+ }
+ ADDOP_I(c, loc, COPY, 1);
+ RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.TypeVar.name, Store));
+ break;
+ case TypeVarTuple_kind:
+ ADDOP_LOAD_CONST(c, loc, typeparam->v.TypeVarTuple.name);
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEVARTUPLE);
+ ADDOP_I(c, loc, COPY, 1);
+ RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.TypeVarTuple.name, Store));
+ break;
+ case ParamSpec_kind:
+ ADDOP_LOAD_CONST(c, loc, typeparam->v.ParamSpec.name);
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PARAMSPEC);
+ ADDOP_I(c, loc, COPY, 1);
+ RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.ParamSpec.name, Store));
+ break;
+ }
+ }
+ ADDOP_I(c, LOC(asdl_seq_GET(type_params, 0)), BUILD_TUPLE, n);
+ return SUCCESS;
+}
+
+static int
+compiler_function_body(struct compiler *c, stmt_ty s, int is_async, Py_ssize_t funcflags,
+ int firstlineno)
+{
+ PyObject *docstring = NULL;
+ arguments_ty args;
+ identifier name;
+ asdl_stmt_seq *body;
+ int scope_type;
+
+ if (is_async) {
+ assert(s->kind == AsyncFunctionDef_kind);
+
+ args = s->v.AsyncFunctionDef.args;
+ name = s->v.AsyncFunctionDef.name;
+ body = s->v.AsyncFunctionDef.body;
+
+ scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
+ } else {
+ assert(s->kind == FunctionDef_kind);
+
+ args = s->v.FunctionDef.args;
+ name = s->v.FunctionDef.name;
+ body = s->v.FunctionDef.body;
+
+ scope_type = COMPILER_SCOPE_FUNCTION;
+ }
+
+ RETURN_IF_ERROR(
+ compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno));
+
+ /* if not -OO mode, add docstring */
+ if (c->c_optimize < 2) {
+ docstring = _PyAST_GetDocString(body);
+ }
+ if (compiler_add_const(c->c_const_cache, c->u, docstring ? docstring : Py_None) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+
+ c->u->u_metadata.u_argcount = asdl_seq_LEN(args->args);
+ c->u->u_metadata.u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
+ c->u->u_metadata.u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
+ for (Py_ssize_t i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) {
+ VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i));
+ }
+ if (c->u->u_ste->ste_coroutine || c->u->u_ste->ste_generator) {
+ if (wrap_in_stopiteration_handler(c) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ }
+ PyCodeObject *co = optimize_and_assemble(c, 1);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ Py_XDECREF(co);
+ return ERROR;
+ }
+ location loc = LOC(s);
+ if (compiler_make_closure(c, loc, co, funcflags) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+ return SUCCESS;
+}
+
+static int
+compiler_function(struct compiler *c, stmt_ty s, int is_async)
+{
+ arguments_ty args;
+ expr_ty returns;
+ identifier name;
+ asdl_expr_seq *decos;
+ asdl_type_param_seq *type_params;
+ Py_ssize_t funcflags;
+ int annotations;
+ int firstlineno;
+
+ if (is_async) {
+ assert(s->kind == AsyncFunctionDef_kind);
+
+ args = s->v.AsyncFunctionDef.args;
+ returns = s->v.AsyncFunctionDef.returns;
+ decos = s->v.AsyncFunctionDef.decorator_list;
+ name = s->v.AsyncFunctionDef.name;
+ type_params = s->v.AsyncFunctionDef.type_params;
+ } else {
+ assert(s->kind == FunctionDef_kind);
+
+ args = s->v.FunctionDef.args;
+ returns = s->v.FunctionDef.returns;
+ decos = s->v.FunctionDef.decorator_list;
+ name = s->v.FunctionDef.name;
+ type_params = s->v.FunctionDef.type_params;
+ }
+
+ RETURN_IF_ERROR(compiler_check_debug_args(c, args));
+ RETURN_IF_ERROR(compiler_decorators(c, decos));
+
+ firstlineno = s->lineno;
+ if (asdl_seq_LEN(decos)) {
+ firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
+ }
+
+ location loc = LOC(s);
+
+ int is_generic = asdl_seq_LEN(type_params) > 0;
+
+ if (is_generic) {
+ // Used by the CALL to the type parameters function.
+ ADDOP(c, loc, PUSH_NULL);
+ }
+
+ funcflags = compiler_default_arguments(c, loc, args);
+ if (funcflags == -1) {
+ return ERROR;
+ }
+
+ int num_typeparam_args = 0;
+
+ if (is_generic) {
+ if (funcflags & 0x01) {
+ num_typeparam_args += 1;
+ }
+ if (funcflags & 0x02) {
+ num_typeparam_args += 1;
+ }
+ if (num_typeparam_args == 2) {
+ ADDOP_I(c, loc, SWAP, 2);
+ }
+ PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>", name);
+ if (!type_params_name) {
+ return ERROR;
+ }
+ if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS,
+ (void *)type_params, firstlineno) == -1) {
+ Py_DECREF(type_params_name);
+ return ERROR;
+ }
+ Py_DECREF(type_params_name);
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params));
+ if ((funcflags & 0x01) || (funcflags & 0x02)) {
+ RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(INSTR_SEQUENCE(c), LOAD_FAST, 0, loc));
+ }
+ if ((funcflags & 0x01) && (funcflags & 0x02)) {
+ RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(INSTR_SEQUENCE(c), LOAD_FAST, 1, loc));
+ }
+ }
+
+ annotations = compiler_visit_annotations(c, loc, args, returns);
+ if (annotations < 0) {
+ if (is_generic) {
+ compiler_exit_scope(c);
+ }
+ return ERROR;
+ }
+ if (annotations > 0) {
+ funcflags |= 0x04;
+ }
+
+ if (compiler_function_body(c, s, is_async, funcflags, firstlineno) < 0) {
+ if (is_generic) {
+ compiler_exit_scope(c);
+ }
+ return ERROR;
+ }
+
+ if (is_generic) {
+ RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(
+ INSTR_SEQUENCE(c), SWAP, 2, loc));
+ RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(
+ INSTR_SEQUENCE(c), CALL_INTRINSIC_2, INTRINSIC_SET_FUNCTION_TYPE_PARAMS, loc));
+
+ c->u->u_metadata.u_argcount = num_typeparam_args;
+ PyCodeObject *co = optimize_and_assemble(c, 0);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+ if (num_typeparam_args > 0) {
+ ADDOP_I(c, loc, SWAP, num_typeparam_args + 1);
+ }
+ ADDOP_I(c, loc, CALL, num_typeparam_args);
+ }
+
+ RETURN_IF_ERROR(compiler_apply_decorators(c, decos));
+ return compiler_nameop(c, loc, name, Store);
+}
+
+static int
+compiler_set_type_params_in_class(struct compiler *c, location loc)
+{
+ _Py_DECLARE_STR(type_params, ".type_params");
+ RETURN_IF_ERROR(compiler_nameop(c, loc, &_Py_STR(type_params), Load));
+ RETURN_IF_ERROR(compiler_nameop(c, loc, &_Py_ID(__type_params__), Store));
+ return 1;
+}
+
+static int
+compiler_class_body(struct compiler *c, stmt_ty s, int firstlineno)
+{
+ /* ultimately generate code for:
+ <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
+ where:
+ <func> is a zero arg function/closure created from the class body.
+ It mutates its locals to build the class namespace.
+ <name> is the class name
+ <bases> is the positional arguments and *varargs argument
+ <keywords> is the keyword arguments and **kwds argument
+ This borrows from compiler_call.
+ */
+
+ /* 1. compile the class body into a code object */
+ RETURN_IF_ERROR(
+ compiler_enter_scope(c, s->v.ClassDef.name,
+ COMPILER_SCOPE_CLASS, (void *)s, firstlineno));
+
+ location loc = LOCATION(firstlineno, firstlineno, 0, 0);
+ /* use the class name for name mangling */
+ Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name));
+ /* load (global) __name__ ... */
+ if (compiler_nameop(c, loc, &_Py_ID(__name__), Load) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ /* ... and store it as __module__ */
+ if (compiler_nameop(c, loc, &_Py_ID(__module__), Store) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ assert(c->u->u_metadata.u_qualname);
+ ADDOP_LOAD_CONST(c, loc, c->u->u_metadata.u_qualname);
+ if (compiler_nameop(c, loc, &_Py_ID(__qualname__), Store) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ asdl_type_param_seq *type_params = s->v.ClassDef.type_params;
+ if (asdl_seq_LEN(type_params) > 0) {
+ if (!compiler_set_type_params_in_class(c, loc)) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ }
+ if (c->u->u_ste->ste_needs_classdict) {
+ ADDOP(c, loc, LOAD_LOCALS);
+
+ // We can't use compiler_nameop here because we need to generate a
+ // STORE_DEREF in a class namespace, and compiler_nameop() won't do
+ // that by default.
+ PyObject *cellvars = c->u->u_metadata.u_cellvars;
+ if (compiler_addop_o(c->u, loc, STORE_DEREF, cellvars,
+ &_Py_ID(__classdict__)) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ }
+ /* compile the body proper */
+ if (compiler_body(c, loc, s->v.ClassDef.body) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ /* The following code is artificial */
+ /* Set __classdictcell__ if necessary */
+ if (c->u->u_ste->ste_needs_classdict) {
+ /* Store __classdictcell__ into class namespace */
+ int i = compiler_lookup_arg(c->u->u_metadata.u_cellvars, &_Py_ID(__classdict__));
+ if (i < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i);
+ if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classdictcell__), Store) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ }
+ /* Return __classcell__ if it is referenced, otherwise return None */
+ if (c->u->u_ste->ste_needs_class_closure) {
+ /* Store __classcell__ into class namespace & return it */
+ int i = compiler_lookup_arg(c->u->u_metadata.u_cellvars, &_Py_ID(__class__));
+ if (i < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i);
+ ADDOP_I(c, NO_LOCATION, COPY, 1);
+ if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classcell__), Store) < 0) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ }
+ else {
+ /* No methods referenced __class__, so just return None */
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ }
+ ADDOP_IN_SCOPE(c, NO_LOCATION, RETURN_VALUE);
+ /* create the code object */
+ PyCodeObject *co = optimize_and_assemble(c, 1);
+
+ /* leave the new scope */
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+
+ /* 2. load the 'build_class' function */
+
+ // these instructions should be attributed to the class line,
+ // not a decorator line
+ loc = LOC(s);
+ ADDOP(c, loc, PUSH_NULL);
+ ADDOP(c, loc, LOAD_BUILD_CLASS);
+
+ /* 3. load a function (or closure) made from the code object */
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+
+ /* 4. load class name */
+ ADDOP_LOAD_CONST(c, loc, s->v.ClassDef.name);
+
+ return SUCCESS;
+}
+
+static int
+compiler_class(struct compiler *c, stmt_ty s)
+{
+ asdl_expr_seq *decos = s->v.ClassDef.decorator_list;
+
+ RETURN_IF_ERROR(compiler_decorators(c, decos));
+
+ int firstlineno = s->lineno;
+ if (asdl_seq_LEN(decos)) {
+ firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
+ }
+ location loc = LOC(s);
+
+ asdl_type_param_seq *type_params = s->v.ClassDef.type_params;
+ int is_generic = asdl_seq_LEN(type_params) > 0;
+ if (is_generic) {
+ Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name));
+ ADDOP(c, loc, PUSH_NULL);
+ PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>",
+ s->v.ClassDef.name);
+ if (!type_params_name) {
+ return ERROR;
+ }
+ if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS,
+ (void *)type_params, firstlineno) == -1) {
+ Py_DECREF(type_params_name);
+ return ERROR;
+ }
+ Py_DECREF(type_params_name);
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params));
+ _Py_DECLARE_STR(type_params, ".type_params");
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(type_params), Store));
+ }
+
+ if (compiler_class_body(c, s, firstlineno) < 0) {
+ if (is_generic) {
+ compiler_exit_scope(c);
+ }
+ return ERROR;
+ }
+
+ /* generate the rest of the code for the call */
+
+ if (is_generic) {
+ _Py_DECLARE_STR(type_params, ".type_params");
+ _Py_DECLARE_STR(generic_base, ".generic_base");
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(type_params), Load));
+ RETURN_IF_ERROR_IN_SCOPE(
+ c, codegen_addop_i(INSTR_SEQUENCE(c), CALL_INTRINSIC_1, INTRINSIC_SUBSCRIPT_GENERIC, loc)
+ )
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(generic_base), Store));
+
+ Py_ssize_t original_len = asdl_seq_LEN(s->v.ClassDef.bases);
+ asdl_expr_seq *bases = _Py_asdl_expr_seq_new(
+ original_len + 1, c->c_arena);
+ if (bases == NULL) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ for (Py_ssize_t i = 0; i < original_len; i++) {
+ asdl_seq_SET(bases, i, asdl_seq_GET(s->v.ClassDef.bases, i));
+ }
+ expr_ty name_node = _PyAST_Name(
+ &_Py_STR(generic_base), Load,
+ loc.lineno, loc.col_offset, loc.end_lineno, loc.end_col_offset, c->c_arena
+ );
+ if (name_node == NULL) {
+ compiler_exit_scope(c);
+ return ERROR;
+ }
+ asdl_seq_SET(bases, original_len, name_node);
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_call_helper(c, loc, 2,
+ bases,
+ s->v.ClassDef.keywords));
+
+ PyCodeObject *co = optimize_and_assemble(c, 0);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+ ADDOP_I(c, loc, CALL, 0);
+ } else {
+ RETURN_IF_ERROR(compiler_call_helper(c, loc, 2,
+ s->v.ClassDef.bases,
+ s->v.ClassDef.keywords));
+ }
+
+ /* 6. apply decorators */
+ RETURN_IF_ERROR(compiler_apply_decorators(c, decos));
+
+ /* 7. store into <name> */
+ RETURN_IF_ERROR(compiler_nameop(c, loc, s->v.ClassDef.name, Store));
+ return SUCCESS;
+}
+
+static int
+compiler_typealias_body(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ PyObject *name = s->v.TypeAlias.name->v.Name.id;
+ RETURN_IF_ERROR(
+ compiler_enter_scope(c, name, COMPILER_SCOPE_FUNCTION, s, loc.lineno));
+ /* Make None the first constant, so the evaluate function can't have a
+ docstring. */
+ RETURN_IF_ERROR(compiler_add_const(c->c_const_cache, c->u, Py_None));
+ VISIT_IN_SCOPE(c, expr, s->v.TypeAlias.value);
+ ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
+ PyCodeObject *co = optimize_and_assemble(c, 0);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+ ADDOP_I(c, loc, BUILD_TUPLE, 3);
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEALIAS);
+ return SUCCESS;
+}
+
+static int
+compiler_typealias(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ asdl_type_param_seq *type_params = s->v.TypeAlias.type_params;
+ int is_generic = asdl_seq_LEN(type_params) > 0;
+ PyObject *name = s->v.TypeAlias.name->v.Name.id;
+ if (is_generic) {
+ ADDOP(c, loc, PUSH_NULL);
+ PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>",
+ name);
+ if (!type_params_name) {
+ return ERROR;
+ }
+ if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS,
+ (void *)type_params, loc.lineno) == -1) {
+ Py_DECREF(type_params_name);
+ return ERROR;
+ }
+ Py_DECREF(type_params_name);
+ RETURN_IF_ERROR_IN_SCOPE(
+ c, compiler_addop_load_const(c->c_const_cache, c->u, loc, name)
+ );
+ RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params));
+ }
+ else {
+ ADDOP_LOAD_CONST(c, loc, name);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ }
+
+ if (compiler_typealias_body(c, s) < 0) {
+ if (is_generic) {
+ compiler_exit_scope(c);
+ }
+ return ERROR;
+ }
+
+ if (is_generic) {
+ PyCodeObject *co = optimize_and_assemble(c, 0);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+ ADDOP_I(c, loc, CALL, 0);
+ }
+ RETURN_IF_ERROR(compiler_nameop(c, loc, name, Store));
+ return SUCCESS;
+}
+
+/* Return false if the expression is a constant value except named singletons.
+ Return true otherwise. */
+static bool
+check_is_arg(expr_ty e)
+{
+ if (e->kind != Constant_kind) {
+ return true;
+ }
+ PyObject *value = e->v.Constant.value;
+ return (value == Py_None
+ || value == Py_False
+ || value == Py_True
+ || value == Py_Ellipsis);
+}
+
+static PyTypeObject * infer_type(expr_ty e);
+
+/* Check operands of identity checks ("is" and "is not").
+ Emit a warning if any operand is a constant except named singletons.
+ */
+static int
+check_compare(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n;
+ bool left = check_is_arg(e->v.Compare.left);
+ expr_ty left_expr = e->v.Compare.left;
+ n = asdl_seq_LEN(e->v.Compare.ops);
+ for (i = 0; i < n; i++) {
+ cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
+ expr_ty right_expr = (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i);
+ bool right = check_is_arg(right_expr);
+ if (op == Is || op == IsNot) {
+ if (!right || !left) {
+ const char *msg = (op == Is)
+ ? "\"is\" with '%.200s' literal. Did you mean \"==\"?"
