aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/linear_regression/linear_regression.cpp
diff options
context:
space:
mode:
authorvnik <vnik@yandex-team.ru>2022-02-10 16:50:11 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:50:11 +0300
commit82dd4d47353b9ff187773dd251163024db870e2a (patch)
treed4d7ebc620a32552f7446d9c20f1f83f3e3dcc57 /library/cpp/linear_regression/linear_regression.cpp
parentcf62db3a461da3c6fdd693fb4cfada80d16031f2 (diff)
downloadydb-82dd4d47353b9ff187773dd251163024db870e2a.tar.gz
Restoring authorship annotation for <vnik@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'library/cpp/linear_regression/linear_regression.cpp')
-rw-r--r--library/cpp/linear_regression/linear_regression.cpp18
1 files changed, 9 insertions, 9 deletions
diff --git a/library/cpp/linear_regression/linear_regression.cpp b/library/cpp/linear_regression/linear_regression.cpp
index 150f9d214e..e19c4a8736 100644
--- a/library/cpp/linear_regression/linear_regression.cpp
+++ b/library/cpp/linear_regression/linear_regression.cpp
@@ -41,8 +41,8 @@ bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const dou
*olsVectorElement += weightedGoal;
SumSquaredGoals += goal * goal * weight;
-
- return true;
+
+ return true;
}
bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
@@ -59,7 +59,7 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double
SumWeights += weight;
if (!SumWeights.Get()) {
- return false;
+ return false;
}
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
@@ -109,8 +109,8 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double
const double oldGoalsMean = GoalsMean;
GoalsMean += weight * (goal - GoalsMean) / SumWeights.Get();
GoalsDeviation += weight * (goal - oldGoalsMean) * (goal - GoalsMean);
-
- return true;
+
+ return true;
}
TLinearModel TFastLinearRegressionSolver::Solve() const {
@@ -147,10 +147,10 @@ double TLinearRegressionSolver::SumSquaredErrors() const {
return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, GoalsDeviation);
}
-bool TSLRSolver::Add(const double feature, const double goal, const double weight) {
+bool TSLRSolver::Add(const double feature, const double goal, const double weight) {
SumWeights += weight;
if (!SumWeights.Get()) {
- return false;
+ return false;
}
const double weightedFeatureDiff = weight * (feature - FeaturesMean);
@@ -163,8 +163,8 @@ bool TSLRSolver::Add(const double feature, const double goal, const double weigh
GoalsDeviation += weightedGoalDiff * (goal - GoalsMean);
Covariation += weightedFeatureDiff * (goal - GoalsMean);
-
- return true;
+
+ return true;
}
bool TSLRSolver::Add(const double* featuresBegin,