diff options
author | tender-bum <tender-bum@yandex-team.ru> | 2022-02-10 16:50:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:50:01 +0300 |
commit | 4aef354b224559d2b031487a10d4f5cc6e82e95a (patch) | |
tree | 5d5cb817648f650d76cf1076100726fd9b8448e8 /library/cpp/linear_regression | |
parent | c78b06a63de7beec995c1007bc5332bdf3d75b69 (diff) | |
download | ydb-4aef354b224559d2b031487a10d4f5cc6e82e95a.tar.gz |
Restoring authorship annotation for <tender-bum@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'library/cpp/linear_regression')
-rw-r--r-- | library/cpp/linear_regression/linear_regression_ut.cpp | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/library/cpp/linear_regression/linear_regression_ut.cpp b/library/cpp/linear_regression/linear_regression_ut.cpp index fc266e1616..e71a16b67a 100644 --- a/library/cpp/linear_regression/linear_regression_ut.cpp +++ b/library/cpp/linear_regression/linear_regression_ut.cpp @@ -31,7 +31,7 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { deviationCalculator.Add(arguments[i], weights[i]); } - double actualMean = InnerProduct(arguments, weights) / Accumulate(weights, 0.0); + double actualMean = InnerProduct(arguments, weights) / Accumulate(weights, 0.0); double actualDeviation = 0.; for (size_t i = 0; i < arguments.size(); ++i) { double deviation = arguments[i] - actualMean; @@ -47,7 +47,7 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { UNIT_ASSERT(IsValidFloat(meanCalculator.GetSumWeights())); UNIT_ASSERT(IsValidFloat(deviationCalculator.GetSumWeights())); UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator.GetSumWeights(), deviationCalculator.GetSumWeights(), 0); - UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator.GetSumWeights(), Accumulate(weights, 0.0), 0); + UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator.GetSumWeights(), Accumulate(weights, 0.0), 0); ValueIsCorrect(deviationCalculator.GetDeviation(), actualDeviation, 1e-5); @@ -94,8 +94,8 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { covariationCalculator.Add(firstValues[i], secondValues[i], weights[i]); } - const double firstValuesMean = InnerProduct(firstValues, weights) / Accumulate(weights, 0.0); - const double secondValuesMean = InnerProduct(secondValues, weights) / Accumulate(weights, 0.0); + const double firstValuesMean = InnerProduct(firstValues, weights) / Accumulate(weights, 0.0); + const double secondValuesMean = InnerProduct(secondValues, weights) / Accumulate(weights, 0.0); double actualCovariation = 0.; for (size_t i = 0; i < argumentsCount; ++i) { @@ -110,7 +110,7 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator.GetSecondValueMean(), secondValuesMean, 1e-10); UNIT_ASSERT(IsValidFloat(covariationCalculator.GetSumWeights())); - UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator.GetSumWeights(), Accumulate(weights, 0.0), 0); + UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator.GetSumWeights(), Accumulate(weights, 0.0), 0); ValueIsCorrect(covariationCalculator.GetCovariation(), actualCovariation, 1e-5); @@ -170,7 +170,7 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { } if (!regularizationThreshold) { - UNIT_ASSERT(predictedSumSquaredErrors < Accumulate(weights, 0.0) * randomError * randomError); + UNIT_ASSERT(predictedSumSquaredErrors < Accumulate(weights, 0.0) * randomError * randomError); } UNIT_ASSERT_DOUBLES_EQUAL(predictedSumSquaredErrors, sumSquaredErrors, 1e-8); } @@ -227,7 +227,7 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { } UNIT_ASSERT_DOUBLES_EQUAL(model.GetIntercept(), intercept, 1e-2); - const double expectedSumSquaredErrors = randomError * randomError * Accumulate(weights, 0.0); + const double expectedSumSquaredErrors = randomError * randomError * Accumulate(weights, 0.0); UNIT_ASSERT_DOUBLES_EQUAL(lrSolver.SumSquaredErrors(), expectedSumSquaredErrors, expectedSumSquaredErrors * 0.01); } |