+ : "\"is not\" with '%.200s' literal. Did you mean \"!=\"?";
+ expr_ty literal = !left ? left_expr : right_expr;
+ return compiler_warn(
+ c, LOC(e), msg, infer_type(literal)->tp_name
+ );
+ }
+ }
+ left = right;
+ left_expr = right_expr;
+ }
+ return SUCCESS;
+}
+
+static const int compare_masks[] = {
+ [Py_LT] = COMPARISON_LESS_THAN,
+ [Py_LE] = COMPARISON_LESS_THAN | COMPARISON_EQUALS,
+ [Py_EQ] = COMPARISON_EQUALS,
+ [Py_NE] = COMPARISON_NOT_EQUALS,
+ [Py_GT] = COMPARISON_GREATER_THAN,
+ [Py_GE] = COMPARISON_GREATER_THAN | COMPARISON_EQUALS,
+};
+
+static int compiler_addcompare(struct compiler *c, location loc,
+ cmpop_ty op)
+{
+ int cmp;
+ switch (op) {
+ case Eq:
+ cmp = Py_EQ;
+ break;
+ case NotEq:
+ cmp = Py_NE;
+ break;
+ case Lt:
+ cmp = Py_LT;
+ break;
+ case LtE:
+ cmp = Py_LE;
+ break;
+ case Gt:
+ cmp = Py_GT;
+ break;
+ case GtE:
+ cmp = Py_GE;
+ break;
+ case Is:
+ ADDOP_I(c, loc, IS_OP, 0);
+ return SUCCESS;
+ case IsNot:
+ ADDOP_I(c, loc, IS_OP, 1);
+ return SUCCESS;
+ case In:
+ ADDOP_I(c, loc, CONTAINS_OP, 0);
+ return SUCCESS;
+ case NotIn:
+ ADDOP_I(c, loc, CONTAINS_OP, 1);
+ return SUCCESS;
+ default:
+ Py_UNREACHABLE();
+ }
+ /* cmp goes in top bits of the oparg, while the low bits are used by quickened
+ * versions of this opcode to store the comparison mask. */
+ ADDOP_I(c, loc, COMPARE_OP, (cmp << 4) | compare_masks[cmp]);
+ return SUCCESS;
+}
+
+
+
+static int
+compiler_jump_if(struct compiler *c, location loc,
+ expr_ty e, jump_target_label next, int cond)
+{
+ switch (e->kind) {
+ case UnaryOp_kind:
+ if (e->v.UnaryOp.op == Not) {
+ return compiler_jump_if(c, loc, e->v.UnaryOp.operand, next, !cond);
+ }
+ /* fallback to general implementation */
+ break;
+ case BoolOp_kind: {
+ asdl_expr_seq *s = e->v.BoolOp.values;
+ Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
+ assert(n >= 0);
+ int cond2 = e->v.BoolOp.op == Or;
+ jump_target_label next2 = next;
+ if (!cond2 != !cond) {
+ NEW_JUMP_TARGET_LABEL(c, new_next2);
+ next2 = new_next2;
+ }
+ for (i = 0; i < n; ++i) {
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, i), next2, cond2));
+ }
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, n), next, cond));
+ if (!SAME_LABEL(next2, next)) {
+ USE_LABEL(c, next2);
+ }
+ return SUCCESS;
+ }
+ case IfExp_kind: {
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, next2);
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, loc, e->v.IfExp.test, next2, 0));
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, loc, e->v.IfExp.body, next, cond));
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ USE_LABEL(c, next2);
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, loc, e->v.IfExp.orelse, next, cond));
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+ }
+ case Compare_kind: {
+ Py_ssize_t n = asdl_seq_LEN(e->v.Compare.ops) - 1;
+ if (n > 0) {
+ RETURN_IF_ERROR(check_compare(c, e));
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+ VISIT(c, expr, e->v.Compare.left);
+ for (Py_ssize_t i = 0; i < n; i++) {
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ ADDOP_I(c, LOC(e), SWAP, 2);
+ ADDOP_I(c, LOC(e), COPY, 2);
+ ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, i));
+ ADDOP_JUMP(c, LOC(e), POP_JUMP_IF_FALSE, cleanup);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
+ ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, n));
+ ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ USE_LABEL(c, cleanup);
+ ADDOP(c, LOC(e), POP_TOP);
+ if (!cond) {
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, next);
+ }
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+ }
+ /* fallback to general implementation */
+ break;
+ }
+ default:
+ /* fallback to general implementation */
+ break;
+ }
+
+ /* general implementation */
+ VISIT(c, expr, e);
+ ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
+ return SUCCESS;
+}
+
+static int
+compiler_ifexp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == IfExp_kind);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, next);
+
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, LOC(e), e->v.IfExp.test, next, 0));
+
+ VISIT(c, expr, e->v.IfExp.body);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ USE_LABEL(c, next);
+ VISIT(c, expr, e->v.IfExp.orelse);
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_lambda(struct compiler *c, expr_ty e)
+{
+ PyCodeObject *co;
+ Py_ssize_t funcflags;
+ arguments_ty args = e->v.Lambda.args;
+ assert(e->kind == Lambda_kind);
+
+ RETURN_IF_ERROR(compiler_check_debug_args(c, args));
+
+ location loc = LOC(e);
+ funcflags = compiler_default_arguments(c, loc, args);
+ if (funcflags == -1) {
+ return ERROR;
+ }
+
+ _Py_DECLARE_STR(anon_lambda, "<lambda>");
+ RETURN_IF_ERROR(
+ compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA,
+ (void *)e, e->lineno));
+
+ /* Make None the first constant, so the lambda can't have a
+ docstring. */
+ RETURN_IF_ERROR(compiler_add_const(c->c_const_cache, c->u, Py_None));
+
+ c->u->u_metadata.u_argcount = asdl_seq_LEN(args->args);
+ c->u->u_metadata.u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
+ c->u->u_metadata.u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
+ VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
+ if (c->u->u_ste->ste_generator) {
+ co = optimize_and_assemble(c, 0);
+ }
+ else {
+ location loc = LOCATION(e->lineno, e->lineno, 0, 0);
+ ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
+ co = optimize_and_assemble(c, 1);
+ }
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ return ERROR;
+ }
+
+ if (compiler_make_closure(c, loc, co, funcflags) < 0) {
+ Py_DECREF(co);
+ return ERROR;
+ }
+ Py_DECREF(co);
+
+ return SUCCESS;
+}
+
+static int
+compiler_if(struct compiler *c, stmt_ty s)
+{
+ jump_target_label next;
+ assert(s->kind == If_kind);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ if (asdl_seq_LEN(s->v.If.orelse)) {
+ NEW_JUMP_TARGET_LABEL(c, orelse);
+ next = orelse;
+ }
+ else {
+ next = end;
+ }
+ RETURN_IF_ERROR(
+ compiler_jump_if(c, LOC(s), s->v.If.test, next, 0));
+
+ VISIT_SEQ(c, stmt, s->v.If.body);
+ if (asdl_seq_LEN(s->v.If.orelse)) {
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ USE_LABEL(c, next);
+ VISIT_SEQ(c, stmt, s->v.If.orelse);
+ }
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_for(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ NEW_JUMP_TARGET_LABEL(c, start);
+ NEW_JUMP_TARGET_LABEL(c, body);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+ NEW_JUMP_TARGET_LABEL(c, end);
+
+ RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL));
+
+ VISIT(c, expr, s->v.For.iter);
+ ADDOP(c, loc, GET_ITER);
+
+ USE_LABEL(c, start);
+ ADDOP_JUMP(c, loc, FOR_ITER, cleanup);
+
+ USE_LABEL(c, body);
+ VISIT(c, expr, s->v.For.target);
+ VISIT_SEQ(c, stmt, s->v.For.body);
+ /* Mark jump as artificial */
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, start);
+
+ USE_LABEL(c, cleanup);
+ ADDOP(c, NO_LOCATION, END_FOR);
+
+ compiler_pop_fblock(c, FOR_LOOP, start);
+
+ VISIT_SEQ(c, stmt, s->v.For.orelse);
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+
+static int
+compiler_async_for(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ if (IS_TOP_LEVEL_AWAIT(c)){
+ c->u->u_ste->ste_coroutine = 1;
+ } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
+ return compiler_error(c, loc, "'async for' outside async function");
+ }
+
+ NEW_JUMP_TARGET_LABEL(c, start);
+ NEW_JUMP_TARGET_LABEL(c, except);
+ NEW_JUMP_TARGET_LABEL(c, end);
+
+ VISIT(c, expr, s->v.AsyncFor.iter);
+ ADDOP(c, loc, GET_AITER);
+
+ USE_LABEL(c, start);
+ RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL));
+
+ /* SETUP_FINALLY to guard the __anext__ call */
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
+ ADDOP(c, loc, GET_ANEXT);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+ ADDOP(c, loc, POP_BLOCK); /* for SETUP_FINALLY */
+
+ /* Success block for __anext__ */
+ VISIT(c, expr, s->v.AsyncFor.target);
+ VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
+ /* Mark jump as artificial */
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, start);
+
+ compiler_pop_fblock(c, FOR_LOOP, start);
+
+ /* Except block for __anext__ */
+ USE_LABEL(c, except);
+
+ /* Use same line number as the iterator,
+ * as the END_ASYNC_FOR succeeds the `for`, not the body. */
+ loc = LOC(s->v.AsyncFor.iter);
+ ADDOP(c, loc, END_ASYNC_FOR);
+
+ /* `else` block */
+ VISIT_SEQ(c, stmt, s->v.For.orelse);
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_while(struct compiler *c, stmt_ty s)
+{
+ NEW_JUMP_TARGET_LABEL(c, loop);
+ NEW_JUMP_TARGET_LABEL(c, body);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, anchor);
+
+ USE_LABEL(c, loop);
+
+ RETURN_IF_ERROR(compiler_push_fblock(c, LOC(s), WHILE_LOOP, loop, end, NULL));
+ RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, anchor, 0));
+
+ USE_LABEL(c, body);
+ VISIT_SEQ(c, stmt, s->v.While.body);
+ RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, body, 1));
+
+ compiler_pop_fblock(c, WHILE_LOOP, loop);
+
+ USE_LABEL(c, anchor);
+ if (s->v.While.orelse) {
+ VISIT_SEQ(c, stmt, s->v.While.orelse);
+ }
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_return(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ int preserve_tos = ((s->v.Return.value != NULL) &&
+ (s->v.Return.value->kind != Constant_kind));
+ if (!_PyST_IsFunctionLike(c->u->u_ste)) {
+ return compiler_error(c, loc, "'return' outside function");
+ }
+ if (s->v.Return.value != NULL &&
+ c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
+ {
+ return compiler_error(c, loc, "'return' with value in async generator");
+ }
+
+ if (preserve_tos) {
+ VISIT(c, expr, s->v.Return.value);
+ } else {
+ /* Emit instruction with line number for return value */
+ if (s->v.Return.value != NULL) {
+ loc = LOC(s->v.Return.value);
+ ADDOP(c, loc, NOP);
+ }
+ }
+ if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) {
+ loc = LOC(s);
+ ADDOP(c, loc, NOP);
+ }
+
+ RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, preserve_tos, NULL));
+ if (s->v.Return.value == NULL) {
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ }
+ else if (!preserve_tos) {
+ ADDOP_LOAD_CONST(c, loc, s->v.Return.value->v.Constant.value);
+ }
+ ADDOP(c, loc, RETURN_VALUE);
+
+ return SUCCESS;
+}
+
+static int
+compiler_break(struct compiler *c, location loc)
+{
+ struct fblockinfo *loop = NULL;
+ location origin_loc = loc;
+ /* Emit instruction with line number */
+ ADDOP(c, loc, NOP);
+ RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop));
+ if (loop == NULL) {
+ return compiler_error(c, origin_loc, "'break' outside loop");
+ }
+ RETURN_IF_ERROR(compiler_unwind_fblock(c, &loc, loop, 0));
+ ADDOP_JUMP(c, loc, JUMP, loop->fb_exit);
+ return SUCCESS;
+}
+
+static int
+compiler_continue(struct compiler *c, location loc)
+{
+ struct fblockinfo *loop = NULL;
+ location origin_loc = loc;
+ /* Emit instruction with line number */
+ ADDOP(c, loc, NOP);
+ RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop));
+ if (loop == NULL) {
+ return compiler_error(c, origin_loc, "'continue' not properly in loop");
+ }
+ ADDOP_JUMP(c, loc, JUMP, loop->fb_block);
+ return SUCCESS;
+}
+
+
+/* Code generated for "try: <body> finally: <finalbody>" is as follows:
+
+ SETUP_FINALLY L
+ <code for body>
+ POP_BLOCK
+ <code for finalbody>
+ JUMP E
+ L:
+ <code for finalbody>
+ E:
+
+ The special instructions use the block stack. Each block
+ stack entry contains the instruction that created it (here
+ SETUP_FINALLY), the level of the value stack at the time the
+ block stack entry was created, and a label (here L).
+
+ SETUP_FINALLY:
+ Pushes the current value stack level and the label
+ onto the block stack.
+ POP_BLOCK:
+ Pops en entry from the block stack.
+
+ The block stack is unwound when an exception is raised:
+ when a SETUP_FINALLY entry is found, the raised and the caught
+ exceptions are pushed onto the value stack (and the exception
+ condition is cleared), and the interpreter jumps to the label
+ gotten from the block stack.
+*/
+
+static int
+compiler_try_finally(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+
+ NEW_JUMP_TARGET_LABEL(c, body);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, exit);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+
+ /* `try` block */
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, end);
+
+ USE_LABEL(c, body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, FINALLY_TRY, body, end,
+ s->v.Try.finalbody));
+
+ if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
+ RETURN_IF_ERROR(compiler_try_except(c, s));
+ }
+ else {
+ VISIT_SEQ(c, stmt, s->v.Try.body);
+ }
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ compiler_pop_fblock(c, FINALLY_TRY, body);
+ VISIT_SEQ(c, stmt, s->v.Try.finalbody);
+
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
+ /* `finally` block */
+
+ USE_LABEL(c, end);
+
+ loc = NO_LOCATION;
+ ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
+ ADDOP(c, loc, PUSH_EXC_INFO);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL));
+ VISIT_SEQ(c, stmt, s->v.Try.finalbody);
+ compiler_pop_fblock(c, FINALLY_END, end);
+
+ loc = NO_LOCATION;
+ ADDOP_I(c, loc, RERAISE, 0);
+
+ USE_LABEL(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c, loc);
+
+ USE_LABEL(c, exit);
+ return SUCCESS;
+}
+
+static int
+compiler_try_star_finally(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+
+ NEW_JUMP_TARGET_LABEL(c, body);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, exit);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+ /* `try` block */
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, end);
+
+ USE_LABEL(c, body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, FINALLY_TRY, body, end,
+ s->v.TryStar.finalbody));
+
+ if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) {
+ RETURN_IF_ERROR(compiler_try_star_except(c, s));
+ }
+ else {
+ VISIT_SEQ(c, stmt, s->v.TryStar.body);
+ }
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ compiler_pop_fblock(c, FINALLY_TRY, body);
+ VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);
+
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
+
+ /* `finally` block */
+ USE_LABEL(c, end);
+
+ loc = NO_LOCATION;
+ ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
+ ADDOP(c, loc, PUSH_EXC_INFO);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL));
+
+ VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);
+
+ compiler_pop_fblock(c, FINALLY_END, end);
+ loc = NO_LOCATION;
+ ADDOP_I(c, loc, RERAISE, 0);
+
+ USE_LABEL(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c, loc);
+
+ USE_LABEL(c, exit);
+ return SUCCESS;
+}
+
+
+/*
+ Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
+ (The contents of the value stack is shown in [], with the top
+ at the right; 'tb' is trace-back info, 'val' the exception's
+ associated value, and 'exc' the exception.)
+
+ Value stack Label Instruction Argument
+ [] SETUP_FINALLY L1
+ [] <code for S>
+ [] POP_BLOCK
+ [] JUMP L0
+
+ [exc] L1: <evaluate E1> )
+ [exc, E1] CHECK_EXC_MATCH )
+ [exc, bool] POP_JUMP_IF_FALSE L2 ) only if E1
+ [exc] <assign to V1> (or POP if no V1)
+ [] <code for S1>
+ JUMP L0
+
+ [exc] L2: <evaluate E2>
+ .............................etc.......................
+
+ [exc] Ln+1: RERAISE # re-raise exception
+
+ [] L0: <next statement>
+
+ Of course, parts are not generated if Vi or Ei is not present.
+*/
+static int
+compiler_try_except(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ Py_ssize_t i, n;
+
+ NEW_JUMP_TARGET_LABEL(c, body);
+ NEW_JUMP_TARGET_LABEL(c, except);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
+
+ USE_LABEL(c, body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL));
+ VISIT_SEQ(c, stmt, s->v.Try.body);
+ compiler_pop_fblock(c, TRY_EXCEPT, body);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) {
+ VISIT_SEQ(c, stmt, s->v.Try.orelse);
+ }
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+ n = asdl_seq_LEN(s->v.Try.handlers);
+
+ USE_LABEL(c, except);
+
+ ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup);
+ ADDOP(c, NO_LOCATION, PUSH_EXC_INFO);
+
+ /* Runtime will push a block here, so we need to account for that */
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, EXCEPTION_HANDLER, NO_LABEL, NO_LABEL, NULL));
+
+ for (i = 0; i < n; i++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ s->v.Try.handlers, i);
+ location loc = LOC(handler);
+ if (!handler->v.ExceptHandler.type && i < n-1) {
+ return compiler_error(c, loc, "default 'except:' must be last");
+ }
+ NEW_JUMP_TARGET_LABEL(c, next_except);
+ except = next_except;
+ if (handler->v.ExceptHandler.type) {
+ VISIT(c, expr, handler->v.ExceptHandler.type);
+ ADDOP(c, loc, CHECK_EXC_MATCH);
+ ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, except);
+ }
+ if (handler->v.ExceptHandler.name) {
+ NEW_JUMP_TARGET_LABEL(c, cleanup_end);
+ NEW_JUMP_TARGET_LABEL(c, cleanup_body);
+
+ RETURN_IF_ERROR(
+ compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store));
+
+ /*
+ try:
+ # body
+ except type as name:
+ try:
+ # body
+ finally:
+ name = None # in case body contains "del name"
+ del name
+ */
+
+ /* second try: */
+ ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end);
+
+ USE_LABEL(c, cleanup_body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
+ NO_LABEL, handler->v.ExceptHandler.name));
+
+ /* second # body */
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ /* name = None; del name; # Mark as artificial */
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP(c, NO_LOCATION, POP_EXCEPT);
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ /* except: */
+ USE_LABEL(c, cleanup_end);
+
+ /* name = None; del name; # artificial */
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
+
+ ADDOP_I(c, NO_LOCATION, RERAISE, 1);
+ }
+ else {
+ NEW_JUMP_TARGET_LABEL(c, cleanup_body);
+
+ ADDOP(c, loc, POP_TOP); /* exc_value */
+
+ USE_LABEL(c, cleanup_body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
+ NO_LABEL, NULL));
+
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP(c, NO_LOCATION, POP_EXCEPT);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+ }
+
+ USE_LABEL(c, except);
+ }
+ /* artificial */
+ compiler_pop_fblock(c, EXCEPTION_HANDLER, NO_LABEL);
+ ADDOP_I(c, NO_LOCATION, RERAISE, 0);
+
+ USE_LABEL(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+/*
+ Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...":
+ (The contents of the value stack is shown in [], with the top
+ at the right; 'tb' is trace-back info, 'val' the exception instance,
+ and 'typ' the exception's type.)
+
+ Value stack Label Instruction Argument
+ [] SETUP_FINALLY L1
+ [] <code for S>
+ [] POP_BLOCK
+ [] JUMP L0
+
+ [exc] L1: BUILD_LIST ) list for raised/reraised excs ("result")
+ [orig, res] COPY 2 ) make a copy of the original EG
+
+ [orig, res, exc] <evaluate E1>
+ [orig, res, exc, E1] CHECK_EG_MATCH
+ [orig, res, rest/exc, match?] COPY 1
+ [orig, res, rest/exc, match?, match?] POP_JUMP_IF_NONE C1
+
+ [orig, res, rest, match] <assign to V1> (or POP if no V1)
+
+ [orig, res, rest] SETUP_FINALLY R1
+ [orig, res, rest] <code for S1>
+ [orig, res, rest] JUMP L2
+
+ [orig, res, rest, i, v] R1: LIST_APPEND 3 ) exc raised in except* body - add to res
+ [orig, res, rest, i] POP
+ [orig, res, rest] JUMP LE2
+
+ [orig, res, rest] L2: NOP ) for lineno
+ [orig, res, rest] JUMP LE2
+
+ [orig, res, rest/exc, None] C1: POP
+
+ [orig, res, rest] LE2: <evaluate E2>
+ .............................etc.......................
+
+ [orig, res, rest] Ln+1: LIST_APPEND 1 ) add unhandled exc to res (could be None)
+
+ [orig, res] CALL_INTRINSIC_2 PREP_RERAISE_STAR
+ [exc] COPY 1
+ [exc, exc] POP_JUMP_IF_NOT_NONE RER
+ [exc] POP_TOP
+ [] JUMP L0
+
+ [exc] RER: SWAP 2
+ [exc, prev_exc_info] POP_EXCEPT
+ [exc] RERAISE 0
+
+ [] L0: <next statement>
+*/
+static int
+compiler_try_star_except(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+
+ NEW_JUMP_TARGET_LABEL(c, body);
+ NEW_JUMP_TARGET_LABEL(c, except);
+ NEW_JUMP_TARGET_LABEL(c, orelse);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+ NEW_JUMP_TARGET_LABEL(c, reraise_star);
+
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
+
+ USE_LABEL(c, body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL));
+ VISIT_SEQ(c, stmt, s->v.TryStar.body);
+ compiler_pop_fblock(c, TRY_EXCEPT, body);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, orelse);
+ Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers);
+
+ USE_LABEL(c, except);
+
+ ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup);
+ ADDOP(c, NO_LOCATION, PUSH_EXC_INFO);
+
+ /* Runtime will push a block here, so we need to account for that */
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, EXCEPTION_GROUP_HANDLER,
+ NO_LABEL, NO_LABEL, "except handler"));
+
+ for (Py_ssize_t i = 0; i < n; i++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ s->v.TryStar.handlers, i);
+ location loc = LOC(handler);
+ NEW_JUMP_TARGET_LABEL(c, next_except);
+ except = next_except;
+ NEW_JUMP_TARGET_LABEL(c, except_with_error);
+ NEW_JUMP_TARGET_LABEL(c, no_match);
+ if (i == 0) {
+ /* create empty list for exceptions raised/reraise in the except* blocks */
+ /*
+ [orig] BUILD_LIST
+ */
+ /* Create a copy of the original EG */
+ /*
+ [orig, []] COPY 2
+ [orig, [], exc]
+ */
+ ADDOP_I(c, loc, BUILD_LIST, 0);
+ ADDOP_I(c, loc, COPY, 2);
+ }
+ if (handler->v.ExceptHandler.type) {
+ VISIT(c, expr, handler->v.ExceptHandler.type);
+ ADDOP(c, loc, CHECK_EG_MATCH);
+ ADDOP_I(c, loc, COPY, 1);
+ ADDOP_JUMP(c, loc, POP_JUMP_IF_NONE, no_match);
+ }
+
+ NEW_JUMP_TARGET_LABEL(c, cleanup_end);
+ NEW_JUMP_TARGET_LABEL(c, cleanup_body);
+
+ if (handler->v.ExceptHandler.name) {
+ RETURN_IF_ERROR(
+ compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store));
+ }
+ else {
+ ADDOP(c, loc, POP_TOP); // match
+ }
+
+ /*
+ try:
+ # body
+ except type as name:
+ try:
+ # body
+ finally:
+ name = None # in case body contains "del name"
+ del name
+ */
+ /* second try: */
+ ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end);
+
+ USE_LABEL(c, cleanup_body);
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
+ NO_LABEL, handler->v.ExceptHandler.name));
+
+ /* second # body */
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ /* name = None; del name; # artificial */
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ if (handler->v.ExceptHandler.name) {
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
+ }
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, except);
+
+ /* except: */
+ USE_LABEL(c, cleanup_end);
+
+ /* name = None; del name; # artificial */
+ if (handler->v.ExceptHandler.name) {
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
+ RETURN_IF_ERROR(
+ compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
+ }
+
+ /* add exception raised to the res list */
+ ADDOP_I(c, NO_LOCATION, LIST_APPEND, 3); // exc
+ ADDOP(c, NO_LOCATION, POP_TOP); // lasti
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, except_with_error);
+
+ USE_LABEL(c, except);
+ ADDOP(c, NO_LOCATION, NOP); // to hold a propagated location info
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, except_with_error);
+
+ USE_LABEL(c, no_match);
+ ADDOP(c, loc, POP_TOP); // match (None)
+
+ USE_LABEL(c, except_with_error);
+
+ if (i == n - 1) {
+ /* Add exc to the list (if not None it's the unhandled part of the EG) */
+ ADDOP_I(c, NO_LOCATION, LIST_APPEND, 1);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, reraise_star);
+ }
+ }
+ /* artificial */
+ compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NO_LABEL);
+ NEW_JUMP_TARGET_LABEL(c, reraise);
+
+ USE_LABEL(c, reraise_star);
+ ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_2, INTRINSIC_PREP_RERAISE_STAR);
+ ADDOP_I(c, NO_LOCATION, COPY, 1);
+ ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_NOT_NONE, reraise);
+
+ /* Nothing to reraise */
+ ADDOP(c, NO_LOCATION, POP_TOP);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP(c, NO_LOCATION, POP_EXCEPT);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ USE_LABEL(c, reraise);
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP_I(c, NO_LOCATION, SWAP, 2);
+ ADDOP(c, NO_LOCATION, POP_EXCEPT);
+ ADDOP_I(c, NO_LOCATION, RERAISE, 0);
+
+ USE_LABEL(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);
+
+ USE_LABEL(c, orelse);
+ VISIT_SEQ(c, stmt, s->v.TryStar.orelse);
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_try(struct compiler *c, stmt_ty s) {
+ if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
+ return compiler_try_finally(c, s);
+ else
+ return compiler_try_except(c, s);
+}
+
+static int
+compiler_try_star(struct compiler *c, stmt_ty s)
+{
+ if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) {
+ return compiler_try_star_finally(c, s);
+ }
+ else {
+ return compiler_try_star_except(c, s);
+ }
+}
+
+static int
+compiler_import_as(struct compiler *c, location loc,
+ identifier name, identifier asname)
+{
+ /* The IMPORT_NAME opcode was already generated. This function
+ merely needs to bind the result to a name.
+
+ If there is a dot in name, we need to split it and emit a
+ IMPORT_FROM for each name.
+ */
+ Py_ssize_t len = PyUnicode_GET_LENGTH(name);
+ Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
+ if (dot == -2) {
+ return ERROR;
+ }
+ if (dot != -1) {
+ /* Consume the base module name to get the first attribute */
+ while (1) {
+ Py_ssize_t pos = dot + 1;
+ PyObject *attr;
+ dot = PyUnicode_FindChar(name, '.', pos, len, 1);
+ if (dot == -2) {
+ return ERROR;
+ }
+ attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
+ if (!attr) {
+ return ERROR;
+ }
+ ADDOP_N(c, loc, IMPORT_FROM, attr, names);
+ if (dot == -1) {
+ break;
+ }
+ ADDOP_I(c, loc, SWAP, 2);
+ ADDOP(c, loc, POP_TOP);
+ }
+ RETURN_IF_ERROR(compiler_nameop(c, loc, asname, Store));
+ ADDOP(c, loc, POP_TOP);
+ return SUCCESS;
+ }
+ return compiler_nameop(c, loc, asname, Store);
+}
+
+static int
+compiler_import(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ /* The Import node stores a module name like a.b.c as a single
+ string. This is convenient for all cases except
+ import a.b.c as d
+ where we need to parse that string to extract the individual
+ module names.
+ XXX Perhaps change the representation to make this case simpler?
