diff options
author | vnik <vnik@yandex-team.ru> | 2022-02-10 16:50:11 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:50:11 +0300 |
commit | 82dd4d47353b9ff187773dd251163024db870e2a (patch) | |
tree | d4d7ebc620a32552f7446d9c20f1f83f3e3dcc57 /library/cpp/linear_regression/linear_regression.h | |
parent | cf62db3a461da3c6fdd693fb4cfada80d16031f2 (diff) | |
download | ydb-82dd4d47353b9ff187773dd251163024db870e2a.tar.gz |
Restoring authorship annotation for <vnik@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'library/cpp/linear_regression/linear_regression.h')
-rw-r--r-- | library/cpp/linear_regression/linear_regression.h | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/library/cpp/linear_regression/linear_regression.h b/library/cpp/linear_regression/linear_regression.h index e57de5ff6c..7e37e1b9b3 100644 --- a/library/cpp/linear_regression/linear_regression.h +++ b/library/cpp/linear_regression/linear_regression.h @@ -56,7 +56,7 @@ private: TStoreType SumWeights = TStoreType(); public: - bool Add(const double feature, const double goal, const double weight = 1.) { + bool Add(const double feature, const double goal, const double weight = 1.) { SumFeatures += feature * weight; SumSquaredFeatures += feature * feature * weight; @@ -66,8 +66,8 @@ public: SumProducts += goal * feature * weight; SumWeights += weight; - - return true; + + return true; } template <typename TFloatType> @@ -140,7 +140,7 @@ private: double Covariation = 0.; public: - bool Add(const double feature, const double goal, const double weight = 1.); + bool Add(const double feature, const double goal, const double weight = 1.); bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin); bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin, const double* weightsBegin); @@ -188,8 +188,8 @@ public: for (size_t featureNumber = 0; featureNumber < features.size(); ++featureNumber) { SLRSolvers[featureNumber].Add(features[featureNumber], goal, weight); } - - return true; + + return true; } TLinearModel Solve(const double regularizationParameter = 0.1) const { @@ -201,9 +201,9 @@ public: } TVector<double> coefficients(SLRSolvers.size()); - double intercept = 0.0; + double intercept = 0.0; if (bestSolver) { - bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter); + bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter); } TLinearModel model(std::move(coefficients), intercept); |