+ */
+ Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);
+
+ PyObject *zero = _PyLong_GetZero(); // borrowed reference
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
+ int r;
+
+ ADDOP_LOAD_CONST(c, loc, zero);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADDOP_NAME(c, loc, IMPORT_NAME, alias->name, names);
+
+ if (alias->asname) {
+ r = compiler_import_as(c, loc, alias->name, alias->asname);
+ RETURN_IF_ERROR(r);
+ }
+ else {
+ identifier tmp = alias->name;
+ Py_ssize_t dot = PyUnicode_FindChar(
+ alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
+ if (dot != -1) {
+ tmp = PyUnicode_Substring(alias->name, 0, dot);
+ if (tmp == NULL) {
+ return ERROR;
+ }
+ }
+ r = compiler_nameop(c, loc, tmp, Store);
+ if (dot != -1) {
+ Py_DECREF(tmp);
+ }
+ RETURN_IF_ERROR(r);
+ }
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_from_import(struct compiler *c, stmt_ty s)
+{
+ Py_ssize_t n = asdl_seq_LEN(s->v.ImportFrom.names);
+
+ ADDOP_LOAD_CONST_NEW(c, LOC(s), PyLong_FromLong(s->v.ImportFrom.level));
+
+ PyObject *names = PyTuple_New(n);
+ if (!names) {
+ return ERROR;
+ }
+
+ /* build up the names */
+ for (Py_ssize_t i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
+ PyTuple_SET_ITEM(names, i, Py_NewRef(alias->name));
+ }
+
+ if (location_is_after(LOC(s), c->c_future.ff_location) &&
+ s->v.ImportFrom.module &&
+ _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__"))
+ {
+ Py_DECREF(names);
+ return compiler_error(c, LOC(s), "from __future__ imports must occur "
+ "at the beginning of the file");
+ }
+ ADDOP_LOAD_CONST_NEW(c, LOC(s), names);
+
+ if (s->v.ImportFrom.module) {
+ ADDOP_NAME(c, LOC(s), IMPORT_NAME, s->v.ImportFrom.module, names);
+ }
+ else {
+ _Py_DECLARE_STR(empty, "");
+ ADDOP_NAME(c, LOC(s), IMPORT_NAME, &_Py_STR(empty), names);
+ }
+ for (Py_ssize_t i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
+ identifier store_name;
+
+ if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
+ assert(n == 1);
+ ADDOP_I(c, LOC(s), CALL_INTRINSIC_1, INTRINSIC_IMPORT_STAR);
+ ADDOP(c, NO_LOCATION, POP_TOP);
+ return SUCCESS;
+ }
+
+ ADDOP_NAME(c, LOC(s), IMPORT_FROM, alias->name, names);
+ store_name = alias->name;
+ if (alias->asname) {
+ store_name = alias->asname;
+ }
+
+ RETURN_IF_ERROR(compiler_nameop(c, LOC(s), store_name, Store));
+ }
+ /* remove imported module */
+ ADDOP(c, LOC(s), POP_TOP);
+ return SUCCESS;
+}
+
+static int
+compiler_assert(struct compiler *c, stmt_ty s)
+{
+ /* Always emit a warning if the test is a non-zero length tuple */
+ if ((s->v.Assert.test->kind == Tuple_kind &&
+ asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) ||
+ (s->v.Assert.test->kind == Constant_kind &&
+ PyTuple_Check(s->v.Assert.test->v.Constant.value) &&
+ PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0))
+ {
+ RETURN_IF_ERROR(
+ compiler_warn(c, LOC(s), "assertion is always true, "
+ "perhaps remove parentheses?"));
+ }
+ if (c->c_optimize) {
+ return SUCCESS;
+ }
+ NEW_JUMP_TARGET_LABEL(c, end);
+ RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.Assert.test, end, 1));
+ ADDOP(c, LOC(s), LOAD_ASSERTION_ERROR);
+ if (s->v.Assert.msg) {
+ VISIT(c, expr, s->v.Assert.msg);
+ ADDOP_I(c, LOC(s), CALL, 0);
+ }
+ ADDOP_I(c, LOC(s), RAISE_VARARGS, 1);
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_stmt_expr(struct compiler *c, location loc, expr_ty value)
+{
+ if (c->c_interactive && c->c_nestlevel <= 1) {
+ VISIT(c, expr, value);
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PRINT);
+ ADDOP(c, NO_LOCATION, POP_TOP);
+ return SUCCESS;
+ }
+
+ if (value->kind == Constant_kind) {
+ /* ignore constant statement */
+ ADDOP(c, loc, NOP);
+ return SUCCESS;
+ }
+
+ VISIT(c, expr, value);
+ ADDOP(c, NO_LOCATION, POP_TOP); /* artificial */
+ return SUCCESS;
+}
+
+static int
+compiler_visit_stmt(struct compiler *c, stmt_ty s)
+{
+
+ switch (s->kind) {
+ case FunctionDef_kind:
+ return compiler_function(c, s, 0);
+ case ClassDef_kind:
+ return compiler_class(c, s);
+ case TypeAlias_kind:
+ return compiler_typealias(c, s);
+ case Return_kind:
+ return compiler_return(c, s);
+ case Delete_kind:
+ VISIT_SEQ(c, expr, s->v.Delete.targets)
+ break;
+ case Assign_kind:
+ {
+ Py_ssize_t n = asdl_seq_LEN(s->v.Assign.targets);
+ VISIT(c, expr, s->v.Assign.value);
+ for (Py_ssize_t i = 0; i < n; i++) {
+ if (i < n - 1) {
+ ADDOP_I(c, LOC(s), COPY, 1);
+ }
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
+ }
+ break;
+ }
+ case AugAssign_kind:
+ return compiler_augassign(c, s);
+ case AnnAssign_kind:
+ return compiler_annassign(c, s);
+ case For_kind:
+ return compiler_for(c, s);
+ case While_kind:
+ return compiler_while(c, s);
+ case If_kind:
+ return compiler_if(c, s);
+ case Match_kind:
+ return compiler_match(c, s);
+ case Raise_kind:
+ {
+ Py_ssize_t n = 0;
+ if (s->v.Raise.exc) {
+ VISIT(c, expr, s->v.Raise.exc);
+ n++;
+ if (s->v.Raise.cause) {
+ VISIT(c, expr, s->v.Raise.cause);
+ n++;
+ }
+ }
+ ADDOP_I(c, LOC(s), RAISE_VARARGS, (int)n);
+ break;
+ }
+ case Try_kind:
+ return compiler_try(c, s);
+ case TryStar_kind:
+ return compiler_try_star(c, s);
+ case Assert_kind:
+ return compiler_assert(c, s);
+ case Import_kind:
+ return compiler_import(c, s);
+ case ImportFrom_kind:
+ return compiler_from_import(c, s);
+ case Global_kind:
+ case Nonlocal_kind:
+ break;
+ case Expr_kind:
+ {
+ return compiler_stmt_expr(c, LOC(s), s->v.Expr.value);
+ }
+ case Pass_kind:
+ {
+ ADDOP(c, LOC(s), NOP);
+ break;
+ }
+ case Break_kind:
+ {
+ return compiler_break(c, LOC(s));
+ }
+ case Continue_kind:
+ {
+ return compiler_continue(c, LOC(s));
+ }
+ case With_kind:
+ return compiler_with(c, s, 0);
+ case AsyncFunctionDef_kind:
+ return compiler_function(c, s, 1);
+ case AsyncWith_kind:
+ return compiler_async_with(c, s, 0);
+ case AsyncFor_kind:
+ return compiler_async_for(c, s);
+ }
+
+ return SUCCESS;
+}
+
+static int
+unaryop(unaryop_ty op)
+{
+ switch (op) {
+ case Invert:
+ return UNARY_INVERT;
+ case Not:
+ return UNARY_NOT;
+ case USub:
+ return UNARY_NEGATIVE;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "unary op %d should not be possible", op);
+ return 0;
+ }
+}
+
+static int
+addop_binary(struct compiler *c, location loc, operator_ty binop,
+ bool inplace)
+{
+ int oparg;
+ switch (binop) {
+ case Add:
+ oparg = inplace ? NB_INPLACE_ADD : NB_ADD;
+ break;
+ case Sub:
+ oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT;
+ break;
+ case Mult:
+ oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY;
+ break;
+ case MatMult:
+ oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY;
+ break;
+ case Div:
+ oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE;
+ break;
+ case Mod:
+ oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER;
+ break;
+ case Pow:
+ oparg = inplace ? NB_INPLACE_POWER : NB_POWER;
+ break;
+ case LShift:
+ oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT;
+ break;
+ case RShift:
+ oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT;
+ break;
+ case BitOr:
+ oparg = inplace ? NB_INPLACE_OR : NB_OR;
+ break;
+ case BitXor:
+ oparg = inplace ? NB_INPLACE_XOR : NB_XOR;
+ break;
+ case BitAnd:
+ oparg = inplace ? NB_INPLACE_AND : NB_AND;
+ break;
+ case FloorDiv:
+ oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError, "%s op %d should not be possible",
+ inplace ? "inplace" : "binary", binop);
+ return ERROR;
+ }
+ ADDOP_I(c, loc, BINARY_OP, oparg);
+ return SUCCESS;
+}
+
+
+static int
+addop_yield(struct compiler *c, location loc) {
+ if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) {
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_ASYNC_GEN_WRAP);
+ }
+ ADDOP_I(c, loc, YIELD_VALUE, 0);
+ ADDOP_I(c, loc, RESUME, 1);
+ return SUCCESS;
+}
+
+static int
+compiler_nameop(struct compiler *c, location loc,
+ identifier name, expr_context_ty ctx)
+{
+ int op, scope;
+ Py_ssize_t arg;
+ enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;
+
+ PyObject *dict = c->u->u_metadata.u_names;
+ PyObject *mangled;
+
+ assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
+ !_PyUnicode_EqualToASCIIString(name, "True") &&
+ !_PyUnicode_EqualToASCIIString(name, "False"));
+
+ if (forbidden_name(c, loc, name, ctx)) {
+ return ERROR;
+ }
+
+ mangled = _Py_Mangle(c->u->u_private, name);
+ if (!mangled) {
+ return ERROR;
+ }
+
+ op = 0;
+ optype = OP_NAME;
+ scope = _PyST_GetScope(c->u->u_ste, mangled);
+ switch (scope) {
+ case FREE:
+ dict = c->u->u_metadata.u_freevars;
+ optype = OP_DEREF;
+ break;
+ case CELL:
+ dict = c->u->u_metadata.u_cellvars;
+ optype = OP_DEREF;
+ break;
+ case LOCAL:
+ if (_PyST_IsFunctionLike(c->u->u_ste) ||
+ (PyDict_GetItem(c->u->u_metadata.u_fasthidden, mangled) == Py_True))
+ optype = OP_FAST;
+ break;
+ case GLOBAL_IMPLICIT:
+ if (_PyST_IsFunctionLike(c->u->u_ste))
+ optype = OP_GLOBAL;
+ break;
+ case GLOBAL_EXPLICIT:
+ optype = OP_GLOBAL;
+ break;
+ default:
+ /* scope can be 0 */
+ break;
+ }
+
+ /* XXX Leave assert here, but handle __doc__ and the like better */
+ assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');
+
+ switch (optype) {
+ case OP_DEREF:
+ switch (ctx) {
+ case Load:
+ if (c->u->u_ste->ste_type == ClassBlock && !c->u->u_in_inlined_comp) {
+ op = LOAD_FROM_DICT_OR_DEREF;
+ // First load the locals
+ if (codegen_addop_noarg(INSTR_SEQUENCE(c), LOAD_LOCALS, loc) < 0) {
+ return ERROR;
+ }
+ }
+ else if (c->u->u_ste->ste_can_see_class_scope) {
+ op = LOAD_FROM_DICT_OR_DEREF;
+ // First load the classdict
+ if (compiler_addop_o(c->u, loc, LOAD_DEREF,
+ c->u->u_metadata.u_freevars, &_Py_ID(__classdict__)) < 0) {
+ return ERROR;
+ }
+ }
+ else {
+ op = LOAD_DEREF;
+ }
+ break;
+ case Store: op = STORE_DEREF; break;
+ case Del: op = DELETE_DEREF; break;
+ }
+ break;
+ case OP_FAST:
+ switch (ctx) {
+ case Load: op = LOAD_FAST; break;
+ case Store: op = STORE_FAST; break;
+ case Del: op = DELETE_FAST; break;
+ }
+ ADDOP_N(c, loc, op, mangled, varnames);
+ return SUCCESS;
+ case OP_GLOBAL:
+ switch (ctx) {
+ case Load:
+ if (c->u->u_ste->ste_can_see_class_scope && scope == GLOBAL_IMPLICIT) {
+ op = LOAD_FROM_DICT_OR_GLOBALS;
+ // First load the classdict
+ if (compiler_addop_o(c->u, loc, LOAD_DEREF,
+ c->u->u_metadata.u_freevars, &_Py_ID(__classdict__)) < 0) {
+ return ERROR;
+ }
+ } else {
+ op = LOAD_GLOBAL;
+ }
+ break;
+ case Store: op = STORE_GLOBAL; break;
+ case Del: op = DELETE_GLOBAL; break;
+ }
+ break;
+ case OP_NAME:
+ switch (ctx) {
+ case Load:
+ op = (c->u->u_ste->ste_type == ClassBlock
+ && c->u->u_in_inlined_comp)
+ ? LOAD_GLOBAL
+ : LOAD_NAME;
+ break;
+ case Store: op = STORE_NAME; break;
+ case Del: op = DELETE_NAME; break;
+ }
+ break;
+ }
+
+ assert(op);
+ arg = dict_add_o(dict, mangled);
+ Py_DECREF(mangled);
+ if (arg < 0) {
+ return ERROR;
+ }
+ if (op == LOAD_GLOBAL) {
+ arg <<= 1;
+ }
+ return codegen_addop_i(INSTR_SEQUENCE(c), op, arg, loc);
+}
+
+static int
+compiler_boolop(struct compiler *c, expr_ty e)
+{
+ int jumpi;
+ Py_ssize_t i, n;
+ asdl_expr_seq *s;
+
+ location loc = LOC(e);
+ assert(e->kind == BoolOp_kind);
+ if (e->v.BoolOp.op == And)
+ jumpi = POP_JUMP_IF_FALSE;
+ else
+ jumpi = POP_JUMP_IF_TRUE;
+ NEW_JUMP_TARGET_LABEL(c, end);
+ s = e->v.BoolOp.values;
+ n = asdl_seq_LEN(s) - 1;
+ assert(n >= 0);
+ for (i = 0; i < n; ++i) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
+ ADDOP_I(c, loc, COPY, 1);
+ ADDOP_JUMP(c, loc, jumpi, end);
+ ADDOP(c, loc, POP_TOP);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
+
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+starunpack_helper(struct compiler *c, location loc,
+ asdl_expr_seq *elts, int pushed,
+ int build, int add, int extend, int tuple)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ if (n > 2 && are_all_items_const(elts, 0, n)) {
+ PyObject *folded = PyTuple_New(n);
+ if (folded == NULL) {
+ return ERROR;
+ }
+ PyObject *val;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
+ PyTuple_SET_ITEM(folded, i, Py_NewRef(val));
+ }
+ if (tuple && !pushed) {
+ ADDOP_LOAD_CONST_NEW(c, loc, folded);
+ } else {
+ if (add == SET_ADD) {
+ Py_SETREF(folded, PyFrozenSet_New(folded));
+ if (folded == NULL) {
+ return ERROR;
+ }
+ }
+ ADDOP_I(c, loc, build, pushed);
+ ADDOP_LOAD_CONST_NEW(c, loc, folded);
+ ADDOP_I(c, loc, extend, 1);
+ if (tuple) {
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE);
+ }
+ }
+ return SUCCESS;
+ }
+
+ int big = n+pushed > STACK_USE_GUIDELINE;
+ int seen_star = 0;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind) {
+ seen_star = 1;
+ break;
+ }
+ }
+ if (!seen_star && !big) {
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ VISIT(c, expr, elt);
+ }
+ if (tuple) {
+ ADDOP_I(c, loc, BUILD_TUPLE, n+pushed);
+ } else {
+ ADDOP_I(c, loc, build, n+pushed);
+ }
+ return SUCCESS;
+ }
+ int sequence_built = 0;
+ if (big) {
+ ADDOP_I(c, loc, build, pushed);
+ sequence_built = 1;
+ }
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind) {
+ if (sequence_built == 0) {
+ ADDOP_I(c, loc, build, i+pushed);
+ sequence_built = 1;
+ }
+ VISIT(c, expr, elt->v.Starred.value);
+ ADDOP_I(c, loc, extend, 1);
+ }
+ else {
+ VISIT(c, expr, elt);
+ if (sequence_built) {
+ ADDOP_I(c, loc, add, 1);
+ }
+ }
+ }
+ assert(sequence_built);
+ if (tuple) {
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE);
+ }
+ return SUCCESS;
+}
+
+static int
+unpack_helper(struct compiler *c, location loc, asdl_expr_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ int seen_star = 0;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind && !seen_star) {
+ if ((i >= (1 << 8)) ||
+ (n-i-1 >= (INT_MAX >> 8))) {
+ return compiler_error(c, loc,
+ "too many expressions in "
+ "star-unpacking assignment");
+ }
+ ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8)));
+ seen_star = 1;
+ }
+ else if (elt->kind == Starred_kind) {
+ return compiler_error(c, loc,
+ "multiple starred expressions in assignment");
+ }
+ }
+ if (!seen_star) {
+ ADDOP_I(c, loc, UNPACK_SEQUENCE, n);
+ }
+ return SUCCESS;
+}
+
+static int
+assignment_helper(struct compiler *c, location loc, asdl_expr_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ RETURN_IF_ERROR(unpack_helper(c, loc, elts));
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_list(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ asdl_expr_seq *elts = e->v.List.elts;
+ if (e->v.List.ctx == Store) {
+ return assignment_helper(c, loc, elts);
+ }
+ else if (e->v.List.ctx == Load) {
+ return starunpack_helper(c, loc, elts, 0,
+ BUILD_LIST, LIST_APPEND, LIST_EXTEND, 0);
+ }
+ else {
+ VISIT_SEQ(c, expr, elts);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_tuple(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ asdl_expr_seq *elts = e->v.Tuple.elts;
+ if (e->v.Tuple.ctx == Store) {
+ return assignment_helper(c, loc, elts);
+ }
+ else if (e->v.Tuple.ctx == Load) {
+ return starunpack_helper(c, loc, elts, 0,
+ BUILD_LIST, LIST_APPEND, LIST_EXTEND, 1);
+ }
+ else {
+ VISIT_SEQ(c, expr, elts);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_set(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ return starunpack_helper(c, loc, e->v.Set.elts, 0,
+ BUILD_SET, SET_ADD, SET_UPDATE, 0);
+}
+
+static bool
+are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end)
+{
+ for (Py_ssize_t i = begin; i < end; i++) {
+ expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
+ if (key == NULL || key->kind != Constant_kind) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static int
+compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i, n = end - begin;
+ PyObject *keys, *key;
+ int big = n*2 > STACK_USE_GUIDELINE;
+ location loc = LOC(e);
+ if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) {
+ for (i = begin; i < end; i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ }
+ keys = PyTuple_New(n);
+ if (keys == NULL) {
+ return SUCCESS;
+ }
+ for (i = begin; i < end; i++) {
+ key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
+ PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key));
+ }
+ ADDOP_LOAD_CONST_NEW(c, loc, keys);
+ ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n);
+ return SUCCESS;
+ }
+ if (big) {
+ ADDOP_I(c, loc, BUILD_MAP, 0);
+ }
+ for (i = begin; i < end; i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ if (big) {
+ ADDOP_I(c, loc, MAP_ADD, 1);
+ }
+ }
+ if (!big) {
+ ADDOP_I(c, loc, BUILD_MAP, n);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_dict(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ Py_ssize_t i, n, elements;
+ int have_dict;
+ int is_unpacking = 0;
+ n = asdl_seq_LEN(e->v.Dict.values);
+ have_dict = 0;
+ elements = 0;
+ for (i = 0; i < n; i++) {
+ is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
+ if (is_unpacking) {
+ if (elements) {
+ RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i));
+ if (have_dict) {
+ ADDOP_I(c, loc, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ elements = 0;
+ }
+ if (have_dict == 0) {
+ ADDOP_I(c, loc, BUILD_MAP, 0);
+ have_dict = 1;
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ ADDOP_I(c, loc, DICT_UPDATE, 1);
+ }
+ else {
+ if (elements*2 > STACK_USE_GUIDELINE) {
+ RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i + 1));
+ if (have_dict) {
+ ADDOP_I(c, loc, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ elements = 0;
+ }
+ else {
+ elements++;
+ }
+ }
+ }
+ if (elements) {
+ RETURN_IF_ERROR(compiler_subdict(c, e, n - elements, n));
+ if (have_dict) {
+ ADDOP_I(c, loc, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ }
+ if (!have_dict) {
+ ADDOP_I(c, loc, BUILD_MAP, 0);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_compare(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ Py_ssize_t i, n;
+
+ RETURN_IF_ERROR(check_compare(c, e));
+ VISIT(c, expr, e->v.Compare.left);
+ assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
+ n = asdl_seq_LEN(e->v.Compare.ops) - 1;
+ if (n == 0) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
+ ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, 0));
+ }
+ else {
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+ for (i = 0; i < n; i++) {
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ ADDOP_I(c, loc, SWAP, 2);
+ ADDOP_I(c, loc, COPY, 2);
+ ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, i));
+ ADDOP_I(c, loc, COPY, 1);
+ ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, cleanup);
+ ADDOP(c, loc, POP_TOP);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
+ ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, n));
+ NEW_JUMP_TARGET_LABEL(c, end);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+
+ USE_LABEL(c, cleanup);
+ ADDOP_I(c, loc, SWAP, 2);
+ ADDOP(c, loc, POP_TOP);
+
+ USE_LABEL(c, end);
+ }
+ return SUCCESS;
+}
+
+static PyTypeObject *
+infer_type(expr_ty e)
+{
+ switch (e->kind) {
+ case Tuple_kind:
+ return &PyTuple_Type;
+ case List_kind:
+ case ListComp_kind:
+ return &PyList_Type;
+ case Dict_kind:
+ case DictComp_kind:
+ return &PyDict_Type;
+ case Set_kind:
+ case SetComp_kind:
+ return &PySet_Type;
+ case GeneratorExp_kind:
+ return &PyGen_Type;
+ case Lambda_kind:
+ return &PyFunction_Type;
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return &PyUnicode_Type;
+ case Constant_kind:
+ return Py_TYPE(e->v.Constant.value);
+ default:
+ return NULL;
+ }
+}
+
+static int
+check_caller(struct compiler *c, expr_ty e)
+{
+ switch (e->kind) {
+ case Constant_kind:
+ case Tuple_kind:
+ case List_kind:
+ case ListComp_kind:
+ case Dict_kind:
+ case DictComp_kind:
+ case Set_kind:
+ case SetComp_kind:
+ case GeneratorExp_kind:
+ case JoinedStr_kind:
+ case FormattedValue_kind: {
+ location loc = LOC(e);
+ return compiler_warn(c, loc, "'%.200s' object is not callable; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name);
+ }
+ default:
+ return SUCCESS;
+ }
+}
+
+static int
+check_subscripter(struct compiler *c, expr_ty e)
+{
+ PyObject *v;
+
+ switch (e->kind) {
+ case Constant_kind:
+ v = e->v.Constant.value;
+ if (!(v == Py_None || v == Py_Ellipsis ||
+ PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
+ PyAnySet_Check(v)))
+ {
+ return SUCCESS;
+ }
+ /* fall through */
+ case Set_kind:
+ case SetComp_kind:
+ case GeneratorExp_kind:
+ case Lambda_kind: {
+ location loc = LOC(e);
+ return compiler_warn(c, loc, "'%.200s' object is not subscriptable; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name);
+ }
+ default:
+ return SUCCESS;
+ }
+}
+
+static int
+check_index(struct compiler *c, expr_ty e, expr_ty s)
+{
+ PyObject *v;
+
+ PyTypeObject *index_type = infer_type(s);
+ if (index_type == NULL
+ || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
+ || index_type == &PySlice_Type) {
+ return SUCCESS;
+ }
+
+ switch (e->kind) {
+ case Constant_kind:
+ v = e->v.Constant.value;
+ if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
+ return SUCCESS;
+ }
+ /* fall through */
+ case Tuple_kind:
+ case List_kind:
+ case ListComp_kind:
+ case JoinedStr_kind:
+ case FormattedValue_kind: {
+ location loc = LOC(e);
+ return compiler_warn(c, loc, "%.200s indices must be integers "
+ "or slices, not %.200s; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name,
+ index_type->tp_name);
+ }
+ default:
+ return SUCCESS;
+ }
+}
+
+static int
+is_import_originated(struct compiler *c, expr_ty e)
+{
+ /* Check whether the global scope has an import named
+ e, if it is a Name object. For not traversing all the
+ scope stack every time this function is called, it will
+ only check the global scope to determine whether something
+ is imported or not. */
+
+ if (e->kind != Name_kind) {
+ return 0;
+ }
+
+ long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id);
+ return flags & DEF_IMPORT;
+}
+
+static int
+can_optimize_super_call(struct compiler *c, expr_ty attr)
+{
+ expr_ty e = attr->v.Attribute.value;
+ if (e->kind != Call_kind ||
+ e->v.Call.func->kind != Name_kind ||
+ !_PyUnicode_EqualToASCIIString(e->v.Call.func->v.Name.id, "super") ||
+ _PyUnicode_EqualToASCIIString(attr->v.Attribute.attr, "__class__") ||
+ asdl_seq_LEN(e->v.Call.keywords) != 0) {
+ return 0;
+ }
+ Py_ssize_t num_args = asdl_seq_LEN(e->v.Call.args);
+
+ PyObject *super_name = e->v.Call.func->v.Name.id;
+ // detect statically-visible shadowing of 'super' name
+ int scope = _PyST_GetScope(c->u->u_ste, super_name);
+ if (scope != GLOBAL_IMPLICIT) {
+ return 0;
+ }
+ scope = _PyST_GetScope(c->c_st->st_top, super_name);
+ if (scope != 0) {
+ return 0;
+ }
+
+ if (num_args == 2) {
+ for (Py_ssize_t i = 0; i < num_args; i++) {
+ expr_ty elt = asdl_seq_GET(e->v.Call.args, i);
+ if (elt->kind == Starred_kind) {
+ return 0;
+ }
+ }
+ // exactly two non-starred args; we can just load
+ // the provided args
+ return 1;
+ }
+
+ if (num_args != 0) {
+ return 0;
+ }
+ // we need the following for zero-arg super():
+
+ // enclosing function should have at least one argument
+ if (c->u->u_metadata.u_argcount == 0 &&
+ c->u->u_metadata.u_posonlyargcount == 0) {
+ return 0;
+ }
+ // __class__ cell should be available
+ if (get_ref_type(c, &_Py_ID(__class__)) == FREE) {
+ return 1;
+ }
+ return 0;
+}
+
+static int
+load_args_for_super(struct compiler *c, expr_ty e) {
+ location loc = LOC(e);
+
+ // load super() global
+ PyObject *super_name = e->v.Call.func->v.Name.id;
+ RETURN_IF_ERROR(compiler_nameop(c, LOC(e->v.Call.func), super_name, Load));
+
+ if (asdl_seq_LEN(e->v.Call.args) == 2) {
+ VISIT(c, expr, asdl_seq_GET(e->v.Call.args, 0));
+ VISIT(c, expr, asdl_seq_GET(e->v.Call.args, 1));
+ return SUCCESS;
+ }
+
+ // load __class__ cell
+ PyObject *name = &_Py_ID(__class__);
+ assert(get_ref_type(c, name) == FREE);
+ RETURN_IF_ERROR(compiler_nameop(c, loc, name, Load));
+
+ // load self (first argument)
+ Py_ssize_t i = 0;
+ PyObject *key, *value;
+ if (!PyDict_Next(c->u->u_metadata.u_varnames, &i, &key, &value)) {
+ return ERROR;
+ }
+ RETURN_IF_ERROR(compiler_nameop(c, loc, key, Load));
+
+ return SUCCESS;
+}
+
+// If an attribute access spans multiple lines, update the current start
+// location to point to the attribute name.
+static location
+update_start_location_to_match_attr(struct compiler *c, location loc,
+ expr_ty attr)
+{
+ assert(attr->kind == Attribute_kind);
+ if (loc.lineno != attr->end_lineno) {
+ loc.lineno = attr->end_lineno;
+ int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr);
+ if (len <= attr->end_col_offset) {
+ loc.col_offset = attr->end_col_offset - len;
+ }
+ else {
+ // GH-94694: Somebody's compiling weird ASTs. Just drop the columns:
+ loc.col_offset = -1;
+ loc.end_col_offset = -1;
+ }
+ // Make sure the end position still follows the start position, even for
+ // weird ASTs:
+ loc.end_lineno = Py_MAX(loc.lineno, loc.end_lineno);
+ if (loc.lineno == loc.end_lineno) {
+ loc.end_col_offset = Py_MAX(loc.col_offset, loc.end_col_offset);
+ }
+ }
+ return loc;
+}
+
+// Return 1 if the method call was optimized, 0 if not, and -1 on error.
+static int
+maybe_optimize_method_call(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t argsl, i, kwdsl;
+ expr_ty meth = e->v.Call.func;
+ asdl_expr_seq *args = e->v.Call.args;
+ asdl_keyword_seq *kwds = e->v.Call.keywords;
+
+ /* Check that the call node is an attribute access */
+ if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) {
+ return 0;
+ }
+
+ /* Check that the base object is not something that is imported */
+ if (is_import_originated(c, meth->v.Attribute.value)) {
+ return 0;
+ }
+
+ /* Check that there aren't too many arguments */
+ argsl = asdl_seq_LEN(args);
+ kwdsl = asdl_seq_LEN(kwds);
+ if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) {
+ return 0;
+ }
+ /* Check that there are no *varargs types of arguments. */
+ for (i = 0; i < argsl; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ if (elt->kind == Starred_kind) {
+ return 0;
+ }
+ }
+
+ for (i = 0; i < kwdsl; i++) {
+ keyword_ty kw = asdl_seq_GET(kwds, i);
+ if (kw->arg == NULL) {
+ return 0;
+ }
+ }
+
+ /* Alright, we can optimize the code. */
+ location loc = LOC(meth);
+
+ if (can_optimize_super_call(c, meth)) {
+ RETURN_IF_ERROR(load_args_for_super(c, meth->v.Attribute.value));
+ int opcode = asdl_seq_LEN(meth->v.Attribute.value->v.Call.args) ?
+ LOAD_SUPER_METHOD : LOAD_ZERO_SUPER_METHOD;
+ ADDOP_NAME(c, loc, opcode, meth->v.Attribute.attr, names);
+ loc = update_start_location_to_match_attr(c, loc, meth);
+ ADDOP(c, loc, NOP);
+ } else {
+ VISIT(c, expr, meth->v.Attribute.value);
+ loc = update_start_location_to_match_attr(c, loc, meth);
+ ADDOP_NAME(c, loc, LOAD_METHOD, meth->v.Attribute.attr, names);
+ }
+
+ VISIT_SEQ(c, expr, e->v.Call.args);
+
+ if (kwdsl) {
+ VISIT_SEQ(c, keyword, kwds);
+ RETURN_IF_ERROR(
+ compiler_call_simple_kw_helper(c, loc, kwds, kwdsl));
+ }
+ loc = update_start_location_to_match_attr(c, LOC(e), meth);
+ ADDOP_I(c, loc, CALL, argsl + kwdsl);
+ return 1;
+}
+
+static int
+validate_keywords(struct compiler *c, asdl_keyword_seq *keywords)
+{
+ Py_ssize_t nkeywords = asdl_seq_LEN(keywords);
+ for (Py_ssize_t i = 0; i < nkeywords; i++) {
+ keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i));
+ if (key->arg == NULL) {
+ continue;
+ }
+ location loc = LOC(key);
+ if (forbidden_name(c, loc, key->arg, Store)) {
+ return ERROR;
+ }
+ for (Py_ssize_t j = i + 1; j < nkeywords; j++) {
+ keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j));
+ if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) {
+ compiler_error(c, LOC(other), "keyword argument repeated: %U", key->arg);
+ return ERROR;
+ }
+ }
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_call(struct compiler *c, expr_ty e)
+{
+ RETURN_IF_ERROR(validate_keywords(c, e->v.Call.keywords));
+ int ret = maybe_optimize_method_call(c, e);
+ if (ret < 0) {
+ return ERROR;
+ }
+ if (ret == 1) {
+ return SUCCESS;
+ }
+ RETURN_IF_ERROR(check_caller(c, e->v.Call.func));
+ location loc = LOC(e->v.Call.func);
+ ADDOP(c, loc, PUSH_NULL);
+ VISIT(c, expr, e->v.Call.func);
+ loc = LOC(e);
+ return compiler_call_helper(c, loc, 0,
+ e->v.Call.args,
+ e->v.Call.keywords);
+}
+
+static int
+compiler_joined_str(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values);
+ if (value_count > STACK_USE_GUIDELINE) {
+ _Py_DECLARE_STR(empty, "");
+ ADDOP_LOAD_CONST_NEW(c, loc, Py_NewRef(&_Py_STR(empty)));
+ ADDOP_NAME(c, loc, LOAD_METHOD, &_Py_ID(join), names);
+ ADDOP_I(c, loc, BUILD_LIST, 0);
+ for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) {
+ VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i));
+ ADDOP_I(c, loc, LIST_APPEND, 1);
+ }
+ ADDOP_I(c, loc, CALL, 1);
+ }
+ else {
+ VISIT_SEQ(c, expr, e->v.JoinedStr.values);
+ if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) {
+ ADDOP_I(c, loc, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
+ }
+ }
+ return SUCCESS;
+}
+
+/* Used to implement f-strings. Format a single value. */
+static int
+compiler_formatted_value(struct compiler *c, expr_ty e)
+{
+ /* Our oparg encodes 2 pieces of information: the conversion
+ character, and whether or not a format_spec was provided.
+
+ Convert the conversion char to 3 bits:
+ : 000 0x0 FVC_NONE The default if nothing specified.
+ !s : 001 0x1 FVC_STR
+ !r : 010 0x2 FVC_REPR
+ !a : 011 0x3 FVC_ASCII
+
+ next bit is whether or not we have a format spec:
+ yes : 100 0x4
+ no : 000 0x0
+ */
+
+ int conversion = e->v.FormattedValue.conversion;
+ int oparg;
+
+ /* The expression to be formatted. */
+ VISIT(c, expr, e->v.FormattedValue.value);
+
+ switch (conversion) {
+ case 's': oparg = FVC_STR; break;
+ case 'r': oparg = FVC_REPR; break;
+ case 'a': oparg = FVC_ASCII; break;
+ case -1: oparg = FVC_NONE; break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "Unrecognized conversion character %d", conversion);
+ return ERROR;
+ }
+ if (e->v.FormattedValue.format_spec) {
+ /* Evaluate the format spec, and update our opcode arg. */
+ VISIT(c, expr, e->v.FormattedValue.format_spec);
+ oparg |= FVS_HAVE_SPEC;
+ }
+
+ /* And push our opcode and oparg */
+ location loc = LOC(e);
+ ADDOP_I(c, loc, FORMAT_VALUE, oparg);
+
+ return SUCCESS;
+}
+
+static int
+compiler_subkwargs(struct compiler *c, location loc,
+ asdl_keyword_seq *keywords,
+ Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i, n = end - begin;
+ keyword_ty kw;
+ PyObject *keys, *key;
+ assert(n > 0);
+ int big = n*2 > STACK_USE_GUIDELINE;
+ if (n > 1 && !big) {
+ for (i = begin; i < end; i++) {
+ kw = asdl_seq_GET(keywords, i);
+ VISIT(c, expr, kw->value);
+ }
+ keys = PyTuple_New(n);
+ if (keys == NULL) {
+ return ERROR;
+ }
+ for (i = begin; i < end; i++) {
+ key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
+ PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key));
+ }
+ ADDOP_LOAD_CONST_NEW(c, loc, keys);
+ ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n);
+ return SUCCESS;
+ }
+ if (big) {
+ ADDOP_I(c, NO_LOCATION, BUILD_MAP, 0);
+ }
+ for (i = begin; i < end; i++) {
+ kw = asdl_seq_GET(keywords, i);
+ ADDOP_LOAD_CONST(c, loc, kw->arg);
+ VISIT(c, expr, kw->value);
+ if (big) {
+ ADDOP_I(c, NO_LOCATION, MAP_ADD, 1);
+ }
+ }
+ if (!big) {
+ ADDOP_I(c, loc, BUILD_MAP, n);
+ }
+ return SUCCESS;
+}
+
+/* Used by compiler_call_helper and maybe_optimize_method_call to emit
+ * KW_NAMES before CALL.
+ */
+static int
+compiler_call_simple_kw_helper(struct compiler *c, location loc,
+ asdl_keyword_seq *keywords, Py_ssize_t nkwelts)
+{
+ PyObject *names;
+ names = PyTuple_New(nkwelts);
+ if (names == NULL) {
+ return ERROR;
+ }
+ for (int i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ PyTuple_SET_ITEM(names, i, Py_NewRef(kw->arg));
+ }
+ Py_ssize_t arg = compiler_add_const(c->c_const_cache, c->u, names);
+ if (arg < 0) {
+ return ERROR;
+ }
+ Py_DECREF(names);
+ ADDOP_I(c, loc, KW_NAMES, arg);
+ return SUCCESS;
+}
+
+
+/* shared code between compiler_call and compiler_class */
+static int
+compiler_call_helper(struct compiler *c, location loc,
+ int n, /* Args already pushed */
+ asdl_expr_seq *args,
+ asdl_keyword_seq *keywords)
+{
+ Py_ssize_t i, nseen, nelts, nkwelts;
+
+ RETURN_IF_ERROR(validate_keywords(c, keywords));
+
+ nelts = asdl_seq_LEN(args);
+ nkwelts = asdl_seq_LEN(keywords);
+
+ if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) {
+ goto ex_call;
+ }
+ for (i = 0; i < nelts; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ if (elt->kind == Starred_kind) {
+ goto ex_call;
+ }
+ }
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ if (kw->arg == NULL) {
+ goto ex_call;
+ }
+ }
+
+ /* No * or ** args, so can use faster calling sequence */
+ for (i = 0; i < nelts; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ assert(elt->kind != Starred_kind);
+ VISIT(c, expr, elt);
+ }
+ if (nkwelts) {
+ VISIT_SEQ(c, keyword, keywords);
+ RETURN_IF_ERROR(
+ compiler_call_simple_kw_helper(c, loc, keywords, nkwelts));
+ }
+ ADDOP_I(c, loc, CALL, n + nelts + nkwelts);
+ return SUCCESS;
+
+ex_call:
+
+ /* Do positional arguments. */
+ if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) {
+ VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value);
+ }
+ else {
+ RETURN_IF_ERROR(starunpack_helper(c, loc, args, n, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 1));
+ }
+ /* Then keyword arguments */
+ if (nkwelts) {
+ /* Has a new dict been pushed */
+ int have_dict = 0;
+
+ nseen = 0; /* the number of keyword arguments on the stack following */
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ if (kw->arg == NULL) {
+ /* A keyword argument unpacking. */
+ if (nseen) {
+ RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, i - nseen, i));
+ if (have_dict) {
+ ADDOP_I(c, loc, DICT_MERGE, 1);
+ }
+ have_dict = 1;
+ nseen = 0;
+ }
+ if (!have_dict) {
+ ADDOP_I(c, loc, BUILD_MAP, 0);
+ have_dict = 1;
+ }
+ VISIT(c, expr, kw->value);
+ ADDOP_I(c, loc, DICT_MERGE, 1);
+ }
+ else {
+ nseen++;
+ }
+ }
+ if (nseen) {
+ /* Pack up any trailing keyword arguments. */
+ RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, nkwelts - nseen, nkwelts));
+ if (have_dict) {
+ ADDOP_I(c, loc, DICT_MERGE, 1);
+ }
+ have_dict = 1;
+ }
+ assert(have_dict);
+ }
+ ADDOP_I(c, loc, CALL_FUNCTION_EX, nkwelts > 0);
+ return SUCCESS;
+}
+
+
+/* List and set comprehensions and generator expressions work by creating a
+ nested function to perform the actual iteration. This means that the
+ iteration variables don't leak into the current scope.
+ The defined function is called immediately following its definition, with the
+ result of that call being the result of the expression.
+ The LC/SC version returns the populated container, while the GE version is
+ flagged in symtable.c as a generator, so it returns the generator object
+ when the function is called.
+
+ Possible cleanups:
+ - iterate over the generator sequence instead of using recursion
+*/
+
+
+static int
+compiler_comprehension_generator(struct compiler *c, location loc,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type,
+ int iter_on_stack)
+{
+ comprehension_ty gen;
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+ if (gen->is_async) {
+ return compiler_async_comprehension_generator(
+ c, loc, generators, gen_index, depth, elt, val, type,
+ iter_on_stack);
+ } else {
+ return compiler_sync_comprehension_generator(
+ c, loc, generators, gen_index, depth, elt, val, type,
+ iter_on_stack);
+ }
+}
+
+static int
+compiler_sync_comprehension_generator(struct compiler *c, location loc,
+ asdl_comprehension_seq *generators,
+ int gen_index, int depth,
+ expr_ty elt, expr_ty val, int type,
+ int iter_on_stack)
+{
+ /* generate code for the iterator, then each of the ifs,
+ and then write to the element */
+
+ NEW_JUMP_TARGET_LABEL(c, start);
+ NEW_JUMP_TARGET_LABEL(c, if_cleanup);
+ NEW_JUMP_TARGET_LABEL(c, anchor);
+
+ comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators,
+ gen_index);
+
+ if (!iter_on_stack) {
+ if (gen_index == 0) {
+ /* Receive outermost iter as an implicit argument */
+ c->u->u_metadata.u_argcount = 1;
+ ADDOP_I(c, loc, LOAD_FAST, 0);
+ }
+ else {
+ /* Sub-iter - calculate on the fly */
+ /* Fast path for the temporary variable assignment idiom:
+ for y in [f(x)]
+ */
+ asdl_expr_seq *elts;
+ switch (gen->iter->kind) {
+ case List_kind:
+ elts = gen->iter->v.List.elts;
+ break;
+ case Tuple_kind:
+ elts = gen->iter->v.Tuple.elts;
+ break;
+ default:
+ elts = NULL;
+ }
+ if (asdl_seq_LEN(elts) == 1) {
+ expr_ty elt = asdl_seq_GET(elts, 0);
+ if (elt->kind != Starred_kind) {
+ VISIT(c, expr, elt);
+ start = NO_LABEL;
+ }
+ }
+ if (IS_LABEL(start)) {
+ VISIT(c, expr, gen->iter);
+ ADDOP(c, loc, GET_ITER);
+ }
+ }
+ }
+ if (IS_LABEL(start)) {
+ depth++;
+ USE_LABEL(c, start);
+ ADDOP_JUMP(c, loc, FOR_ITER, anchor);
+ }
+ VISIT(c, expr, gen->target);
+
+ /* XXX this needs to be cleaned up...a lot! */
+ Py_ssize_t n = asdl_seq_LEN(gen->ifs);
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
+ RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0));
+ }
+
+ if (++gen_index < asdl_seq_LEN(generators)) {
+ RETURN_IF_ERROR(
+ compiler_comprehension_generator(c, loc,
+ generators, gen_index, depth,
+ elt, val, type, 0));
+ }
+
+ location elt_loc = LOC(elt);
+
+ /* only append after the last for generator */
+ if (gen_index >= asdl_seq_LEN(generators)) {
+ /* comprehension specific code */
+ switch (type) {
+ case COMP_GENEXP:
+ VISIT(c, expr, elt);
+ ADDOP_YIELD(c, elt_loc);
+ ADDOP(c, elt_loc, POP_TOP);
+ break;
+ case COMP_LISTCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1);
+ break;
+ case COMP_SETCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, elt_loc, SET_ADD, depth + 1);
+ break;
+ case COMP_DICTCOMP:
+ /* With '{k: v}', k is evaluated before v, so we do
+ the same. */
+ VISIT(c, expr, elt);
+ VISIT(c, expr, val);
+ elt_loc = LOCATION(elt->lineno,
+ val->end_lineno,
+ elt->col_offset,
+ val->end_col_offset);
+ ADDOP_I(c, elt_loc, MAP_ADD, depth + 1);
+ break;
+ default:
+ return ERROR;
+ }
+ }
+
+ USE_LABEL(c, if_cleanup);
+ if (IS_LABEL(start)) {
+ ADDOP_JUMP(c, elt_loc, JUMP, start);
+
+ USE_LABEL(c, anchor);
+ ADDOP(c, NO_LOCATION, END_FOR);
+ }
+
+ return SUCCESS;
+}
+
+static int
+compiler_async_comprehension_generator(struct compiler *c, location loc,
+ asdl_comprehension_seq *generators,
+ int gen_index, int depth,
+ expr_ty elt, expr_ty val, int type,
+ int iter_on_stack)
+{
+ NEW_JUMP_TARGET_LABEL(c, start);
+ NEW_JUMP_TARGET_LABEL(c, except);
+ NEW_JUMP_TARGET_LABEL(c, if_cleanup);
+
+ comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators,
+ gen_index);
+
+ if (!iter_on_stack) {
+ if (gen_index == 0) {
+ /* Receive outermost iter as an implicit argument */
+ c->u->u_metadata.u_argcount = 1;
+ ADDOP_I(c, loc, LOAD_FAST, 0);
+ }
+ else {
+ /* Sub-iter - calculate on the fly */
+ VISIT(c, expr, gen->iter);
+ ADDOP(c, loc, GET_AITER);
+ }
+ }
+
+ USE_LABEL(c, start);
+ /* Runtime will push a block here, so we need to account for that */
+ RETURN_IF_ERROR(
+ compiler_push_fblock(c, loc, ASYNC_COMPREHENSION_GENERATOR,
+ start, NO_LABEL, NULL));
+
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
+ ADDOP(c, loc, GET_ANEXT);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+ ADDOP(c, loc, POP_BLOCK);
+ VISIT(c, expr, gen->target);
+
+ Py_ssize_t n = asdl_seq_LEN(gen->ifs);
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
+ RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0));
+ }
+
+ depth++;
+ if (++gen_index < asdl_seq_LEN(generators)) {
+ RETURN_IF_ERROR(
+ compiler_comprehension_generator(c, loc,
+ generators, gen_index, depth,
+ elt, val, type, 0));
+ }
+
+ location elt_loc = LOC(elt);
+ /* only append after the last for generator */
+ if (gen_index >= asdl_seq_LEN(generators)) {
+ /* comprehension specific code */
+ switch (type) {
+ case COMP_GENEXP:
+ VISIT(c, expr, elt);
+ ADDOP_YIELD(c, elt_loc);
+ ADDOP(c, elt_loc, POP_TOP);
+ break;
+ case COMP_LISTCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1);
+ break;
+ case COMP_SETCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, elt_loc, SET_ADD, depth + 1);
+ break;
+ case COMP_DICTCOMP:
+ /* With '{k: v}', k is evaluated before v, so we do
+ the same. */
+ VISIT(c, expr, elt);
+ VISIT(c, expr, val);
+ elt_loc = LOCATION(elt->lineno,
+ val->end_lineno,
+ elt->col_offset,
+ val->end_col_offset);
+ ADDOP_I(c, elt_loc, MAP_ADD, depth + 1);
+ break;
+ default:
+ return ERROR;
+ }
+ }
+
+ USE_LABEL(c, if_cleanup);
+ ADDOP_JUMP(c, elt_loc, JUMP, start);
+
+ compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start);
+
+ USE_LABEL(c, except);
+
+ ADDOP(c, loc, END_ASYNC_FOR);
+
+ return SUCCESS;
+}
+
+typedef struct {
+ PyObject *pushed_locals;
+ PyObject *temp_symbols;
+ PyObject *fast_hidden;
+ jump_target_label cleanup;
+ jump_target_label end;
+} inlined_comprehension_state;
+
+static int
+push_inlined_comprehension_state(struct compiler *c, location loc,
+ PySTEntryObject *entry,
+ inlined_comprehension_state *state)
+{
+ int in_class_block = (c->u->u_ste->ste_type == ClassBlock) && !c->u->u_in_inlined_comp;
+ c->u->u_in_inlined_comp++;
+ // iterate over names bound in the comprehension and ensure we isolate
+ // them from the outer scope as needed
+ PyObject *k, *v;
+ Py_ssize_t pos = 0;
+ while (PyDict_Next(entry->ste_symbols, &pos, &k, &v)) {
+ assert(PyLong_Check(v));
+ long symbol = PyLong_AS_LONG(v);
+ // only values bound in the comprehension (DEF_LOCAL) need to be handled
+ // at all; DEF_LOCAL | DEF_NONLOCAL can occur in the case of an
+ // assignment expression to a nonlocal in the comprehension, these don't
+ // need handling here since they shouldn't be isolated
+ if ((symbol & DEF_LOCAL && !(symbol & DEF_NONLOCAL)) || in_class_block) {
+ if (!_PyST_IsFunctionLike(c->u->u_ste)) {
+ // non-function scope: override this name to use fast locals
+ PyObject *orig = PyDict_GetItem(c->u->u_metadata.u_fasthidden, k);
+ if (orig != Py_True) {
+ if (PyDict_SetItem(c->u->u_metadata.u_fasthidden, k, Py_True) < 0) {
+ return ERROR;
+ }
+ if (state->fast_hidden == NULL) {
+ state->fast_hidden = PySet_New(NULL);
+ if (state->fast_hidden == NULL) {
+ return ERROR;
+ }
+ }
+ if (PySet_Add(state->fast_hidden, k) < 0) {
+ return ERROR;
+ }
+ }
+ }
+ long scope = (symbol >> SCOPE_OFFSET) & SCOPE_MASK;
+ PyObject *outv = PyDict_GetItemWithError(c->u->u_ste->ste_symbols, k);
+ if (outv == NULL) {
+ outv = _PyLong_GetZero();
+ }
+ assert(PyLong_Check(outv));
+ long outsc = (PyLong_AS_LONG(outv) >> SCOPE_OFFSET) & SCOPE_MASK;
+ if (scope != outsc && !(scope == CELL && outsc == FREE)) {
+ // If a name has different scope inside than outside the
+ // comprehension, we need to temporarily handle it with the
+ // right scope while compiling the comprehension. (If it's free
+ // in outer scope and cell in inner scope, we can't treat it as
+ // both cell and free in the same function, but treating it as
+ // free throughout is fine; it's *_DEREF either way.)
+
+ if (state->temp_symbols == NULL) {
+ state->temp_symbols = PyDict_New();
+ if (state->temp_symbols == NULL) {
+ return ERROR;
+ }
+ }
+ // update the symbol to the in-comprehension version and save
+ // the outer version; we'll restore it after running the
+ // comprehension
+ Py_INCREF(outv);
+ if (PyDict_SetItem(c->u->u_ste->ste_symbols, k, v) < 0) {
+ Py_DECREF(outv);
+ return ERROR;
+ }
+ if (PyDict_SetItem(state->temp_symbols, k, outv) < 0) {
+ Py_DECREF(outv);
+ return ERROR;
+ }
+ Py_DECREF(outv);
+ }
+ // local names bound in comprehension must be isolated from
+ // outer scope; push existing value (which may be NULL if
+ // not defined) on stack
+ if (state->pushed_locals == NULL) {
+ state->pushed_locals = PyList_New(0);
+ if (state->pushed_locals == NULL) {
+ return ERROR;
+ }
+ }
+ // in the case of a cell, this will actually push the cell
+ // itself to the stack, then we'll create a new one for the
+ // comprehension and restore the original one after
+ ADDOP_NAME(c, loc, LOAD_FAST_AND_CLEAR, k, varnames);
+ if (scope == CELL) {
+ if (outsc == FREE) {
+ ADDOP_NAME(c, loc, MAKE_CELL, k, freevars);
+ } else {
+ ADDOP_NAME(c, loc, MAKE_CELL, k, cellvars);
+ }
+ }
+ if (PyList_Append(state->pushed_locals, k) < 0) {
+ return ERROR;
+ }
+ }
+ }
+ if (state->pushed_locals) {
+ // Outermost iterable expression was already evaluated and is on the
+ // stack, we need to swap it back to TOS. This also rotates the order of
+ // `pushed_locals` on the stack, but this will be reversed when we swap
+ // out the comprehension result in pop_inlined_comprehension_state
+ ADDOP_I(c, loc, SWAP, PyList_GET_SIZE(state->pushed_locals) + 1);
+
+ // Add our own cleanup handler to restore comprehension locals in case
+ // of exception, so they have the correct values inside an exception
+ // handler or finally block.
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+ state->cleanup = cleanup;
+ NEW_JUMP_TARGET_LABEL(c, end);
+ state->end = end;
+
+ // no need to push an fblock for this "virtual" try/finally; there can't
+ // be return/continue/break inside a comprehension
+ ADDOP_JUMP(c, loc, SETUP_FINALLY, cleanup);
+ }
+
+ return SUCCESS;
+}
+
+static int
+restore_inlined_comprehension_locals(struct compiler *c, location loc,
+ inlined_comprehension_state state)
+{
+ PyObject *k;
+ // pop names we pushed to stack earlier
+ Py_ssize_t npops = PyList_GET_SIZE(state.pushed_locals);
+ // Preserve the comprehension result (or exception) as TOS. This
+ // reverses the SWAP we did in push_inlined_comprehension_state to get
+ // the outermost iterable to TOS, so we can still just iterate
+ // pushed_locals in simple reverse order
+ ADDOP_I(c, loc, SWAP, npops + 1);
+ for (Py_ssize_t i = npops - 1; i >= 0; --i) {
+ k = PyList_GetItem(state.pushed_locals, i);
+ if (k == NULL) {
+ return ERROR;
+ }
+ ADDOP_NAME(c, loc, STORE_FAST_MAYBE_NULL, k, varnames);
+ }
+ return SUCCESS;
+}
+
+static int
+pop_inlined_comprehension_state(struct compiler *c, location loc,
+ inlined_comprehension_state state)
+{
+ c->u->u_in_inlined_comp--;
+ PyObject *k, *v;
+ Py_ssize_t pos = 0;
+ if (state.temp_symbols) {
+ while (PyDict_Next(state.temp_symbols, &pos, &k, &v)) {
+ if (PyDict_SetItem(c->u->u_ste->ste_symbols, k, v)) {
+ return ERROR;
+ }
+ }
+ Py_CLEAR(state.temp_symbols);
+ }
+ if (state.pushed_locals) {
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, state.end);
+
+ // cleanup from an exception inside the comprehension
+ USE_LABEL(c, state.cleanup);
+ // discard incomplete comprehension result (beneath exc on stack)
+ ADDOP_I(c, NO_LOCATION, SWAP, 2);
+ ADDOP(c, NO_LOCATION, POP_TOP);
+ if (restore_inlined_comprehension_locals(c, loc, state) < 0) {
+ return ERROR;
+ }
+ ADDOP_I(c, NO_LOCATION, RERAISE, 0);
+
+ USE_LABEL(c, state.end);
+ if (restore_inlined_comprehension_locals(c, loc, state) < 0) {
+ return ERROR;
+ }
+ Py_CLEAR(state.pushed_locals);
+ }
+ if (state.fast_hidden) {
+ while (PySet_Size(state.fast_hidden) > 0) {
+ PyObject *k = PySet_Pop(state.fast_hidden);
+ if (k == NULL) {
+ return ERROR;
+ }
+ // we set to False instead of clearing, so we can track which names
+ // were temporarily fast-locals and should use CO_FAST_HIDDEN
+ if (PyDict_SetItem(c->u->u_metadata.u_fasthidden, k, Py_False)) {
+ Py_DECREF(k);
+ return ERROR;
+ }
+ Py_DECREF(k);
+ }
+ Py_CLEAR(state.fast_hidden);
+ }
+ return SUCCESS;
+}
+
+static inline int
+compiler_comprehension_iter(struct compiler *c, location loc,
+ comprehension_ty comp)
+{
+ VISIT(c, expr, comp->iter);
+ if (comp->is_async) {
+ ADDOP(c, loc, GET_AITER);
+ }
+ else {
+ ADDOP(c, loc, GET_ITER);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_comprehension(struct compiler *c, expr_ty e, int type,
+ identifier name, asdl_comprehension_seq *generators, expr_ty elt,
+ expr_ty val)
+{
+ PyCodeObject *co = NULL;
+ inlined_comprehension_state inline_state = {NULL, NULL, NULL, NO_LABEL, NO_LABEL};
+ comprehension_ty outermost;
+ int scope_type = c->u->u_scope_type;
+ int is_top_level_await = IS_TOP_LEVEL_AWAIT(c);
+ PySTEntryObject *entry = PySymtable_Lookup(c->c_st, (void *)e);
+ if (entry == NULL) {
+ goto error;
+ }
+ int is_inlined = entry->ste_comp_inlined;
+ int is_async_generator = entry->ste_coroutine;
+
+ location loc = LOC(e);
+
+ outermost = (comprehension_ty) asdl_seq_GET(generators, 0);
+ if (is_inlined) {
+ if (compiler_comprehension_iter(c, loc, outermost)) {
+ goto error;
+ }
+ if (push_inlined_comprehension_state(c, loc, entry, &inline_state)) {
+ goto error;
+ }
+ }
+ else {
+ if (compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
+ (void *)e, e->lineno) < 0)
+ {
+ goto error;
+ }
+ }
+ Py_CLEAR(entry);
+
+ if (is_async_generator && type != COMP_GENEXP &&
+ scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
+ scope_type != COMPILER_SCOPE_COMPREHENSION &&
+ !is_top_level_await)
+ {
+ compiler_error(c, loc, "asynchronous comprehension outside of "
+ "an asynchronous function");
+ goto error_in_scope;
+ }
+
+ if (type != COMP_GENEXP) {
+ int op;
+ switch (type) {
+ case COMP_LISTCOMP:
+ op = BUILD_LIST;
+ break;
+ case COMP_SETCOMP:
+ op = BUILD_SET;
+ break;
+ case COMP_DICTCOMP:
+ op = BUILD_MAP;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "unknown comprehension type %d", type);
+ goto error_in_scope;
+ }
+
+ ADDOP_I(c, loc, op, 0);
+ if (is_inlined) {
+ ADDOP_I(c, loc, SWAP, 2);
+ }
+ }
+
+ if (compiler_comprehension_generator(c, loc, generators, 0, 0,
+ elt, val, type, is_inlined) < 0) {
+ goto error_in_scope;
+ }
+
+ if (is_inlined) {
+ if (pop_inlined_comprehension_state(c, loc, inline_state)) {
+ goto error;
+ }
+ return SUCCESS;
+ }
+
+ if (type != COMP_GENEXP) {
+ ADDOP(c, LOC(e), RETURN_VALUE);
+ }
+ if (type == COMP_GENEXP) {
+ if (wrap_in_stopiteration_handler(c) < 0) {
+ goto error_in_scope;
+ }
+ }
+
+ co = optimize_and_assemble(c, 1);
+ compiler_exit_scope(c);
+ if (is_top_level_await && is_async_generator){
+ c->u->u_ste->ste_coroutine = 1;
+ }
+ if (co == NULL) {
+ goto error;
+ }
+
+ loc = LOC(e);
+ if (compiler_make_closure(c, loc, co, 0) < 0) {
+ goto error;
+ }
+ Py_CLEAR(co);
+
+ if (compiler_comprehension_iter(c, loc, outermost)) {
+ goto error;
+ }
+
+ ADDOP_I(c, loc, CALL, 0);
+
+ if (is_async_generator && type != COMP_GENEXP) {
+ ADDOP_I(c, loc, GET_AWAITABLE, 0);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+ }
+
+ return SUCCESS;
+error_in_scope:
+ if (!is_inlined) {
+ compiler_exit_scope(c);
+ }
+error:
+ Py_XDECREF(co);
+ Py_XDECREF(entry);
+ Py_XDECREF(inline_state.pushed_locals);
+ Py_XDECREF(inline_state.temp_symbols);
+ Py_XDECREF(inline_state.fast_hidden);
+ return ERROR;
+}
+
+static int
+compiler_genexp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == GeneratorExp_kind);
+ _Py_DECLARE_STR(anon_genexpr, "<genexpr>");
+ return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr),
+ e->v.GeneratorExp.generators,
+ e->v.GeneratorExp.elt, NULL);
+}
+
+static int
+compiler_listcomp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == ListComp_kind);
+ _Py_DECLARE_STR(anon_listcomp, "<listcomp>");
+ return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp),
+ e->v.ListComp.generators,
+ e->v.ListComp.elt, NULL);
+}
+
+static int
+compiler_setcomp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == SetComp_kind);
+ _Py_DECLARE_STR(anon_setcomp, "<setcomp>");
+ return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp),
+ e->v.SetComp.generators,
+ e->v.SetComp.elt, NULL);
+}
+
+
+static int
+compiler_dictcomp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == DictComp_kind);
+ _Py_DECLARE_STR(anon_dictcomp, "<dictcomp>");
+ return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp),
+ e->v.DictComp.generators,
+ e->v.DictComp.key, e->v.DictComp.value);
+}
+
+
+static int
+compiler_visit_keyword(struct compiler *c, keyword_ty k)
+{
+ VISIT(c, expr, k->value);
+ return SUCCESS;
+}
+
+
+static int
+compiler_with_except_finish(struct compiler *c, jump_target_label cleanup) {
+ NEW_JUMP_TARGET_LABEL(c, suppress);
+ ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_TRUE, suppress);
+ ADDOP_I(c, NO_LOCATION, RERAISE, 2);
+
+ USE_LABEL(c, suppress);
+ ADDOP(c, NO_LOCATION, POP_TOP); /* exc_value */
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ ADDOP(c, NO_LOCATION, POP_EXCEPT);
+ ADDOP(c, NO_LOCATION, POP_TOP);
+ ADDOP(c, NO_LOCATION, POP_TOP);
+ NEW_JUMP_TARGET_LABEL(c, exit);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
+
+ USE_LABEL(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);
+
+ USE_LABEL(c, exit);
+ return SUCCESS;
+}
+
+/*
+ Implements the async with statement.
+
+ The semantics outlined in that PEP are as follows:
+
+ async with EXPR as VAR:
+ BLOCK
+
+ It is implemented roughly as:
+
+ context = EXPR
+ exit = context.__aexit__ # not calling it
+ value = await context.__aenter__()
+ try:
+ VAR = value # if VAR present in the syntax
+ BLOCK
+ finally:
+ if an exception was raised:
+ exc = copy of (exception, instance, traceback)
+ else:
+ exc = (None, None, None)
+ if not (await exit(*exc)):
+ raise
+ */
+static int
+compiler_async_with(struct compiler *c, stmt_ty s, int pos)
+{
+ location loc = LOC(s);
+ withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);
+
+ assert(s->kind == AsyncWith_kind);
+ if (IS_TOP_LEVEL_AWAIT(c)){
+ c->u->u_ste->ste_coroutine = 1;
+ } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
+ return compiler_error(c, loc, "'async with' outside async function");
+ }
+
+ NEW_JUMP_TARGET_LABEL(c, block);
+ NEW_JUMP_TARGET_LABEL(c, final);
+ NEW_JUMP_TARGET_LABEL(c, exit);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+
+ /* Evaluate EXPR */
+ VISIT(c, expr, item->context_expr);
+
+ ADDOP(c, loc, BEFORE_ASYNC_WITH);
+ ADDOP_I(c, loc, GET_AWAITABLE, 1);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+
+ ADDOP_JUMP(c, loc, SETUP_WITH, final);
+
+ /* SETUP_WITH pushes a finally block. */
+ USE_LABEL(c, block);
+ RETURN_IF_ERROR(compiler_push_fblock(c, loc, ASYNC_WITH, block, final, s));
+
+ if (item->optional_vars) {
+ VISIT(c, expr, item->optional_vars);
+ }
+ else {
+ /* Discard result from context.__aenter__() */
+ ADDOP(c, loc, POP_TOP);
+ }
+
+ pos++;
+ if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) {
+ /* BLOCK code */
+ VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
+ }
+ else {
+ RETURN_IF_ERROR(compiler_async_with(c, s, pos));
+ }
+
+ compiler_pop_fblock(c, ASYNC_WITH, block);
+
+ ADDOP(c, loc, POP_BLOCK);
+ /* End of body; start the cleanup */
+
+ /* For successful outcome:
+ * call __exit__(None, None, None)
+ */
+ RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc));
+ ADDOP_I(c, loc, GET_AWAITABLE, 2);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+
+ ADDOP(c, loc, POP_TOP);
+
+ ADDOP_JUMP(c, loc, JUMP, exit);
+
+ /* For exceptional outcome: */
+ USE_LABEL(c, final);
+
+ ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
+ ADDOP(c, loc, PUSH_EXC_INFO);
+ ADDOP(c, loc, WITH_EXCEPT_START);
+ ADDOP_I(c, loc, GET_AWAITABLE, 2);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+ RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup));
+
+ USE_LABEL(c, exit);
+ return SUCCESS;
+}
+
+
+/*
+ Implements the with statement from PEP 343.
+ with EXPR as VAR:
+ BLOCK
+ is implemented as:
+ <code for EXPR>
+ SETUP_WITH E
+ <code to store to VAR> or POP_TOP
+ <code for BLOCK>
+ LOAD_CONST (None, None, None)
+ CALL_FUNCTION_EX 0
+ JUMP EXIT
+ E: WITH_EXCEPT_START (calls EXPR.__exit__)
+ POP_JUMP_IF_TRUE T:
+ RERAISE
+ T: POP_TOP (remove exception from stack)
+ POP_EXCEPT
+ POP_TOP
+ EXIT:
+ */
+
+static int
+compiler_with(struct compiler *c, stmt_ty s, int pos)
+{
+ withitem_ty item = asdl_seq_GET(s->v.With.items, pos);
+
+ assert(s->kind == With_kind);
+
+ NEW_JUMP_TARGET_LABEL(c, block);
+ NEW_JUMP_TARGET_LABEL(c, final);
+ NEW_JUMP_TARGET_LABEL(c, exit);
+ NEW_JUMP_TARGET_LABEL(c, cleanup);
+
+ /* Evaluate EXPR */
+ VISIT(c, expr, item->context_expr);
+ /* Will push bound __exit__ */
+ location loc = LOC(s);
+ ADDOP(c, loc, BEFORE_WITH);
+ ADDOP_JUMP(c, loc, SETUP_WITH, final);
+
+ /* SETUP_WITH pushes a finally block. */
+ USE_LABEL(c, block);
+ RETURN_IF_ERROR(compiler_push_fblock(c, loc, WITH, block, final, s));
+
+ if (item->optional_vars) {
+ VISIT(c, expr, item->optional_vars);
+ }
+ else {
+ /* Discard result from context.__enter__() */
+ ADDOP(c, loc, POP_TOP);
+ }
+
+ pos++;
+ if (pos == asdl_seq_LEN(s->v.With.items)) {
+ /* BLOCK code */
+ VISIT_SEQ(c, stmt, s->v.With.body)
+ }
+ else {
+ RETURN_IF_ERROR(compiler_with(c, s, pos));
+ }
+
+ ADDOP(c, NO_LOCATION, POP_BLOCK);
+ compiler_pop_fblock(c, WITH, block);
+
+ /* End of body; start the cleanup. */
+
+ /* For successful outcome:
+ * call __exit__(None, None, None)
+ */
+ loc = LOC(s);
+ RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc));
+ ADDOP(c, loc, POP_TOP);
+ ADDOP_JUMP(c, loc, JUMP, exit);
+
+ /* For exceptional outcome: */
+ USE_LABEL(c, final);
+
+ ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
+ ADDOP(c, loc, PUSH_EXC_INFO);
+ ADDOP(c, loc, WITH_EXCEPT_START);
+ RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup));
+
+ USE_LABEL(c, exit);
+ return SUCCESS;
+}
+
+static int
+compiler_visit_expr1(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ switch (e->kind) {
+ case NamedExpr_kind:
+ VISIT(c, expr, e->v.NamedExpr.value);
+ ADDOP_I(c, loc, COPY, 1);
+ VISIT(c, expr, e->v.NamedExpr.target);
+ break;
+ case BoolOp_kind:
+ return compiler_boolop(c, e);
+ case BinOp_kind:
+ VISIT(c, expr, e->v.BinOp.left);
+ VISIT(c, expr, e->v.BinOp.right);
+ ADDOP_BINARY(c, loc, e->v.BinOp.op);
+ break;
+ case UnaryOp_kind:
+ VISIT(c, expr, e->v.UnaryOp.operand);
+ if (e->v.UnaryOp.op == UAdd) {
+ ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_UNARY_POSITIVE);
+ }
+ else {
+ ADDOP(c, loc, unaryop(e->v.UnaryOp.op));
+ }
+ break;
+ case Lambda_kind:
+ return compiler_lambda(c, e);
+ case IfExp_kind:
+ return compiler_ifexp(c, e);
+ case Dict_kind:
+ return compiler_dict(c, e);
+ case Set_kind:
+ return compiler_set(c, e);
+ case GeneratorExp_kind:
+ return compiler_genexp(c, e);
+ case ListComp_kind:
+ return compiler_listcomp(c, e);
+ case SetComp_kind:
+ return compiler_setcomp(c, e);
+ case DictComp_kind:
+ return compiler_dictcomp(c, e);
+ case Yield_kind:
+ if (!_PyST_IsFunctionLike(c->u->u_ste)) {
+ return compiler_error(c, loc, "'yield' outside function");
+ }
+ if (e->v.Yield.value) {
+ VISIT(c, expr, e->v.Yield.value);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ }
+ ADDOP_YIELD(c, loc);
+ break;
+ case YieldFrom_kind:
+ if (!_PyST_IsFunctionLike(c->u->u_ste)) {
+ return compiler_error(c, loc, "'yield' outside function");
+ }
+ if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) {
+ return compiler_error(c, loc, "'yield from' inside async function");
+ }
+ VISIT(c, expr, e->v.YieldFrom.value);
+ ADDOP(c, loc, GET_YIELD_FROM_ITER);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 0);
+ break;
+ case Await_kind:
+ if (!IS_TOP_LEVEL_AWAIT(c)){
+ if (!_PyST_IsFunctionLike(c->u->u_ste)) {
+ return compiler_error(c, loc, "'await' outside function");
+ }
+
+ if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
+ c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION) {
+ return compiler_error(c, loc, "'await' outside async function");
+ }
+ }
+
+ VISIT(c, expr, e->v.Await.value);
+ ADDOP_I(c, loc, GET_AWAITABLE, 0);
+ ADDOP_LOAD_CONST(c, loc, Py_None);
+ ADD_YIELD_FROM(c, loc, 1);
+ break;
+ case Compare_kind:
+ return compiler_compare(c, e);
+ case Call_kind:
+ return compiler_call(c, e);
+ case Constant_kind:
+ ADDOP_LOAD_CONST(c, loc, e->v.Constant.value);
+ break;
+ case JoinedStr_kind:
+ return compiler_joined_str(c, e);
+ case FormattedValue_kind:
+ return compiler_formatted_value(c, e);
+ /* The following exprs can be assignment targets. */
+ case Attribute_kind:
+ if (e->v.Attribute.ctx == Load && can_optimize_super_call(c, e)) {
+ RETURN_IF_ERROR(load_args_for_super(c, e->v.Attribute.value));
+ int opcode = asdl_seq_LEN(e->v.Attribute.value->v.Call.args) ?
+ LOAD_SUPER_ATTR : LOAD_ZERO_SUPER_ATTR;
+ ADDOP_NAME(c, loc, opcode, e->v.Attribute.attr, names);
+ loc = update_start_location_to_match_attr(c, loc, e);
+ ADDOP(c, loc, NOP);
+ return SUCCESS;
+ }
+ VISIT(c, expr, e->v.Attribute.value);
+ loc = LOC(e);
+ loc = update_start_location_to_match_attr(c, loc, e);
+ switch (e->v.Attribute.ctx) {
+ case Load:
+ ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Store:
+ if (forbidden_name(c, loc, e->v.Attribute.attr, e->v.Attribute.ctx)) {
+ return ERROR;
+ }
+ ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Del:
+ ADDOP_NAME(c, loc, DELETE_ATTR, e->v.Attribute.attr, names);
+ break;
+ }
+ break;
+ case Subscript_kind:
+ return compiler_subscript(c, e);
+ case Starred_kind:
+ switch (e->v.Starred.ctx) {
+ case Store:
+ /* In all legitimate cases, the Starred node was already replaced
+ * by compiler_list/compiler_tuple. XXX: is that okay? */
+ return compiler_error(c, loc,
+ "starred assignment target must be in a list or tuple");
+ default:
+ return compiler_error(c, loc,
+ "can't use starred expression here");
+ }
+ break;
+ case Slice_kind:
+ {
+ int n = compiler_slice(c, e);
+ RETURN_IF_ERROR(n);
+ ADDOP_I(c, loc, BUILD_SLICE, n);
+ break;
+ }
+ case Name_kind:
+ return compiler_nameop(c, loc, e->v.Name.id, e->v.Name.ctx);
+ /* child nodes of List and Tuple will have expr_context set */
+ case List_kind:
+ return compiler_list(c, e);
+ case Tuple_kind:
+ return compiler_tuple(c, e);
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_visit_expr(struct compiler *c, expr_ty e)
+{
+ int res = compiler_visit_expr1(c, e);
+ return res;
+}
+
+static bool
+is_two_element_slice(expr_ty s)
+{
+ return s->kind == Slice_kind &&
+ s->v.Slice.step == NULL;
+}
+
+static int
+compiler_augassign(struct compiler *c, stmt_ty s)
+{
+ assert(s->kind == AugAssign_kind);
+ expr_ty e = s->v.AugAssign.target;
+
+ location loc = LOC(e);
+
+ switch (e->kind) {
+ case Attribute_kind:
+ VISIT(c, expr, e->v.Attribute.value);
+ ADDOP_I(c, loc, COPY, 1);
+ loc = update_start_location_to_match_attr(c, loc, e);
+ ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Subscript_kind:
+ VISIT(c, expr, e->v.Subscript.value);
+ if (is_two_element_slice(e->v.Subscript.slice)) {
+ RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice));
+ ADDOP_I(c, loc, COPY, 3);
+ ADDOP_I(c, loc, COPY, 3);
+ ADDOP_I(c, loc, COPY, 3);
+ ADDOP(c, loc, BINARY_SLICE);
+ }
+ else {
+ VISIT(c, expr, e->v.Subscript.slice);
+ ADDOP_I(c, loc, COPY, 2);
+ ADDOP_I(c, loc, COPY, 2);
+ ADDOP(c, loc, BINARY_SUBSCR);
+ }
+ break;
+ case Name_kind:
+ RETURN_IF_ERROR(compiler_nameop(c, loc, e->v.Name.id, Load));
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "invalid node type (%d) for augmented assignment",
+ e->kind);
+ return ERROR;
+ }
+
+ loc = LOC(s);
+
+ VISIT(c, expr, s->v.AugAssign.value);
+ ADDOP_INPLACE(c, loc, s->v.AugAssign.op);
+
+ loc = LOC(e);
+
+ switch (e->kind) {
+ case Attribute_kind:
+ loc = update_start_location_to_match_attr(c, loc, e);
+ ADDOP_I(c, loc, SWAP, 2);
+ ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Subscript_kind:
+ if (is_two_element_slice(e->v.Subscript.slice)) {
+ ADDOP_I(c, loc, SWAP, 4);
+ ADDOP_I(c, loc, SWAP, 3);
+ ADDOP_I(c, loc, SWAP, 2);
+ ADDOP(c, loc, STORE_SLICE);
+ }
+ else {
+ ADDOP_I(c, loc, SWAP, 3);
+ ADDOP_I(c, loc, SWAP, 2);
+ ADDOP(c, loc, STORE_SUBSCR);
+ }
+ break;
+ case Name_kind:
+ return compiler_nameop(c, loc, e->v.Name.id, Store);
+ default:
+ Py_UNREACHABLE();
+ }
+ return SUCCESS;
+}
+
+static int
+check_ann_expr(struct compiler *c, expr_ty e)
+{
+ VISIT(c, expr, e);
+ ADDOP(c, LOC(e), POP_TOP);
+ return SUCCESS;
+}
+
+static int
+check_annotation(struct compiler *c, stmt_ty s)
+{
+ /* Annotations of complex targets does not produce anything
+ under annotations future */
+ if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
+ return SUCCESS;
+ }
+
+ /* Annotations are only evaluated in a module or class. */
+ if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
+ c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
+ return check_ann_expr(c, s->v.AnnAssign.annotation);
+ }
+ return SUCCESS;
+}
+
+static int
+check_ann_subscr(struct compiler *c, expr_ty e)
+{
+ /* We check that everything in a subscript is defined at runtime. */
+ switch (e->kind) {
+ case Slice_kind:
+ if (e->v.Slice.lower && check_ann_expr(c, e->v.Slice.lower) < 0) {
+ return ERROR;
+ }
+ if (e->v.Slice.upper && check_ann_expr(c, e->v.Slice.upper) < 0) {
+ return ERROR;
+ }
+ if (e->v.Slice.step && check_ann_expr(c, e->v.Slice.step) < 0) {
+ return ERROR;
+ }
+ return SUCCESS;
+ case Tuple_kind: {
+ /* extended slice */
+ asdl_expr_seq *elts = e->v.Tuple.elts;
+ Py_ssize_t i, n = asdl_seq_LEN(elts);
+ for (i = 0; i < n; i++) {
+ RETURN_IF_ERROR(check_ann_subscr(c, asdl_seq_GET(elts, i)));
+ }
+ return SUCCESS;
+ }
+ default:
+ return check_ann_expr(c, e);
+ }
+}
+
+static int
+compiler_annassign(struct compiler *c, stmt_ty s)
+{
+ location loc = LOC(s);
+ expr_ty targ = s->v.AnnAssign.target;
+ PyObject* mangled;
+
+ assert(s->kind == AnnAssign_kind);
+
+ /* We perform the actual assignment first. */
+ if (s->v.AnnAssign.value) {
+ VISIT(c, expr, s->v.AnnAssign.value);
+ VISIT(c, expr, targ);
+ }
+ switch (targ->kind) {
+ case Name_kind:
+ if (forbidden_name(c, loc, targ->v.Name.id, Store)) {
+ return ERROR;
+ }
+ /* If we have a simple name in a module or class, store annotation. */
+ if (s->v.AnnAssign.simple &&
+ (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
+ c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
+ if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
+ VISIT(c, annexpr, s->v.AnnAssign.annotation)
+ }
+ else {
+ VISIT(c, expr, s->v.AnnAssign.annotation);
+ }
+ ADDOP_NAME(c, loc, LOAD_NAME, &_Py_ID(__annotations__), names);
+ mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
+ ADDOP_LOAD_CONST_NEW(c, loc, mangled);
+ ADDOP(c, loc, STORE_SUBSCR);
+ }
+ break;
+ case Attribute_kind:
+ if (forbidden_name(c, loc, targ->v.Attribute.attr, Store)) {
+ return ERROR;
+ }
+ if (!s->v.AnnAssign.value &&
+ check_ann_expr(c, targ->v.Attribute.value) < 0) {
+ return ERROR;
+ }
+ break;
+ case Subscript_kind:
+ if (!s->v.AnnAssign.value &&
+ (check_ann_expr(c, targ->v.Subscript.value) < 0 ||
+ check_ann_subscr(c, targ->v.Subscript.slice) < 0)) {
+ return ERROR;
+ }
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "invalid node type (%d) for annotated assignment",
+ targ->kind);
+ return ERROR;
+ }
+ /* Annotation is evaluated last. */
+ if (!s->v.AnnAssign.simple && check_annotation(c, s) < 0) {
+ return ERROR;
+ }
+ return SUCCESS;
+}
+
+/* Raises a SyntaxError and returns 0.
+ If something goes wrong, a different exception may be raised.
+*/
+
+static int
+compiler_error(struct compiler *c, location loc,
+ const char *format, ...)
+{
+ va_list vargs;
+ va_start(vargs, format);
+ PyObject *msg = PyUnicode_FromFormatV(format, vargs);
+ va_end(vargs);
+ if (msg == NULL) {
+ return ERROR;
+ }
+ PyObject *loc_obj = PyErr_ProgramTextObject(c->c_filename, loc.lineno);
+ if (loc_obj == NULL) {
+ loc_obj = Py_NewRef(Py_None);
+ }
+ PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename,
+ loc.lineno, loc.col_offset + 1, loc_obj,
+ loc.end_lineno, loc.end_col_offset + 1);
+ Py_DECREF(msg);
+ if (args == NULL) {
+ goto exit;
+ }
+ PyErr_SetObject(PyExc_SyntaxError, args);
+ exit:
+ Py_DECREF(loc_obj);
+ Py_XDECREF(args);
+ return ERROR;
+}
+
+/* Emits a SyntaxWarning and returns 1 on success.
+ If a SyntaxWarning raised as error, replaces it with a SyntaxError
+ and returns 0.
+*/
+static int
+compiler_warn(struct compiler *c, location loc,
+ const char *format, ...)
+{
+ va_list vargs;
+ va_start(vargs, format);
+ PyObject *msg = PyUnicode_FromFormatV(format, vargs);
+ va_end(vargs);
+ if (msg == NULL) {
+ return ERROR;
+ }
+ if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
+ loc.lineno, NULL, NULL) < 0)
+ {
+ if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
+ /* Replace the SyntaxWarning exception with a SyntaxError
+ to get a more accurate error report */
+ PyErr_Clear();
+ assert(PyUnicode_AsUTF8(msg) != NULL);
+ compiler_error(c, loc, PyUnicode_AsUTF8(msg));
+ }
+ Py_DECREF(msg);
+ return ERROR;
+ }
+ Py_DECREF(msg);
+ return SUCCESS;
+}
+
+static int
+compiler_subscript(struct compiler *c, expr_ty e)
+{
+ location loc = LOC(e);
+ expr_context_ty ctx = e->v.Subscript.ctx;
+ int op = 0;
+
+ if (ctx == Load) {
+ RETURN_IF_ERROR(check_subscripter(c, e->v.Subscript.value));
+ RETURN_IF_ERROR(check_index(c, e->v.Subscript.value, e->v.Subscript.slice));
+ }
+
+ VISIT(c, expr, e->v.Subscript.value);
+ if (is_two_element_slice(e->v.Subscript.slice) && ctx != Del) {
+ RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice));
+ if (ctx == Load) {
+ ADDOP(c, loc, BINARY_SLICE);
+ }
+ else {
+ assert(ctx == Store);
+ ADDOP(c, loc, STORE_SLICE);
+ }
+ }
+ else {
+ VISIT(c, expr, e->v.Subscript.slice);
+ switch (ctx) {
+ case Load: op = BINARY_SUBSCR; break;
+ case Store: op = STORE_SUBSCR; break;
+ case Del: op = DELETE_SUBSCR; break;
+ }
+ assert(op);
+ ADDOP(c, loc, op);
+ }
+ return SUCCESS;
+}
+
+/* Returns the number of the values emitted,
+ * thus are needed to build the slice, or -1 if there is an error. */
+static int
+compiler_slice(struct compiler *c, expr_ty s)
+{
+ int n = 2;
+ assert(s->kind == Slice_kind);
+
+ /* only handles the cases where BUILD_SLICE is emitted */
+ if (s->v.Slice.lower) {
+ VISIT(c, expr, s->v.Slice.lower);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, LOC(s), Py_None);
+ }
+
+ if (s->v.Slice.upper) {
+ VISIT(c, expr, s->v.Slice.upper);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, LOC(s), Py_None);
+ }
+
+ if (s->v.Slice.step) {
+ n++;
+ VISIT(c, expr, s->v.Slice.step);
+ }
+ return n;
+}
+
+
+// PEP 634: Structural Pattern Matching
+
+// To keep things simple, all compiler_pattern_* and pattern_helper_* routines
+// follow the convention of consuming TOS (the subject for the given pattern)
+// and calling jump_to_fail_pop on failure (no match).
+
+// When calling into these routines, it's important that pc->on_top be kept
+// updated to reflect the current number of items that we are using on the top
+// of the stack: they will be popped on failure, and any name captures will be
+// stored *underneath* them on success. This lets us defer all names stores
+// until the *entire* pattern matches.
+
+#define WILDCARD_CHECK(N) \
+ ((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name)
+
+#define WILDCARD_STAR_CHECK(N) \
+ ((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name)
+
+// Limit permitted subexpressions, even if the parser & AST validator let them through
+#define MATCH_VALUE_EXPR(N) \
+ ((N)->kind == Constant_kind || (N)->kind == Attribute_kind)
+
+// Allocate or resize pc->fail_pop to allow for n items to be popped on failure.
+static int
+ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n)
+{
+ Py_ssize_t size = n + 1;
+ if (size <= pc->fail_pop_size) {
+ return SUCCESS;
+ }
+ Py_ssize_t needed = sizeof(jump_target_label) * size;
+ jump_target_label *resized = PyObject_Realloc(pc->fail_pop, needed);
+ if (resized == NULL) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ pc->fail_pop = resized;
+ while (pc->fail_pop_size < size) {
+ NEW_JUMP_TARGET_LABEL(c, new_block);
+ pc->fail_pop[pc->fail_pop_size++] = new_block;
+ }
+ return SUCCESS;
+}
+
+// Use op to jump to the correct fail_pop block.
+static int
+jump_to_fail_pop(struct compiler *c, location loc,
+ pattern_context *pc, int op)
+{
+ // Pop any items on the top of the stack, plus any objects we were going to
+ // capture on success:
+ Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores);
+ RETURN_IF_ERROR(ensure_fail_pop(c, pc, pops));
+ ADDOP_JUMP(c, loc, op, pc->fail_pop[pops]);
+ return SUCCESS;
+}
+
+// Build all of the fail_pop blocks and reset fail_pop.
+static int
+emit_and_reset_fail_pop(struct compiler *c, location loc,
+ pattern_context *pc)
+{
+ if (!pc->fail_pop_size) {
+ assert(pc->fail_pop == NULL);
+ return SUCCESS;
+ }
+ while (--pc->fail_pop_size) {
+ USE_LABEL(c, pc->fail_pop[pc->fail_pop_size]);
+ if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, loc) < 0) {
+ pc->fail_pop_size = 0;
+ PyObject_Free(pc->fail_pop);
+ pc->fail_pop = NULL;
+ return ERROR;
+ }
+ }
+ USE_LABEL(c, pc->fail_pop[0]);
+ PyObject_Free(pc->fail_pop);
+ pc->fail_pop = NULL;
+ return SUCCESS;
+}
+
+static int
+compiler_error_duplicate_store(struct compiler *c, location loc, identifier n)
+{
+ return compiler_error(c, loc,
+ "multiple assignments to name %R in pattern", n);
+}
+
+// Duplicate the effect of 3.10's ROT_* instructions using SWAPs.
+static int
+pattern_helper_rotate(struct compiler *c, location loc, Py_ssize_t count)
+{
+ while (1 < count) {
+ ADDOP_I(c, loc, SWAP, count--);
+ }
+ return SUCCESS;
+}
+
+static int
+pattern_helper_store_name(struct compiler *c, location loc,
+ identifier n, pattern_context *pc)
+{
+ if (n == NULL) {
+ ADDOP(c, loc, POP_TOP);
+ return SUCCESS;
+ }
+ if (forbidden_name(c, loc, n, Store)) {
+ return ERROR;
+ }
+ // Can't assign to the same name twice:
+ int duplicate = PySequence_Contains(pc->stores, n);
+ RETURN_IF_ERROR(duplicate);
+ if (duplicate) {
+ return compiler_error_duplicate_store(c, loc, n);
+ }
+ // Rotate this object underneath any items we need to preserve:
+ Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1;
+ RETURN_IF_ERROR(pattern_helper_rotate(c, loc, rotations));
+ RETURN_IF_ERROR(PyList_Append(pc->stores, n));
+ return SUCCESS;
+}
+
+
+static int
+pattern_unpack_helper(struct compiler *c, location loc,
+ asdl_pattern_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ int seen_star = 0;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ pattern_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == MatchStar_kind && !seen_star) {
+ if ((i >= (1 << 8)) ||
+ (n-i-1 >= (INT_MAX >> 8))) {
+ return compiler_error(c, loc,
+ "too many expressions in "
+ "star-unpacking sequence pattern");
+ }
+ ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8)));
+ seen_star = 1;
+ }
+ else if (elt->kind == MatchStar_kind) {
+ return compiler_error(c, loc,
+ "multiple starred expressions in sequence pattern");
+ }
+ }
+ if (!seen_star) {
+ ADDOP_I(c, loc, UNPACK_SEQUENCE, n);
+ }
+ return SUCCESS;
+}
+
+static int
+pattern_helper_sequence_unpack(struct compiler *c, location loc,
+ asdl_pattern_seq *patterns, Py_ssize_t star,
+ pattern_context *pc)
+{
+ RETURN_IF_ERROR(pattern_unpack_helper(c, loc, patterns));
+ Py_ssize_t size = asdl_seq_LEN(patterns);
+ // We've now got a bunch of new subjects on the stack. They need to remain
+ // there after each subpattern match:
+ pc->on_top += size;
+ for (Py_ssize_t i = 0; i < size; i++) {
+ // One less item to keep track of each time we loop through:
+ pc->on_top--;
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ return SUCCESS;
+}
+
+// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of
+// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a
+// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc.
+static int
+pattern_helper_sequence_subscr(struct compiler *c, location loc,
+ asdl_pattern_seq *patterns, Py_ssize_t star,
+ pattern_context *pc)
+{
+ // We need to keep the subject around for extracting elements:
+ pc->on_top++;
+ Py_ssize_t size = asdl_seq_LEN(patterns);
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ if (WILDCARD_CHECK(pattern)) {
+ continue;
+ }
+ if (i == star) {
+ assert(WILDCARD_STAR_CHECK(pattern));
+ continue;
+ }
+ ADDOP_I(c, loc, COPY, 1);
+ if (i < star) {
+ ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(i));
+ }
+ else {
+ // The subject may not support negative indexing! Compute a
+ // nonnegative index:
+ ADDOP(c, loc, GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(size - i));
+ ADDOP_BINARY(c, loc, Sub);
+ }
+ ADDOP(c, loc, BINARY_SUBSCR);
+ RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ // Pop the subject, we're done with it:
+ pc->on_top--;
+ ADDOP(c, loc, POP_TOP);
+ return SUCCESS;
+}
+
+// Like compiler_pattern, but turn off checks for irrefutability.
+static int
+compiler_pattern_subpattern(struct compiler *c,
+ pattern_ty p, pattern_context *pc)
+{
+ int allow_irrefutable = pc->allow_irrefutable;
+ pc->allow_irrefutable = 1;
+ RETURN_IF_ERROR(compiler_pattern(c, p, pc));
+ pc->allow_irrefutable = allow_irrefutable;
+ return SUCCESS;
+}
+
+static int
+compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchAs_kind);
+ if (p->v.MatchAs.pattern == NULL) {
+ // An irrefutable match:
+ if (!pc->allow_irrefutable) {
+ if (p->v.MatchAs.name) {
+ const char *e = "name capture %R makes remaining patterns unreachable";
+ return compiler_error(c, LOC(p), e, p->v.MatchAs.name);
+ }
+ const char *e = "wildcard makes remaining patterns unreachable";
+ return compiler_error(c, LOC(p), e);
+ }
+ return pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc);
+ }
+ // Need to make a copy for (possibly) storing later:
+ pc->on_top++;
+ ADDOP_I(c, LOC(p), COPY, 1);
+ RETURN_IF_ERROR(compiler_pattern(c, p->v.MatchAs.pattern, pc));
+ // Success! Store it:
+ pc->on_top--;
+ RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc));
+ return SUCCESS;
+}
+
+static int
+compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchStar_kind);
+ RETURN_IF_ERROR(
+ pattern_helper_store_name(c, LOC(p), p->v.MatchStar.name, pc));
+ return SUCCESS;
+}
+
+static int
+validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns)
+{
+ // Any errors will point to the pattern rather than the arg name as the
+ // parser is only supplying identifiers rather than Name or keyword nodes
+ Py_ssize_t nattrs = asdl_seq_LEN(attrs);
+ for (Py_ssize_t i = 0; i < nattrs; i++) {
+ identifier attr = ((identifier)asdl_seq_GET(attrs, i));
+ location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i));
+ if (forbidden_name(c, loc, attr, Store)) {
+ return ERROR;
+ }
+ for (Py_ssize_t j = i + 1; j < nattrs; j++) {
+ identifier other = ((identifier)asdl_seq_GET(attrs, j));
+ if (!PyUnicode_Compare(attr, other)) {
+ location loc = LOC((pattern_ty) asdl_seq_GET(patterns, j));
+ compiler_error(c, loc, "attribute name repeated in class pattern: %U", attr);
+ return ERROR;
+ }
+ }
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchClass_kind);
+ asdl_pattern_seq *patterns = p->v.MatchClass.patterns;
+ asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs;
+ asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns;
+ Py_ssize_t nargs = asdl_seq_LEN(patterns);
+ Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs);
+ Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns);
+ if (nattrs != nkwd_patterns) {
+ // AST validator shouldn't let this happen, but if it does,
+ // just fail, don't crash out of the interpreter
+ const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern";
+ return compiler_error(c, LOC(p), e, nattrs, nkwd_patterns);
+ }
+ if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) {
+ const char *e = "too many sub-patterns in class pattern %R";
+ return compiler_error(c, LOC(p), e, p->v.MatchClass.cls);
+ }
+ if (nattrs) {
+ RETURN_IF_ERROR(validate_kwd_attrs(c, kwd_attrs, kwd_patterns));
+ }
+ VISIT(c, expr, p->v.MatchClass.cls);
+ PyObject *attr_names = PyTuple_New(nattrs);
+ if (attr_names == NULL) {
+ return ERROR;
+ }
+ Py_ssize_t i;
+ for (i = 0; i < nattrs; i++) {
+ PyObject *name = asdl_seq_GET(kwd_attrs, i);
+ PyTuple_SET_ITEM(attr_names, i, Py_NewRef(name));
+ }
+ ADDOP_LOAD_CONST_NEW(c, LOC(p), attr_names);
+ ADDOP_I(c, LOC(p), MATCH_CLASS, nargs);
+ ADDOP_I(c, LOC(p), COPY, 1);
+ ADDOP_LOAD_CONST(c, LOC(p), Py_None);
+ ADDOP_I(c, LOC(p), IS_OP, 1);
+ // TOS is now a tuple of (nargs + nattrs) attributes (or None):
+ pc->on_top++;
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, nargs + nattrs);
+ pc->on_top += nargs + nattrs - 1;
+ for (i = 0; i < nargs + nattrs; i++) {
+ pc->on_top--;
+ pattern_ty pattern;
+ if (i < nargs) {
+ // Positional:
+ pattern = asdl_seq_GET(patterns, i);
+ }
+ else {
+ // Keyword:
+ pattern = asdl_seq_GET(kwd_patterns, i - nargs);
+ }
+ if (WILDCARD_CHECK(pattern)) {
+ ADDOP(c, LOC(p), POP_TOP);
+ continue;
+ }
+ RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ // Success! Pop the tuple of attributes:
+ return SUCCESS;
+}
+
+static int
+compiler_pattern_mapping(struct compiler *c, pattern_ty p,
+ pattern_context *pc)
+{
+ assert(p->kind == MatchMapping_kind);
+ asdl_expr_seq *keys = p->v.MatchMapping.keys;
+ asdl_pattern_seq *patterns = p->v.MatchMapping.patterns;
+ Py_ssize_t size = asdl_seq_LEN(keys);
+ Py_ssize_t npatterns = asdl_seq_LEN(patterns);
+ if (size != npatterns) {
+ // AST validator shouldn't let this happen, but if it does,
+ // just fail, don't crash out of the interpreter
+ const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern";
+ return compiler_error(c, LOC(p), e, size, npatterns);
+ }
+ // We have a double-star target if "rest" is set
+ PyObject *star_target = p->v.MatchMapping.rest;
+ // We need to keep the subject on top during the mapping and length checks:
+ pc->on_top++;
+ ADDOP(c, LOC(p), MATCH_MAPPING);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ if (!size && !star_target) {
+ // If the pattern is just "{}", we're done! Pop the subject:
+ pc->on_top--;
+ ADDOP(c, LOC(p), POP_TOP);
+ return SUCCESS;
+ }
+ if (size) {
+ // If the pattern has any keys in it, perform a length check:
+ ADDOP(c, LOC(p), GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size));
+ ADDOP_COMPARE(c, LOC(p), GtE);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ }
+ if (INT_MAX < size - 1) {
+ return compiler_error(c, LOC(p), "too many sub-patterns in mapping pattern");
+ }
+ // Collect all of the keys into a tuple for MATCH_KEYS and
+ // **rest. They can either be dotted names or literals:
+
+ // Maintaining a set of Constant_kind kind keys allows us to raise a
+ // SyntaxError in the case of duplicates.
+ PyObject *seen = PySet_New(NULL);
+ if (seen == NULL) {
+ return ERROR;
+ }
+
+ // NOTE: goto error on failure in the loop below to avoid leaking `seen`
+ for (Py_ssize_t i = 0; i < size; i++) {
+ expr_ty key = asdl_seq_GET(keys, i);
+ if (key == NULL) {
+ const char *e = "can't use NULL keys in MatchMapping "
+ "(set 'rest' parameter instead)";
+ location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i));
+ compiler_error(c, loc, e);
+ goto error;
+ }
+
+ if (key->kind == Constant_kind) {
+ int in_seen = PySet_Contains(seen, key->v.Constant.value);
+ if (in_seen < 0) {
+ goto error;
+ }
+ if (in_seen) {
+ const char *e = "mapping pattern checks duplicate key (%R)";
+ compiler_error(c, LOC(p), e, key->v.Constant.value);
+ goto error;
+ }
+ if (PySet_Add(seen, key->v.Constant.value)) {
+ goto error;
+ }
+ }
+
+ else if (key->kind != Attribute_kind) {
+ const char *e = "mapping pattern keys may only match literals and attribute lookups";
+ compiler_error(c, LOC(p), e);
+ goto error;
+ }
+ if (compiler_visit_expr(c, key) < 0) {
+ goto error;
+ }
+ }
+
+ // all keys have been checked; there are no duplicates
+ Py_DECREF(seen);
+
+ ADDOP_I(c, LOC(p), BUILD_TUPLE, size);
+ ADDOP(c, LOC(p), MATCH_KEYS);
+ // There's now a tuple of keys and a tuple of values on top of the subject:
+ pc->on_top += 2;
+ ADDOP_I(c, LOC(p), COPY, 1);
+ ADDOP_LOAD_CONST(c, LOC(p), Py_None);
+ ADDOP_I(c, LOC(p), IS_OP, 1);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ // So far so good. Use that tuple of values on the stack to match
+ // sub-patterns against:
+ ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size);
+ pc->on_top += size - 1;
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pc->on_top--;
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ // If we get this far, it's a match! Whatever happens next should consume
+ // the tuple of keys and the subject:
+ pc->on_top -= 2;
+ if (star_target) {
+ // If we have a starred name, bind a dict of remaining items to it (this may
+ // seem a bit inefficient, but keys is rarely big enough to actually impact
+ // runtime):
+ // rest = dict(TOS1)
+ // for key in TOS:
+ // del rest[key]
+ ADDOP_I(c, LOC(p), BUILD_MAP, 0); // [subject, keys, empty]
+ ADDOP_I(c, LOC(p), SWAP, 3); // [empty, keys, subject]
+ ADDOP_I(c, LOC(p), DICT_UPDATE, 2); // [copy, keys]
+ ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size); // [copy, keys...]
+ while (size) {
+ ADDOP_I(c, LOC(p), COPY, 1 + size--); // [copy, keys..., copy]
+ ADDOP_I(c, LOC(p), SWAP, 2); // [copy, keys..., copy, key]
+ ADDOP(c, LOC(p), DELETE_SUBSCR); // [copy, keys...]
+ }
+ RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), star_target, pc));
+ }
+ else {
+ ADDOP(c, LOC(p), POP_TOP); // Tuple of keys.
+ ADDOP(c, LOC(p), POP_TOP); // Subject.
+ }
+ return SUCCESS;
+
+error:
+ Py_DECREF(seen);
+ return ERROR;
+}
+
+static int
+compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchOr_kind);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns);
+ assert(size > 1);
+ // We're going to be messing with pc. Keep the original info handy:
+ pattern_context old_pc = *pc;
+ Py_INCREF(pc->stores);
+ // control is the list of names bound by the first alternative. It is used
+ // for checking different name bindings in alternatives, and for correcting
+ // the order in which extracted elements are placed on the stack.
+ PyObject *control = NULL;
+ // NOTE: We can't use returning macros anymore! goto error on error.
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i);
+ PyObject *pc_stores = PyList_New(0);
+ if (pc_stores == NULL) {
+ goto error;
+ }
+ Py_SETREF(pc->stores, pc_stores);
+ // An irrefutable sub-pattern must be last, if it is allowed at all:
+ pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable;
+ pc->fail_pop = NULL;
+ pc->fail_pop_size = 0;
+ pc->on_top = 0;
+ if (codegen_addop_i(INSTR_SEQUENCE(c), COPY, 1, LOC(alt)) < 0 ||
+ compiler_pattern(c, alt, pc) < 0) {
+ goto error;
+ }
+ // Success!
+ Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
+ if (!i) {
+ // This is the first alternative, so save its stores as a "control"
+ // for the others (they can't bind a different set of names, and
+ // might need to be reordered):
+ assert(control == NULL);
+ control = Py_NewRef(pc->stores);
+ }
+ else if (nstores != PyList_GET_SIZE(control)) {
+ goto diff;
+ }
+ else if (nstores) {
+ // There were captures. Check to see if we differ from control:
+ Py_ssize_t icontrol = nstores;
+ while (icontrol--) {
+ PyObject *name = PyList_GET_ITEM(control, icontrol);
+ Py_ssize_t istores = PySequence_Index(pc->stores, name);
+ if (istores < 0) {
+ PyErr_Clear();
+ goto diff;
+ }
+ if (icontrol != istores) {
+ // Reorder the names on the stack to match the order of the
+ // names in control. There's probably a better way of doing
+ // this; the current solution is potentially very
+ // inefficient when each alternative subpattern binds lots
+ // of names in different orders. It's fine for reasonable
+ // cases, though, and the peephole optimizer will ensure
+ // that the final code is as efficient as possible.
+ assert(istores < icontrol);
+ Py_ssize_t rotations = istores + 1;
+ // Perform the same rotation on pc->stores:
+ PyObject *rotated = PyList_GetSlice(pc->stores, 0,
+ rotations);
+ if (rotated == NULL ||
+ PyList_SetSlice(pc->stores, 0, rotations, NULL) ||
+ PyList_SetSlice(pc->stores, icontrol - istores,
+ icontrol - istores, rotated))
+ {
+ Py_XDECREF(rotated);
+ goto error;
+ }
+ Py_DECREF(rotated);
+ // That just did:
+ // rotated = pc_stores[:rotations]
+ // del pc_stores[:rotations]
+ // pc_stores[icontrol-istores:icontrol-istores] = rotated
+ // Do the same thing to the stack, using several
+ // rotations:
+ while (rotations--) {
+ if (pattern_helper_rotate(c, LOC(alt), icontrol + 1) < 0) {
+ goto error;
+ }
+ }
+ }
+ }
+ }
+ assert(control);
+ if (codegen_addop_j(INSTR_SEQUENCE(c), LOC(alt), JUMP, end) < 0 ||
+ emit_and_reset_fail_pop(c, LOC(alt), pc) < 0)
+ {
+ goto error;
+ }
+ }
+ Py_DECREF(pc->stores);
+ *pc = old_pc;
+ Py_INCREF(pc->stores);
+ // Need to NULL this for the PyObject_Free call in the error block.
+ old_pc.fail_pop = NULL;
+ // No match. Pop the remaining copy of the subject and fail:
+ if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, LOC(p)) < 0 ||
+ jump_to_fail_pop(c, LOC(p), pc, JUMP) < 0) {
+ goto error;
+ }
+
+ USE_LABEL(c, end);
+ Py_ssize_t nstores = PyList_GET_SIZE(control);
+ // There's a bunch of stuff on the stack between where the new stores
+ // are and where they need to be:
+ // - The other stores.
+ // - A copy of the subject.
+ // - Anything else that may be on top of the stack.
+ // - Any previous stores we've already stashed away on the stack.
+ Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores);
+ for (Py_ssize_t i = 0; i < nstores; i++) {
+ // Rotate this capture to its proper place on the stack:
+ if (pattern_helper_rotate(c, LOC(p), nrots) < 0) {
+ goto error;
+ }
+ // Update the list of previous stores with this new name, checking for
+ // duplicates:
+ PyObject *name = PyList_GET_ITEM(control, i);
+ int dupe = PySequence_Contains(pc->stores, name);
+ if (dupe < 0) {
+ goto error;
+ }
+ if (dupe) {
+ compiler_error_duplicate_store(c, LOC(p), name);
+ goto error;
+ }
+ if (PyList_Append(pc->stores, name)) {
+ goto error;
+ }
+ }
+ Py_DECREF(old_pc.stores);
+ Py_DECREF(control);
+ // NOTE: Returning macros are safe again.
+ // Pop the copy of the subject:
+ ADDOP(c, LOC(p), POP_TOP);
+ return SUCCESS;
+diff:
+ compiler_error(c, LOC(p), "alternative patterns bind different names");
+error:
+ PyObject_Free(old_pc.fail_pop);
+ Py_DECREF(old_pc.stores);
+ Py_XDECREF(control);
+ return ERROR;
+}
+
+
+static int
+compiler_pattern_sequence(struct compiler *c, pattern_ty p,
+ pattern_context *pc)
+{
+ assert(p->kind == MatchSequence_kind);
+ asdl_pattern_seq *patterns = p->v.MatchSequence.patterns;
+ Py_ssize_t size = asdl_seq_LEN(patterns);
+ Py_ssize_t star = -1;
+ int only_wildcard = 1;
+ int star_wildcard = 0;
+ // Find a starred name, if it exists. There may be at most one:
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ if (pattern->kind == MatchStar_kind) {
+ if (star >= 0) {
+ const char *e = "multiple starred names in sequence pattern";
+ return compiler_error(c, LOC(p), e);
+ }
+ star_wildcard = WILDCARD_STAR_CHECK(pattern);
+ only_wildcard &= star_wildcard;
+ star = i;
+ continue;
+ }
+ only_wildcard &= WILDCARD_CHECK(pattern);
+ }
+ // We need to keep the subject on top during the sequence and length checks:
+ pc->on_top++;
+ ADDOP(c, LOC(p), MATCH_SEQUENCE);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ if (star < 0) {
+ // No star: len(subject) == size
+ ADDOP(c, LOC(p), GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size));
+ ADDOP_COMPARE(c, LOC(p), Eq);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ }
+ else if (size > 1) {
+ // Star: len(subject) >= size - 1
+ ADDOP(c, LOC(p), GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size - 1));
+ ADDOP_COMPARE(c, LOC(p), GtE);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ }
+ // Whatever comes next should consume the subject:
+ pc->on_top--;
+ if (only_wildcard) {
+ // Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc.
+ ADDOP(c, LOC(p), POP_TOP);
+ }
+ else if (star_wildcard) {
+ RETURN_IF_ERROR(pattern_helper_sequence_subscr(c, LOC(p), patterns, star, pc));
+ }
+ else {
+ RETURN_IF_ERROR(pattern_helper_sequence_unpack(c, LOC(p), patterns, star, pc));
+ }
+ return SUCCESS;
+}
+
+static int
+compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchValue_kind);
+ expr_ty value = p->v.MatchValue.value;
+ if (!MATCH_VALUE_EXPR(value)) {
+ const char *e = "patterns may only match literals and attribute lookups";
+ return compiler_error(c, LOC(p), e);
+ }
+ VISIT(c, expr, value);
+ ADDOP_COMPARE(c, LOC(p), Eq);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ return SUCCESS;
+}
+
+static int
+compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchSingleton_kind);
+ ADDOP_LOAD_CONST(c, LOC(p), p->v.MatchSingleton.value);
+ ADDOP_COMPARE(c, LOC(p), Is);
+ RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
+ return SUCCESS;
+}
+
+static int
+compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ switch (p->kind) {
+ case MatchValue_kind:
+ return compiler_pattern_value(c, p, pc);
+ case MatchSingleton_kind:
+ return compiler_pattern_singleton(c, p, pc);
+ case MatchSequence_kind:
+ return compiler_pattern_sequence(c, p, pc);
+ case MatchMapping_kind:
+ return compiler_pattern_mapping(c, p, pc);
+ case MatchClass_kind:
+ return compiler_pattern_class(c, p, pc);
+ case MatchStar_kind:
+ return compiler_pattern_star(c, p, pc);
+ case MatchAs_kind:
+ return compiler_pattern_as(c, p, pc);
+ case MatchOr_kind:
+ return compiler_pattern_or(c, p, pc);
+ }
+ // AST validator shouldn't let this happen, but if it does,
+ // just fail, don't crash out of the interpreter
+ const char *e = "invalid match pattern node in AST (kind=%d)";
+ return compiler_error(c, LOC(p), e, p->kind);
+}
+
+static int
+compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc)
+{
+ VISIT(c, expr, s->v.Match.subject);
+ NEW_JUMP_TARGET_LABEL(c, end);
+ Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases);
+ assert(cases > 0);
+ match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1);
+ int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases;
+ for (Py_ssize_t i = 0; i < cases - has_default; i++) {
+ m = asdl_seq_GET(s->v.Match.cases, i);
+ // Only copy the subject if we're *not* on the last case:
+ if (i != cases - has_default - 1) {
+ ADDOP_I(c, LOC(m->pattern), COPY, 1);
+ }
+ pc->stores = PyList_New(0);
+ if (pc->stores == NULL) {
+ return ERROR;
+ }
+ // Irrefutable cases must be either guarded, last, or both:
+ pc->allow_irrefutable = m->guard != NULL || i == cases - 1;
+ pc->fail_pop = NULL;
+ pc->fail_pop_size = 0;
+ pc->on_top = 0;
+ // NOTE: Can't use returning macros here (they'll leak pc->stores)!
+ if (compiler_pattern(c, m->pattern, pc) < 0) {
+ Py_DECREF(pc->stores);
+ return ERROR;
+ }
+ assert(!pc->on_top);
+ // It's a match! Store all of the captured names (they're on the stack).
+ Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
+ for (Py_ssize_t n = 0; n < nstores; n++) {
+ PyObject *name = PyList_GET_ITEM(pc->stores, n);
+ if (compiler_nameop(c, LOC(m->pattern), name, Store) < 0) {
+ Py_DECREF(pc->stores);
+ return ERROR;
+ }
+ }
+ Py_DECREF(pc->stores);
+ // NOTE: Returning macros are safe again.
+ if (m->guard) {
+ RETURN_IF_ERROR(ensure_fail_pop(c, pc, 0));
+ RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, pc->fail_pop[0], 0));
+ }
+ // Success! Pop the subject off, we're done with it:
+ if (i != cases - has_default - 1) {
+ ADDOP(c, LOC(m->pattern), POP_TOP);
+ }
+ VISIT_SEQ(c, stmt, m->body);
+ ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
+ // If the pattern fails to match, we want the line number of the
+ // cleanup to be associated with the failed pattern, not the last line
+ // of the body
+ RETURN_IF_ERROR(emit_and_reset_fail_pop(c, LOC(m->pattern), pc));
+ }
+ if (has_default) {
+ // A trailing "case _" is common, and lets us save a bit of redundant
+ // pushing and popping in the loop above:
+ m = asdl_seq_GET(s->v.Match.cases, cases - 1);
+ if (cases == 1) {
+ // No matches. Done with the subject:
+ ADDOP(c, LOC(m->pattern), POP_TOP);
+ }
+ else {
+ // Show line coverage for default case (it doesn't create bytecode)
+ ADDOP(c, LOC(m->pattern), NOP);
+ }
+ if (m->guard) {
+ RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, end, 0));
+ }
+ VISIT_SEQ(c, stmt, m->body);
+ }
+ USE_LABEL(c, end);
+ return SUCCESS;
+}
+
+static int
+compiler_match(struct compiler *c, stmt_ty s)
+{
+ pattern_context pc;
+ pc.fail_pop = NULL;
+ int result = compiler_match_inner(c, s, &pc);
+ PyObject_Free(pc.fail_pop);
+ return result;
+}
+
+#undef WILDCARD_CHECK
+#undef WILDCARD_STAR_CHECK
+
+static PyObject *
+consts_dict_keys_inorder(PyObject *dict)
+{
+ PyObject *consts, *k, *v;
+ Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
+
+ consts = PyList_New(size); /* PyCode_Optimize() requires a list */
+ if (consts == NULL)
+ return NULL;
+ while (PyDict_Next(dict, &pos, &k, &v)) {
+ i = PyLong_AS_LONG(v);
+ /* The keys of the dictionary can be tuples wrapping a constant.
+ * (see dict_add_o and _PyCode_ConstantKey). In that case
+ * the object we want is always second. */
+ if (PyTuple_CheckExact(k)) {
+ k = PyTuple_GET_ITEM(k, 1);
+ }
+ assert(i < size);
+ assert(i >= 0);
+ PyList_SET_ITEM(consts, i, Py_NewRef(k));
+ }
+ return consts;
+}
+
+static int
+compute_code_flags(struct compiler *c)
+{
+ PySTEntryObject *ste = c->u->u_ste;
+ int flags = 0;
+ if (_PyST_IsFunctionLike(c->u->u_ste)) {
+ flags |= CO_NEWLOCALS | CO_OPTIMIZED;
+ if (ste->ste_nested)
+ flags |= CO_NESTED;
+ if (ste->ste_generator && !ste->ste_coroutine)
+ flags |= CO_GENERATOR;
+ if (!ste->ste_generator && ste->ste_coroutine)
+ flags |= CO_COROUTINE;
+ if (ste->ste_generator && ste->ste_coroutine)
+ flags |= CO_ASYNC_GENERATOR;
+ if (ste->ste_varargs)
+ flags |= CO_VARARGS;
+ if (ste->ste_varkeywords)
+ flags |= CO_VARKEYWORDS;
+ }
+
+ /* (Only) inherit compilerflags in PyCF_MASK */
+ flags |= (c->c_flags.cf_flags & PyCF_MASK);
+
+ if ((IS_TOP_LEVEL_AWAIT(c)) &&
+ ste->ste_coroutine &&
+ !ste->ste_generator) {
+ flags |= CO_COROUTINE;
+ }
+
+ return flags;
+}
+
+// Merge *obj* with constant cache.
+// Unlike merge_consts_recursive(), this function doesn't work recursively.
+int
+_PyCompile_ConstCacheMergeOne(PyObject *const_cache, PyObject **obj)
+{
+ assert(PyDict_CheckExact(const_cache));
+ PyObject *key = _PyCode_ConstantKey(*obj);
+ if (key == NULL) {
+ return ERROR;
+ }
+
+ // t is borrowed reference
+ PyObject *t = PyDict_SetDefault(const_cache, key, key);
+ Py_DECREF(key);
+ if (t == NULL) {
+ return ERROR;
+ }
+ if (t == key) { // obj is new constant.
+ return SUCCESS;
+ }
+
+ if (PyTuple_CheckExact(t)) {
+ // t is still borrowed reference
+ t = PyTuple_GET_ITEM(t, 1);
+ }
+
+ Py_SETREF(*obj, Py_NewRef(t));
+ return SUCCESS;
+}
+
+
+static int *
+build_cellfixedoffsets(_PyCompile_CodeUnitMetadata *umd)
+{
+ int nlocals = (int)PyDict_GET_SIZE(umd->u_varnames);
+ int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars);
+ int nfreevars = (int)PyDict_GET_SIZE(umd->u_freevars);
+
+ int noffsets = ncellvars + nfreevars;
+ int *fixed = PyMem_New(int, noffsets);
+ if (fixed == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ for (int i = 0; i < noffsets; i++) {
+ fixed[i] = nlocals + i;
+ }
+
+ PyObject *varname, *cellindex;
+ Py_ssize_t pos = 0;
+ while (PyDict_Next(umd->u_cellvars, &pos, &varname, &cellindex)) {
+ PyObject *varindex = PyDict_GetItem(umd->u_varnames, varname);
+ if (varindex != NULL) {
+ assert(PyLong_AS_LONG(cellindex) < INT_MAX);
+ assert(PyLong_AS_LONG(varindex) < INT_MAX);
+ int oldindex = (int)PyLong_AS_LONG(cellindex);
+ int argoffset = (int)PyLong_AS_LONG(varindex);
+ fixed[oldindex] = argoffset;
+ }
+ }
+
+ return fixed;
+}
+
+static int
+insert_prefix_instructions(_PyCompile_CodeUnitMetadata *umd, basicblock *entryblock,
+ int *fixed, int nfreevars, int code_flags)
+{
+ assert(umd->u_firstlineno > 0);
+
+ /* Add the generator prefix instructions. */
+ if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
+ cfg_instr make_gen = {
+ .i_opcode = RETURN_GENERATOR,
+ .i_oparg = 0,
+ .i_loc = LOCATION(umd->u_firstlineno, umd->u_firstlineno, -1, -1),
+ .i_target = NULL,
+ };
+ RETURN_IF_ERROR(_PyBasicblock_InsertInstruction(entryblock, 0, &make_gen));
+ cfg_instr pop_top = {
+ .i_opcode = POP_TOP,
+ .i_oparg = 0,
+ .i_loc = NO_LOCATION,
+ .i_target = NULL,
+ };
+ RETURN_IF_ERROR(_PyBasicblock_InsertInstruction(entryblock, 1, &pop_top));
+ }
+
+ /* Set up cells for any variable that escapes, to be put in a closure. */
+ const int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars);
+ if (ncellvars) {
+ // umd->u_cellvars has the cells out of order so we sort them
+ // before adding the MAKE_CELL instructions. Note that we
+ // adjust for arg cells, which come first.
+ const int nvars = ncellvars + (int)PyDict_GET_SIZE(umd->u_varnames);
+ int *sorted = PyMem_RawCalloc(nvars, sizeof(int));
+ if (sorted == NULL) {
+ PyErr_NoMemory();
+ return ERROR;
+ }
+ for (int i = 0; i < ncellvars; i++) {
+ sorted[fixed[i]] = i + 1;
+ }
+ for (int i = 0, ncellsused = 0; ncellsused < ncellvars; i++) {
+ int oldindex = sorted[i] - 1;
+ if (oldindex == -1) {
+ continue;
+ }
+ cfg_instr make_cell = {
+ .i_opcode = MAKE_CELL,
+ // This will get fixed in offset_derefs().
+ .i_oparg = oldindex,
+ .i_loc = NO_LOCATION,
+ .i_target = NULL,
+ };
+ if (_PyBasicblock_InsertInstruction(entryblock, ncellsused, &make_cell) < 0) {
+ PyMem_RawFree(sorted);
+ return ERROR;
+ }
+ ncellsused += 1;
+ }
+ PyMem_RawFree(sorted);
+ }
+
+ if (nfreevars) {
+ cfg_instr copy_frees = {
+ .i_opcode = COPY_FREE_VARS,
+ .i_oparg = nfreevars,
+ .i_loc = NO_LOCATION,
+ .i_target = NULL,
+ };
+ RETURN_IF_ERROR(_PyBasicblock_InsertInstruction(entryblock, 0, &copy_frees));
+ }
+
+ return SUCCESS;
+}
+
+static int
+fix_cell_offsets(_PyCompile_CodeUnitMetadata *umd, basicblock *entryblock, int *fixedmap)
+{
+ int nlocals = (int)PyDict_GET_SIZE(umd->u_varnames);
+ int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars);
+ int nfreevars = (int)PyDict_GET_SIZE(umd->u_freevars);
+ int noffsets = ncellvars + nfreevars;
+
+ // First deal with duplicates (arg cells).
+ int numdropped = 0;
+ for (int i = 0; i < noffsets ; i++) {
+ if (fixedmap[i] == i + nlocals) {
+ fixedmap[i] -= numdropped;
+ }
+ else {
+ // It was a duplicate (cell/arg).
+ numdropped += 1;
+ }
+ }
+
+ // Then update offsets, either relative to locals or by cell2arg.
+ for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+ for (int i = 0; i < b->b_iused; i++) {
+ cfg_instr *inst = &b->b_instr[i];
+ // This is called before extended args are generated.
+ assert(inst->i_opcode != EXTENDED_ARG);
+ int oldoffset = inst->i_oparg;
+ switch(inst->i_opcode) {
+ case MAKE_CELL:
+ case LOAD_CLOSURE:
+ case LOAD_DEREF:
+ case STORE_DEREF:
+ case DELETE_DEREF:
+ case LOAD_FROM_DICT_OR_DEREF:
+ assert(oldoffset >= 0);
+ assert(oldoffset < noffsets);
+ assert(fixedmap[oldoffset] >= 0);
+ inst->i_oparg = fixedmap[oldoffset];
+ }
+ }
+ }
+
+ return numdropped;
+}
+
+
+static int
+prepare_localsplus(_PyCompile_CodeUnitMetadata *umd, cfg_builder *g, int code_flags)
+{
+ assert(PyDict_GET_SIZE(umd->u_varnames) < INT_MAX);
+ assert(PyDict_GET_SIZE(umd->u_cellvars) < INT_MAX);
+ assert(PyDict_GET_SIZE(umd->u_freevars) < INT_MAX);
+ int nlocals = (int)PyDict_GET_SIZE(umd->u_varnames);
+ int ncellvars = (int)PyDict_GET_SIZE(umd->u_cellvars);
+ int nfreevars = (int)PyDict_GET_SIZE(umd->u_freevars);
+ assert(INT_MAX - nlocals - ncellvars > 0);
+ assert(INT_MAX - nlocals - ncellvars - nfreevars > 0);
+ int nlocalsplus = nlocals + ncellvars + nfreevars;
+ int* cellfixedoffsets = build_cellfixedoffsets(umd);
+ if (cellfixedoffsets == NULL) {
+ return ERROR;
+ }
+
+
+ // This must be called before fix_cell_offsets().
+ if (insert_prefix_instructions(umd, g->g_entryblock, cellfixedoffsets, nfreevars, code_flags)) {
+ PyMem_Free(cellfixedoffsets);
+ return ERROR;
+ }
+
+ int numdropped = fix_cell_offsets(umd, g->g_entryblock, cellfixedoffsets);
+ PyMem_Free(cellfixedoffsets); // At this point we're done with it.
+ cellfixedoffsets = NULL;
+ if (numdropped < 0) {
+ return ERROR;
+ }
+
+ nlocalsplus -= numdropped;
+ return nlocalsplus;
+}
+
+static int
+add_return_at_end(struct compiler *c, int addNone)
+{
+ /* Make sure every instruction stream that falls off the end returns None.
+ * This also ensures that no jump target offsets are out of bounds.
+ */
+ if (addNone) {
+ ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
+ }
+ ADDOP(c, NO_LOCATION, RETURN_VALUE);
+ return SUCCESS;
+}
+
+static int cfg_to_instr_sequence(cfg_builder *g, instr_sequence *seq);
+
+static PyCodeObject *
+optimize_and_assemble_code_unit(struct compiler_unit *u, PyObject *const_cache,
+ int code_flags, PyObject *filename)
+{
+ instr_sequence optimized_instrs;
+ memset(&optimized_instrs, 0, sizeof(instr_sequence));
+
+ PyCodeObject *co = NULL;
+ PyObject *consts = consts_dict_keys_inorder(u->u_metadata.u_consts);
+ if (consts == NULL) {
+ goto error;
+ }
+ cfg_builder g;
+ if (instr_sequence_to_cfg(&u->u_instr_sequence, &g) < 0) {
+ goto error;
+ }
+ int nparams = (int)PyList_GET_SIZE(u->u_ste->ste_varnames);
+ int nlocals = (int)PyDict_GET_SIZE(u->u_metadata.u_varnames);
+ assert(u->u_metadata.u_firstlineno);
+ if (_PyCfg_OptimizeCodeUnit(&g, consts, const_cache, code_flags, nlocals,
+ nparams, u->u_metadata.u_firstlineno) < 0) {
+ goto error;
+ }
+
+ /** Assembly **/
+ int nlocalsplus = prepare_localsplus(&u->u_metadata, &g, code_flags);
+ if (nlocalsplus < 0) {
+ goto error;
+ }
+
+ int maxdepth = _PyCfg_Stackdepth(g.g_entryblock, code_flags);
+ if (maxdepth < 0) {
+ goto error;
+ }
+
+ _PyCfg_ConvertPseudoOps(g.g_entryblock);
+
+ /* Order of basic blocks must have been determined by now */
+
+ if (_PyCfg_ResolveJumps(&g) < 0) {
+ goto error;
+ }
+
+ /* Can't modify the bytecode after computing jump offsets. */
+
+ if (cfg_to_instr_sequence(&g, &optimized_instrs) < 0) {
+ goto error;
+ }
+
+ co = _PyAssemble_MakeCodeObject(&u->u_metadata, const_cache, consts,
+ maxdepth, &optimized_instrs, nlocalsplus,
+ code_flags, filename);
+
+error:
+ Py_XDECREF(consts);
+ instr_sequence_fini(&optimized_instrs);
+ _PyCfgBuilder_Fini(&g);
+ return co;
+}
+
+static PyCodeObject *
+optimize_and_assemble(struct compiler *c, int addNone)
+{
+ struct compiler_unit *u = c->u;
+ PyObject *const_cache = c->c_const_cache;
+ PyObject *filename = c->c_filename;
+
+ int code_flags = compute_code_flags(c);
+ if (code_flags < 0) {
+ return NULL;
+ }
+
+ if (add_return_at_end(c, addNone) < 0) {
+ return NULL;
+ }
+
+ return optimize_and_assemble_code_unit(u, const_cache, code_flags, filename);
+}
+
+static int
+cfg_to_instr_sequence(cfg_builder *g, instr_sequence *seq)
+{
+ int lbl = 0;
+ for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+ b->b_label = (jump_target_label){lbl};
+ lbl += b->b_iused;
+ }
+ for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+ RETURN_IF_ERROR(instr_sequence_use_label(seq, b->b_label.id));
+ for (int i = 0; i < b->b_iused; i++) {
+ cfg_instr *instr = &b->b_instr[i];
+ RETURN_IF_ERROR(
+ instr_sequence_addop(seq, instr->i_opcode, instr->i_oparg, instr->i_loc));
+
+ _PyCompile_ExceptHandlerInfo *hi = &seq->s_instrs[seq->s_used-1].i_except_handler_info;
+ if (instr->i_except != NULL) {
+ hi->h_offset = instr->i_except->b_offset;
+ hi->h_startdepth = instr->i_except->b_startdepth;
+ hi->h_preserve_lasti = instr->i_except->b_preserve_lasti;
+ }
+ else {
+ hi->h_offset = -1;
+ }
+ }
+ }
+ return SUCCESS;
+}
+
+
+/* Access to compiler optimizations for unit tests.
+ *
+ * _PyCompile_CodeGen takes and AST, applies code-gen and
+ * returns the unoptimized CFG as an instruction list.
+ *
+ * _PyCompile_OptimizeCfg takes an instruction list, constructs
+ * a CFG, optimizes it and converts back to an instruction list.
+ *
+ * An instruction list is a PyList where each item is either
+ * a tuple describing a single instruction:
+ * (opcode, oparg, lineno, end_lineno, col, end_col), or
+ * a jump target label marking the beginning of a basic block.
+ */
+
+static int
+instructions_to_instr_sequence(PyObject *instructions, instr_sequence *seq)
+{
+ assert(PyList_Check(instructions));
+
+ Py_ssize_t num_insts = PyList_GET_SIZE(instructions);
+ bool *is_target = PyMem_Calloc(num_insts, sizeof(bool));
+ if (is_target == NULL) {
+ return ERROR;
+ }
+ for (Py_ssize_t i = 0; i < num_insts; i++) {
+ PyObject *item = PyList_GET_ITEM(instructions, i);
+ if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) {
+ PyErr_SetString(PyExc_ValueError, "expected a 6-tuple");
+ goto error;
+ }
+ int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ if (HAS_TARGET(opcode)) {
+ int oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ if (oparg < 0 || oparg >= num_insts) {
+ PyErr_SetString(PyExc_ValueError, "label out of range");
+ goto error;
+ }
+ is_target[oparg] = true;
+ }
+ }
+
+ for (int i = 0; i < num_insts; i++) {
+ if (is_target[i]) {
+ if (instr_sequence_use_label(seq, i) < 0) {
+ goto error;
+ }
+ }
+ PyObject *item = PyList_GET_ITEM(instructions, i);
+ if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) {
+ PyErr_SetString(PyExc_ValueError, "expected a 6-tuple");
+ goto error;
+ }
+ int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ int oparg;
+ if (HAS_ARG(opcode)) {
+ oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ }
+ else {
+ oparg = 0;
+ }
+ location loc;
+ loc.lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 2));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ loc.end_lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 3));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ loc.col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 4));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ loc.end_col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 5));
+ if (PyErr_Occurred()) {
+ goto error;
+ }
+ if (instr_sequence_addop(seq, opcode, oparg, loc) < 0) {
+ goto error;
+ }
+ }
+ PyMem_Free(is_target);
+ return SUCCESS;
+error:
+ PyMem_Free(is_target);
+ return ERROR;
+}
+
+static int
+instructions_to_cfg(PyObject *instructions, cfg_builder *g)
+{
+ instr_sequence seq;
+ memset(&seq, 0, sizeof(instr_sequence));
+
+ if (instructions_to_instr_sequence(instructions, &seq) < 0) {
+ goto error;
+ }
+ if (instr_sequence_to_cfg(&seq, g) < 0) {
+ goto error;
+ }
+ instr_sequence_fini(&seq);
+ return SUCCESS;
+error:
+ instr_sequence_fini(&seq);
+ return ERROR;
+}
+
+static PyObject *
+instr_sequence_to_instructions(instr_sequence *seq)
+{
+ PyObject *instructions = PyList_New(0);
+ if (instructions == NULL) {
+ return NULL;
+ }
+ for (int i = 0; i < seq->s_used; i++) {
+ instruction *instr = &seq->s_instrs[i];
+ location loc = instr->i_loc;
+ int arg = HAS_TARGET(instr->i_opcode) ?
+ seq->s_labelmap[instr->i_oparg] : instr->i_oparg;
+
+ PyObject *inst_tuple = Py_BuildValue(
+ "(iiiiii)", instr->i_opcode, arg,
+ loc.lineno, loc.end_lineno,
+ loc.col_offset, loc.end_col_offset);
+ if (inst_tuple == NULL) {
+ goto error;
+ }
+
+ int res = PyList_Append(instructions, inst_tuple);
+ Py_DECREF(inst_tuple);
+ if (res != 0) {
+ goto error;
+ }
+ }
+ return instructions;
+error:
+ Py_XDECREF(instructions);
+ return NULL;
+}
+
+static PyObject *
+cfg_to_instructions(cfg_builder *g)
+{
+ PyObject *instructions = PyList_New(0);
+ if (instructions == NULL) {
+ return NULL;
+ }
+ int lbl = 0;
+ for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+ b->b_label = (jump_target_label){lbl};
+ lbl += b->b_iused;
+ }
+ for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+ for (int i = 0; i < b->b_iused; i++) {
+ cfg_instr *instr = &b->b_instr[i];
+ location loc = instr->i_loc;
+ int arg = HAS_TARGET(instr->i_opcode) ?
+ instr->i_target->b_label.id : instr->i_oparg;
+
+ PyObject *inst_tuple = Py_BuildValue(
+ "(iiiiii)", instr->i_opcode, arg,
+ loc.lineno, loc.end_lineno,
+ loc.col_offset, loc.end_col_offset);
+ if (inst_tuple == NULL) {
+ goto error;
+ }
+
+ if (PyList_Append(instructions, inst_tuple) != 0) {
+ Py_DECREF(inst_tuple);
+ goto error;
+ }
+ Py_DECREF(inst_tuple);
+ }
+ }
+
+ return instructions;
+error:
+ Py_DECREF(instructions);
+ return NULL;
+}
+
+PyObject *
+_PyCompile_CodeGen(PyObject *ast, PyObject *filename, PyCompilerFlags *pflags,
+ int optimize, int compile_mode)
+{
+ PyObject *res = NULL;
+ PyObject *metadata = NULL;
+
+ if (!PyAST_Check(ast)) {
+ PyErr_SetString(PyExc_TypeError, "expected an AST");
+ return NULL;
+ }
+
+ PyArena *arena = _PyArena_New();
+ if (arena == NULL) {
+ return NULL;
+ }
+
+ mod_ty mod = PyAST_obj2mod(ast, arena, compile_mode);
+ if (mod == NULL || !_PyAST_Validate(mod)) {
+ _PyArena_Free(arena);
+ return NULL;
+ }
+
+ struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena);
+ if (c == NULL) {
+ _PyArena_Free(arena);
+ return NULL;
+ }
+
+ if (compiler_codegen(c, mod) < 0) {
+ goto finally;
+ }
+
+ _PyCompile_CodeUnitMetadata *umd = &c->u->u_metadata;
+ metadata = PyDict_New();
+ if (metadata == NULL) {
+ goto finally;
+ }
+#define SET_MATADATA_ITEM(key, value) \
+ if (value != NULL) { \
+ if (PyDict_SetItemString(metadata, key, value) < 0) goto finally; \
+ }
+
+ SET_MATADATA_ITEM("name", umd->u_name);
+ SET_MATADATA_ITEM("qualname", umd->u_qualname);
+ SET_MATADATA_ITEM("consts", umd->u_consts);
+ SET_MATADATA_ITEM("names", umd->u_names);
+ SET_MATADATA_ITEM("varnames", umd->u_varnames);
+ SET_MATADATA_ITEM("cellvars", umd->u_cellvars);
+ SET_MATADATA_ITEM("freevars", umd->u_freevars);
+#undef SET_MATADATA_ITEM
+
+#define SET_MATADATA_INT(key, value) do { \
+ PyObject *v = PyLong_FromLong((long)value); \
+ if (v == NULL) goto finally; \
+ int res = PyDict_SetItemString(metadata, key, v); \
+ Py_XDECREF(v); \
+ if (res < 0) goto finally; \
+ } while (0);
+
+ SET_MATADATA_INT("argcount", umd->u_argcount);
+ SET_MATADATA_INT("posonlyargcount", umd->u_posonlyargcount);
+ SET_MATADATA_INT("kwonlyargcount", umd->u_kwonlyargcount);
+#undef SET_MATADATA_INT
+
+ int addNone = mod->kind != Expression_kind;
+ if (add_return_at_end(c, addNone) < 0) {
+ goto finally;
+ }
+
+ PyObject *insts = instr_sequence_to_instructions(INSTR_SEQUENCE(c));
+ if (insts == NULL) {
+ goto finally;
+ }
+ res = PyTuple_Pack(2, insts, metadata);
+ Py_DECREF(insts);
+
+finally:
+ Py_XDECREF(metadata);
+ compiler_exit_scope(c);
+ compiler_free(c);
+ _PyArena_Free(arena);
+ return res;
+}
+
+PyObject *
+_PyCompile_OptimizeCfg(PyObject *instructions, PyObject *consts, int nlocals)
+{
+ PyObject *res = NULL;
+ PyObject *const_cache = PyDict_New();
+ if (const_cache == NULL) {
+ return NULL;
+ }
+
+ cfg_builder g;
+ if (instructions_to_cfg(instructions, &g) < 0) {
+ goto error;
+ }
+ int code_flags = 0, nparams = 0, firstlineno = 1;
+ if (_PyCfg_OptimizeCodeUnit(&g, consts, const_cache, code_flags, nlocals,
+ nparams, firstlineno) < 0) {
+ goto error;
+ }
+ res = cfg_to_instructions(&g);
+error:
+ Py_DECREF(const_cache);
+ _PyCfgBuilder_Fini(&g);
+ return res;
+}
+
+int _PyCfg_JumpLabelsToTargets(basicblock *entryblock);
+
+PyCodeObject *
+_PyCompile_Assemble(_PyCompile_CodeUnitMetadata *umd, PyObject *filename,
+ PyObject *instructions)
+{
+ PyCodeObject *co = NULL;
+ instr_sequence optimized_instrs;
+ memset(&optimized_instrs, 0, sizeof(instr_sequence));
+
+ PyObject *const_cache = PyDict_New();
+ if (const_cache == NULL) {
+ return NULL;
+ }
+
+ cfg_builder g;
+ if (instructions_to_cfg(instructions, &g) < 0) {
+ goto error;
+ }
+
+ if (_PyCfg_JumpLabelsToTargets(g.g_entryblock) < 0) {
+ goto error;
+ }
+
+ int code_flags = 0;
+ int nlocalsplus = prepare_localsplus(umd, &g, code_flags);
+ if (nlocalsplus < 0) {
+ goto error;
+ }
+
+ int maxdepth = _PyCfg_Stackdepth(g.g_entryblock, code_flags);
+ if (maxdepth < 0) {
+ goto error;
+ }
+
+ _PyCfg_ConvertPseudoOps(g.g_entryblock);
+
+ /* Order of basic blocks must have been determined by now */
+
+ if (_PyCfg_ResolveJumps(&g) < 0) {
+ goto error;
+ }
+
+ /* Can't modify the bytecode after computing jump offsets. */
+
+ if (cfg_to_instr_sequence(&g, &optimized_instrs) < 0) {
+ goto error;
+ }
+
+ PyObject *consts = consts_dict_keys_inorder(umd->u_consts);
+ if (consts == NULL) {
+ goto error;
+ }
+ co = _PyAssemble_MakeCodeObject(umd, const_cache,
+ consts, maxdepth, &optimized_instrs,
+ nlocalsplus, code_flags, filename);
+ Py_DECREF(consts);
+
+error:
+ Py_DECREF(const_cache);
+ _PyCfgBuilder_Fini(&g);
+ instr_sequence_fini(&optimized_instrs);
+ return co;
+}
+
+
+/* Retained for API compatibility.
+ * Optimization is now done in _PyCfg_OptimizeCodeUnit */
+
+PyObject *
+PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts),
+ PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj))
+{
+ return Py_NewRef(code);
+}